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SUPPLEMENTARY NOTE 1. DERIVATION OF THE NOISE EQUIVALENT

PRESSURE SENSITIVITY

We start by modelling the motion of a single mode mechanical oscillator at room tem-

perature in response to an external acoustic drive, and probed by a coherent field. In

regime where the mechanical thermal noise dominates on resonance, and the quantum

back-action noise on the sensor is negligible, we can take the high temperature limit where

n̄(ω) = kBT/~ω. In this regime, we obtain an optical shot-noise limited noise force floor.

The Langevin equations of motion for the mechanical displacement and the optical cavity

mode respectively are written as

m
d2xm(t)

dt2
+mγ

dxm(t)

dt
+ kxm(t) = FT + FD(t), (1)

da(t)

dt
= − i

~
[a,Hsys]−

κ

2
a(t) +

√
κinain +

√
κlal, (2)

in which k is the spring constant, FT =
√

2mγkBT is the thermal force, γ is the mechanical

damping rate, FD(t) = rζPD(t)A is the acoustic drive force in which r is the pressure

participation ratio defined in the main text, PD is the acoustic pressure, A is the sensing

area, ζ quantifies the overlap of the displacement profile of the mechanical sensing element

with the incident pressure wave, and m is the effective mass of the mechanical mode. κin

is the input coupling of the cavity to the input optical field, κl is the intrinsic cavity loss

and κ = κin + κl. Moreover, Hsys = ~∆ca
†a + ~g0a

†axm is the Hamiltonian of the system

in the interaction picture rotating with the frequency of the laser in which the optical

detuning ∆c = ∆ + gdispxm + O2 + ..., includes the dispersive coupling due to the presence

of the mechanical oscillation, and ∆ is the optical detuning in absence of the mechanical

oscillations. κin = κin,0(1− gdissxm) includes the dissipative coupling of the input field to the

cavity in response to the acoustic field up to the first order in xm. ain and al, respectively,

show the input optical field into the cavity and the vacuum input noise. In case where the

input optical field is a semi-classical coherent laser field, we can displace the amplitude of

the optical field such that a→ ā+ αin where |αin|2 = N is the input photon intensity.

The solution to Supplementary Equation (1) in Fourier transformed frequency domain is

xm(ω) = χm(ω)[FT + FD(ω)], (3)

in which the mechanical susceptibility χm is calculated as χ−1
m = m(ω2

m − ω2 − iγmω),

where m and ωm are respectively the mass and the resonance frequencyof the mechanical
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object. The output cavity mode, aout is related to the cavity mode, a, and the input

mode into the cavity, ain, through the input-output relation [13, 14], aout =
√
κina− ain. By

solving Supplementary Equation (1), the motional displacement of the mechanical resonator

can be calculated. Moreover, Supplementary Equation (2) can be solved in the frequency

domain in linearised displacement regime to get the cavity mode a. Using the solutions to

Supplementary Equations (1,2) together with the input-output relation, the output field of

the cavity is calculated as

aout(ω) = (B(ω)− C(ω))xm(ω) +D(ω)ain + E(ω)al, (4)

in which

B(ω) =
−2iαingdispκin,0

(κ0 + 2i∆)(κ0 + 2i(∆− ω))
, (5)

C(ω) =
2αingdissκin,0

κ0 + 2i(∆− ω)

(
1− 2κin,0

κ0 + 2i∆

)
,

D(ω) =
κin,0 − κl − 2i(∆− ω)

κ0 + 2i(∆− ω)
,

E(ω) =

√
κin,0κl

κ0 + 2i(∆− ω)
,

in which κin,0 is the original value of the input coupling in absence of the acoustic pressure,

κ0 = κin,0 + κl, gdisp =
d∆

dx
is the dispersive coupling rate and gdiss =

1

κin,0

dκin

dx
is the

dissipative coupling rate. Hence, in the regime where |αout| � |ā|, the output intensity of

the cavity can be calculated as Iout(ω) ∼ α∗outaout(ω) + αouta
†
out(−ω) where αout = |αout|eiϕ

is the average amplitude of the output field. The intensity can be rewritten as Iout(ω) ∼

|αout|Xϕ
out(ω), in which Xϕ

out(ω) is defined as the amplitude quadrature of the output field

fluctuations as Xϕ
out(ω) = aout(ω)e−iϕ + a†out(−ω)eiϕ. As for the rest of the calculations we

require the output fluctuations, we normalize the output intensity as Iout(ω) → Iout(ω)

|αout|
∼

Xϕ
out(ω). For the case of having only dispersive coupling where we assume gdiss = 0 we get

Xϕ
out(ω)|disp = χm(ω)(e−iϕB(ω) + eiϕB∗(ω))FT + χm(ω)ζA(e−iϕB(ω) + eiϕB∗(ω))rPD(ω)

+|D(ω)|Xθ
in + |E(ω)|Xφ

l , (6)

where we have used this convention in the Fourier frequency domain that [a(ω)]† = a†(−ω).

For the case of having only dissipative coupling where we assume gdisp = 0 we have

Xϕ
out(ω)|diss = χm(ω)(e−iϕC(ω) + eiϕC∗(ω))FT + χm(ω)ζA(e−iϕC(ω) + eiϕC∗(ω))rPD(ω)

+|D(ω)|Xθ
in + |E(ω)|Xφ

l , (7)
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where the area of the sensor, A, is the area of the disk.

a b

Supplementary Figure 1: Sensor response versus detuning of the laser form

cavity resonance frequency. Plots are for κl = 4 × 107, κin = 0.5 × 106, and ωm = 300

kHz at different frequencies (ω). (a) For the case where the sensor operates in pure dispersive

optomechanical regime. (b) for sensor operating in pure dissipative coupling.

Based on the above mentioned convention, [a(ω)]† = a†(−ω), the power spectrum of the

observable, Xout, is defined as [15]

SXoutXout(ω) =

∫ ∞
−∞

dω′〈X†out(−ω)Xout(ω
′)〉

=

∫ ∞
−∞

dω′〈(a(ω)a†(−ω))(a†(−ω′)a(ω′))〉. (8)

The power spectrum, SXoutXout , can be used to calculate the noise equivalent pressure sen-

sitivity. Considering a signal to noise ratio (SNR) equal to unity, the noise power spectrum

becomes

SPP[pa2 Hz−1] =
1

r2A2
(2mγkBT +

1

N |χ(ω)|2
), (9)

where we define χ(ω) as the optomechanical susceptibility, which depends on the particulars

of the coupling regime. For dispersive coupling it is

χ(ω) =
32gdisp∆κin,0χm(ω)(κ0 − iω)

(4∆2 + κ2
0)(4∆2 + (κ0 − 2iω)2)

, (10)

and for dissipative regime it is

χ(ω) =
[2gdissκin,0(−κ0(κin,0 − κl)(κ0 − 2iω) + 4∆2(κ0 + 2κin,0 − 2iω)]χm(ω)

(4∆2 + κ2
0)(4∆2 + (κ0 − 2iω)2)

. (11)

For the valid regime in this work, ω � κ, the optomechanical susceptibility reduces to a

simpler form of

χ(ω) =
2giκin,0χm(ω)

(4∆2 + κ2
0)2
× C i, (12)
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where i ∈ {disp, diss}, Cdisp = 16κ0∆ and Cdiss = −κ2
0(κin,0 − κl) + 4∆2(κ0 + 2κin,0).

Sensor response

In Supplementary Equations (6) and (7), the coefficient in front of the external drive

force by the applied pressure, Pd(ω), is the response of the system which is determined as

the transmitted optical power through the system. In Supplementary Figure 1, we have

plotted the system response versus detuning for both dispersive and dissipative regimes.

SUPPLEMENTARY NOTE 2. OVERLAP AND EFFECTIVE MASS FOR THE

SECOND ORDER FLAPPING MODE

In order to compare the measured sensitivity near the second order flapping mode to

theoretical predictions, it is necessary to estimate the overlap ζ between the applied acoustic

pressure wave and the mechanical mode spatial profile, as well as the effective mass of the

mechanical mode.

The overlap can be calculated as

ζ =

∫
A

u(r)δp(r)dA, (13)

where the integral is taken over the surface of the resonator; and u(r) and δp(r) are the

mechanical displacement in the direction of the vertically incident pressure wave and the

pressure acting on the resonator, respectively. u(r) is normalized to equal unity at the

maximum displacement of the mode and δp(r) is normalized to the acoustic pressure at an

antinode of the pressure wave.

The effective mass can be calculated as

m = tρ ·
∫
A

|u(r)|dA, (14)

where t is the thickness of the resonator, ρ is it’s density, so that M = tAρ is the total mass

of the resonator.

We used COMSOL multiphysics to determine u(r) for the second order flapping mode.

From Supplementary Equation (14) we then found that the effective mass of the mode was

equal to about half the total mass of the resonator, m ≈ 0.5M ≈ 110 ng.
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Considering that the pressure on the sensor, δp, is due to an incident plane wave, we

found an overlap of approximately ζ = 0.14 from Supplementary Equation (13).

One might expect this overlap to be zero, since the mode exhibits a rotational symmetric

tilting motion around the axis of the device with downwards motion at the inner edge of the

device at the same time as the outer edge is moving upwards. This counter-motion would

lead to a cancellation of the force applied by a plane pressure wave. However, the node of

the mode is closer to the outer edge than the center-of-mass of the annulus, leading to a

residual center-of-mass motion and a non-vanishing overlap.

SUPPLEMENTARY NOTE 3. FLUIDIC DAMPING OF MICROMECHANICAL

DEVICE

In this section we outline expressions and describe an experiment that allows the flu-

idic damping due to the interaction of our spoked-disk micromechanical resonator with its

gaseous environment to be estimated. We follow reference [17]. There are three common

forms of fluidic damping relevant to micromechanical devices: ballistic damping, due to

collisions of gas molecules with the surface of the resonator; drag force damping, due to

viscousness of the gas and the velocity gradient between the boundary layer near the surface

of the resonator and more distant points in the fluid; and squeeze-film damping, due to

the change in pressure introduced by motion of the resonator near its substrate. Ballistic

damping is generally only significant in high vacuum conditions, and is therefore not con-

sidered further here. The other two forms of damping, in general, introduce a combined

force that opposes the velocity of the resonator. Following Chapter 3 in reference [17], and

treating the resonator as thin, so that the spatiotemporal eigenmodes u(x, y, z, t) which

describe the displacement of each small region of the resonator vary only in the plane of

the resonator (defined as the {x, y} plane here), and do not depend on the z-coordinate

(i.e. u(x, y, z, t) = u(x, y, t)), this force can be written as F = −µlu̇(x, y, t) where µ is the

coefficient of viscosity of the fluid and l is a geometry-dependent characteristic length-scale

to be determined later. To find the rate of damping due to the gas γgas, this force should be

compared to the acceleration of the resonator Faccel = mü(x, y, t), where m is the effective

mass of the mode described by u. Considering the acceleration and damping terms in the

general equation of motion for harmonic oscillation mẍ + mγẋ + kx = Fext, where k is the
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spring constant and Fext the external force, we see that γgas is given simply by

γgas = µl/m, (15)

in angular units.

The power spectral density of the thermal force noise introduced by fluctuation-dissipation

to complement this fluidic dissipation is

ST,gas = 2mγgaskBT = 2µlkBT, (16)

where, of course, kB is the Boltzmann constant, and T is the temperature of the system.

Since the incident acoustic wave travels within the gaseous medium, ST,gas presents a fun-

damental bound on the pressure sensitivity of a micromechanical acoustic sensor of fixed

geometry and a particular gaseous medium.

Given that the thermal fluctuations introduced by the interaction with the gas are in-

dependent from those introduced by thermal vibrations of the substrate and any other

damping mechanisms intrinsic to the resonator, the total thermal force noise experienced by

the resonator is

ST = 2m(γ + γgas)kBT = 2(mγ + µl)kBT, (17)

where γ is the intrinsic decay rate of the resonator, and the total mechanical decay rate

γm = γ + γgas. Inserting this expression into Supplementary Equation (9) we find the

minimum detectable pressure

Pmin(ω) =
√
SPP(ω) =

1

rζA

√
2(mγ + µl)kBT +N−1|χ(ω)|−2, (18)

as given in the main text, where r is the pressure participation ratio (see main text Fig-

ure 2d), and ω is the drive frequency of the acoustic wave. Note that, since the sensor and

detection system are linear, the effect on inefficiencies in detection are simply to transform

the effective intracavity photon number from N → ηN where η is the efficiency with which

light leaves the optical resonator and is successfully detected at the detector.

Experimental characterisation of the gas damping

In order to determine the contributions to the noise equivalent pressure from intrinsic

mechanical dissipation and from fundamental gas damping, we placed the device in a vacuum
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Supplementary Figure 2: Brownian noise spectra of a mechanical resonance with

varying static pressure. Power spectral density versus detuning around the 315 kHz res-

onance for different pressures with decay rates of 1430 Hz, 535 Hz and 150 Hz at pressures of

1000 mbar, 44 mbar and 0.056 mbar respectively. Note that the vertical axis of this plot is

uncalibrated, and varied for measurements at different pressures due to drifts in the exper-

imental apparatus, including the taper-microdisk separation and the optical polarisation.

chamber and swept the pressure from 0.056 mbar to atmosphere. We monitored the damping

rate of the resonance observed at 315 kHz. At the lowest measured pressure, the decay rate

plateaus to a minimum of 150 Hz, corresponding to the intrinsic mechanical dissipation γ,

whereas at atmospheric pressure, the decay rate reaches 1, 430 Hz. The difference between

these two values corresponds to a gas damping rate of γgas/2π = 1, 260 Hz. Mechanical

resonances for three different pressures, measured using a spectrum analyser, are shown in

Supplementary Figure 2.

The contributions to the noise equivalent pressure from intrinsic dissipation and gas

damping could potentially also be distinguished by varying the viscosity of the gas in other

ways; for instance by changing the constituents or temperature of the gas. Evacuating the

sample chamber is particular attractive because it suppresses the gas damping by several

orders of magnitude without affecting the intrinsic dissipation, and therefore allows a direct

and accurate measurement of the intrinsic dissipation. By contrast, decreasing the tem-

perature of the enclosure by 100 degrees to ∼200 K would only reduce the air viscosity by
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a factor of two. Similarly, replacing the air with alternative gas such as carbon dioxide,

hydrogen, helium or xenon would also only alter the viscosity by a factor of two or less. A

further complication associated with changing the temperature is that the intrinsic mechan-

ical dissipation is also temperature dependent, for instance decreasing by roughly a factor

of four with a 100 degree decrease in temperature for devices similar to ours in Ref. [19].

Determining the characteristic length-scale

From the experimentally observed gas damping of γgas/2π = 1, 260 Hz we can directly

determine a viscous length-scale l = 2π · 8.1 mm. The length scale has two components

– one from drag damping (ldrag), and one from squeeze film damping (lsqueeze). While the

viscous drag damping can be reliably calculated for our geometry, as shown in the following

paragraphs, the viscous squeeze film damping depends sensitively on the height profile of

the underlying substrate. In our case, large height variations arise in the silicon substrate

below the sensor due to our fabrication process, as can be seen in Figure 2a of the main

text. This makes the exact determination of the viscous squeeze film damping extremely

challenging, and beyond the scope of this work. We instead infer the characteristic length

scale for squeeze film damping from the experimentally extracted total gas damping and the

calculated viscous damping.

Determining the viscous drag length scale

Chapter 3 of Ref. [17] gives the drag force for several geometries, with the general form

Fdrag = −6πξµ
√
A u̇(x, y, t), (19)

where, again, µ is the coefficient of viscosity of the fluid, which for air at room temperature is

around µ = 1.8×10−5 kg m−1 s−1, A is the surface area of the top surface of the resonator and

ξ is a dimensionless geometry dependent coefficient which is generally on the order of unity.

For instance, for a free sphere, a vertically moving disk (z direction), and a horizontally

moving disk, it is given by ξ = {1, 0.85, 0.567}, respectively.

9



From Supplementary Equation (19), we find

ldrag = 6πξ
√
A = 6π3/2ξ

√
R2 − r2 ≈ 3π

(
2ξ
√
A
)
, (20)

γdrag =
µl

m
=

3πµ

m

(
2ξ
√
A
)
. (21)

It should be noted that in these expressions m is the effective mass of the mechanical

eigenmode, which we determine to be m ∼ 110 ng ∼ M/2 from finite element modelling,

while the drag damping calculations assume a uniform vertical motion of the disk - that is,

it does not account for any structure in the mechanical modeshape.

Calculations that fully account for the modeshape dependence of gas damping are beyond

the scope of this work. However, it can be approximately accounted for via a simple thought

experiment. We imagine that the component of the annular disk is such that the surface of

the disk within a radius r′ of its axis is perfectly stationary, while the component between

r′ and the major radius of the disk R moves uniformly. That is, the mechanical eigenmode

is a step-function in the radial direction, with no motion at radii less than r′. In this case,

the effective mass of the resonator is equal to

m = M × A′

A
= M ×

(
R2 − r′2

R2 − r2

)
, (22)

where A′ is the area of the moving component of the annular disk and M is the total mass

of the annular disk.

Since the moving component of the annular disk is also an annular disk with the same

major radius R, but minor radius increased to r′, Eqs. (20) and (21) can be applied to

approximate the drag damping and its characteristic length scale, but with the replacement

A→ A′. We then arrive finally at

l = ldrag ≈ 6πξ

√
Am

M
, (23)

γdrag =
µldrag

m
≈ 6πµ

m
ξ

√
Am

M
. (24)

The relevant parameters of our device are µ = 1.8 × 10−5 kg m−1 s−1, R = 148 µm,

r = 82 µm, a mass of around M ∼ ρtA = 230 ng, and an effective mass of m ∼M/2, where

ρ = 2650 kg m−3 is the density of silica, t = 1.8µm the thickness of the resonator, and A its

area. We choose ξ = 0.85, consistent with expectations for a vertically moving disk.
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In order to state a sensitivity in units of Pa Hz−1/2, where Hz is the inverse of the actual

measurement time, we include an extra scaling factor of 2π to convert from radial units that

are used in the derivations above: l→ l/2π = mγ
/

2πµ. We then find

ldrag ∼ 0.4 mm, (25)

γdrag/2π ∼ 62 Hz. (26)

From this, we infer an approximate squeeze film damping characteristic length scale of

lsqueeze = l− ldrag = 7.7 mm � ldrag, suggesting that squeeze film damping is dominant, and

thus the total gas damping could be significantly reduced by increasing the distance between

the sensor and the substrate.

Squeeze film damping in the presence of a flat substrate

In this Section we will derive an approximate expression for the squeeze film damping

above a flat substrate. While, due to the large height variations of the substrate across the

area of our device, this analysis can not be used to determine lsqueeze, we can use it to assess

how an optimized sensor geometry could be designed.

Ref. [17] calculates the squeeze film force for a vertically moving annular disk with major

and minor radii of R and r, respectively, to be

Fsqueeze = −3πµR4G(β)

2h3
u̇(x, y, t), (27)

where h is the separation of the bottom of the resonator from the substrate, β = r/R and

G(β) = 1− β4 +
(1− β2)2

ln β
. (28)

Using these expressions, we find directly that

lsqueeze =
3πR4G(β)

2h3
. (29)

To account, roughly, for the eigenmode shape of the mechanical mode of the sensor,

following the approach taken in the previous section, we can redefine a modified β as

β′ =
r′

R
=

√
1− A

πR2

m

M
=

√
1− (1− β2)

m

M
, (30)
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where we have used the fact that A/πR2 = 1− β2. We then find

lsqueeze ≈
3πR4G(β′)

2h3
, (31)

γsqueeze ≈
3πµR4G(β′)

2mh3
. (32)

The relations derived in this Section for the characteristic length scales and damping rates

for air-drag damping and squeeze-film damping, combined with modelling of the intrinsic

mechanical damping, such as that performed in Ref. [18], allow approximate prediction of

the thermomechanical noise limited sensitivity of a general spoked-microdisk cavity optome-

chanical acoustic sensor.

Designing the device to reach optimum sensitivity

As given in Supplementary Equation (16), the thermal force noise introduced by fluidic

dissipation, and therefore the gas-damping limited pressure sensitivity, only depends on the

Boltzmann constant, the temperature, the gas viscosity and the characteristic length-scale.

Therefore, the characteristic length-scale is the only device-dependent parameter which can

be engineered to optimise the sensitivity in this limit. The right-hand-side of Supplementary

Equation (23) represents the characteristic length-scale for air-drag damping. As can be

seen, apart from the geometric-factor ξ this depends only on the area of the resonator which

is fixed for a given desired spatial resolution and the ratio of mass to effective mass. The

air-drag damping limited sensitivity is therefore also fixed for given desired spatial resolution

and device geometry. On the other hand, the squeeze-film damping characteristic length-

scale (right hand side of Supplementary Equation (31)) depends on the height of the device

above the substrate h, decreasing with increasing height. The two characteristic length-

scales are equal for h = (R4G(β′)/(4ξ
√
Am/M))1/3. Taking the rough approximation that

A ∼ R2, m = M , and β ∼ 0 so that the hole in the annular disk is small relative to its

diameter, this becomes h ∼ R. We therefore see that squeeze-film damping can be expected

to significantly degrade the pressure sensitivity if the height of the device is small compared

to its radius. This is the case for our existing devices as can be seen from Figure 2a in the

main text, consistent with our observation above that squeeze film damping dominates drag

damping for our devices. Given the 1/h3 scaling in Supplementary Equation (31), it is clear

that by developing a modified fabrication process that allow our devices to be suspended
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further from the substrate, the squeeze-film damping could be greatly suppressed.

It is interesting to also observe that l, and therefore the thermal force noise from gas

damping, is independent of the thickness of the device. On the other hand, as can be

seen in Supplementary Equation (17), the force noise due to intrinsic damping into the

substrate increases linearly with thickness, through the increase this causes to the device

mass. Consequently, as the resonator becomes increasingly thin, and the intrinsic thermal

force noise decreases, the noise introduced by gas-damping will become dominate (as is

already the case for our devices). For sufficiently good optical measurement and a sufficient

height above the substrate, this would allow the sensor to operate at the air-drag damping

force noise floor. Indeed, for a sufficiently thin device, it may be possible to achieve an air-

drag damping-limited noise floor even without the presence of spokes to isolate the device

from substrate thermal noise. In this case, the active sensing would be increased by around

40% improving the sensitivity by a similar margin.

SUPPLEMENTARY NOTE 4. CHARACTERISING THE OPTICAL RESO-

NANCE

The optical resonance used in the experiments was characterised by scanning the fre-

quency of the laser across the mode and fitting the observed transmission through the

tapered fibre to an inverted Lorentzian (see Supplementary Figure 3). This allowed the

coupled cavity decay rate κ and quality factor Q to be determined. These were found to be

κ = 112 MHz and Q = 1.8 × 106 in critical coupling regime corresponding to an intrinsic

quality factor of 3.6× 106.

SUPPLEMENTARY NOTE 5. UTILISING A MICHELSON INTERFEROME-

TER TO CALIBRATE THE PIEZOELECTRIC SOUND SOURCE

To calibrate the piezo element (PZT1), we attached to it a light weight silver mirror (M1)

which is utilized as a mirror to be displaced in one of the arms of a Michelson interferometer

as shown in Supplementary Figure 4a. The interferometer is fed by a laser at λ ' 1555 nm

and the output interference signal is detected on a low noise photodetector as shown in the

experiment scheme. We used a secondary PZT element (shown as Phase control PZT in
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Supplementary Figure 3: Optical resonance. One of the optical modes of the micro-

disk (λ = 1555.716 nm) is shown with optical quality factor (Q) and cavity damping rate

(κ) indicated on the figure. ∆ν is the laser detuning with respect to the center of the cavity

mode.

Supplementary Figure 4a) with a mirror attached to it in the other interferometer arm to

thermally lock its phase using a PID (proportional integral derivative) controller.

To perform the measurement, we used a network analyser with its port 1 driving the

PZT1 (DUT) and port 2 receives the signal from the PD. The PI-controller output is con-

nected to PZT2 (phase control) through a voltage amplifier (Falco Sytems WMA-300). The

displacement spectrum of PZT1 can be calculated as

d(ω) =
λ

4

V (ωref)

Vmax

√
S21(ω)

S21(ωref)
, (33)

where S21(ω) is the off-diagonal network scattering parameter corresponding to the coher-

ent power transfer from port 1 to port 2 at a frequency ω. ωref is a calibration reference

frequency which was 20 kHz in our measurement. V (ωref) is the photodetector voltage at

ωref and Vmax is the maximum voltage generated by the interference, corresponding to a λ
4

displacement. Throughout this measurement we always monitored the generated signal not

to saturate i.e., the displacement was always < λ
4

at a given applied voltage to the PZT1.

We confirmed that the displacement was a linear function of the applied voltage to PZT1.

At frequencies where the displacement was larger than λ
4
, we lowered the voltage in order

14



Network
Analyser

Port1 Port2

PD

Laser
1555 nm

PD

PI 
Controller

Fiber BS 
Collimators

Phase 
control, 

PZT2

M2

Counter weight

DUT PZT1

M1

0.0 2.0x105 4.0x105 6.0x105 8.0x105 1.0x106

10-10

10-9

10-8

10-7

P
Z

T
 d

is
p
la

c
e
m

e
n
t 
(m

)

Frequency (Hz)

ba x50

Supplementary Figure 4: Michelson interferometer to calibrate the piezo-electric

sound source. (a) Interferometry measurement scheme. There are two mirrors M1 and

M2 which are respectively attached to PZT1 and PZT2 which are placed in the output

arms of the interferometer. PZT1 is the piezo element to be measured and PZT2 is used to

lock the phase of the interferometer. PZT1 and PD are respectively connected to ports 1

and 2 of a NA with which we drive the PZ1 and simultaneously measure the signal of the

interferometer. (b) The measured displacement of the PZT1 for a drive voltage of 707 mV

at frequency spectrum from 1 kHz to 1MHz.
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Supplementary Figure 5: Air acoustic response. (a) atmospheric attenaution for

sensor-PZT distance of 10 cm based on citation [16], (b) the ratio of pressure at the position

of the sensor to ultrasonic pressure at the PZT calculated from on-axis diffraction for sensor-

PZT distance of 10 cm.
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to avoid saturation. The high and low voltage measurements were then normalised with

respect to 707 mV and compiled. The results are shown in Supplementary Figure 4b for an

applied voltage of 707 mV.

The acoustic pressure at the position of the PZT is calculated from the PZT displacement

and the air impedance, α=413 Pa s m−1 as

PPZT (ν) = πνd(ν)α, (34)

and the acoustic pressure at the position of the sensor is given by

Psensor(ν) = c(ν)γ(ν)−1PPZT (ν), (35)

where c is an attenuation coefficient dependent on the sensor-PZT distance (L). We cal-

caulted this factor based upon on-axis diffraction of a plane wave from the PZT mirror

which acts as an apperture through which the sound wave is diffracted. In our measurement

the PZT-sensor distance was 10 cm and the appreture size was 7 mm x 7 mm. The results

of this calculation as a function of ultrasonic frequency is shown in Supplementary Figure

5a. γ(ν) is the atmospheric acoustic attenuation and depends on both L and air acoustic

absoprtion coefficient [16] which is significant only at high frequencies (>100kHz) for small

L=10 cm. This attenuation factor is shown in Supplementary Figure 5b.

SUPPLEMENTARY NOTE 6. SENSITIVITY AND RESPONSIVITY

The experimentally measured pressure sensitivity (black line and blue circles) and the

applied pressure (red line) are shown as a function of frequency in Supplementary Figure 6.

The sensitivity is calculated using Equation (2) in the main text and using the measured

responsivity and noise floor of the device. The experimentally measured responsivity of the

sensor in VPa−1 is shown in Supplementary Figure 7. As can be observed and might be

expected, the response is stronger at low frequencies though, as can be seen in the main

text, the noise floor is also increased at low frequencies due to 1/f noise. The response also

exhibits sharp resonances, as expected for a resonantly enhanced sensor.
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Supplementary Figure 6: Noise equivalent pressure sensitivity. Pressure sensitivity

as a function of frequency (black lines) and the applied pressure (red lines) as measured

using a network analyser. The open symbols are reference points directly measured using a

spectrum analyser at certain frequencies for further validation of the network analysis.
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Supplementary Figure 8: Ultrasonic force sensitivity in comparison with other

air-coupled sensors. s1 to s11 refer to Supplementary references [1]–[11].

SUPPLEMENTARY NOTE 7. PREVIOUS ULTRASOUND SENSORS

References for Figure 5 in the main text

Supplementary Figure 8 provides citations to previous works on acoustic sensors.

Effective area and ultrasonic force sensitivity of Fabry-Perot style acoustic sensor

Apart from the Fabry-Perot style acoustic sensor of [12], the area used to normalise

the ultrasonic force sensitivity of the sensors discussed in the main text can generally be

unambiguously defined. In the case of [12], however, the different sensing mechanism, optical

detection of the refractive index modulation the pressure wave induces in a gas, makes the

appropriate definition less clear. To clarify this, here we consider the diffraction of an

acoustic wave incident on their sensing head.

The sensor head in [12] consists of a semi-enclosured space, with two vertical surfaces

serving as mirrors to define the Fabry Perot cavity and two horizontal surfaces consisting

of spacers to support the cavity. The final two faces of the enclosure are left open. The
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system is then immersed in liquid, with an applied plane acoustic wave propagating into the

sensing region (the locality of the optical field within the cavity) through the open faces.

The acoustic wave modifies the refractive index of the enclosed gas and therefore the optical

path length in the cavity. The total field of view for the acoustic wave is approximately 2 mm

by 2 mm. The wave propagates for roughly 2 mm within the enclosure before reaching the

axis of the laser beam.

We would like to know how the amplitude of the acoustic wave reaching the axis of the

laser beam, and therefore the signal-to-noise, would change due to diffraction if, rather than

a plane acoustic wave covering the full field of view of the sensor, the acoustic wave was

concentrated on a smaller area of the outer surface of the spacer. If that area matches the

cross sectional area of the laser beam through which the acoustic wave propagates (2 mm

by 60 µm) and it is found that the amplitude is approximately unchanged by diffraction,

the laser beam cross section would be the appropriate sensing area to choose. On the other

hand, if diffraction significantly decreases the amplitude of the acoustic wave when it is

concentrated to an area matching the laser beam cross section, the appropriate sensing area

can be found by increasing the concentration area until there is no significant diffraction. Put

another way, were the plane incident wave reduced in area, then for areas for which diffraction

is small, this would leave the pressure at the sensing region, and therefore sensitivity, roughly

unchanged. However, once the the incident plane wave area is reduced to the point where

diffraction plays a significant role, the pressure at the sensing region would decrease for a

fixed incident intensity, degrading the sensitivity.

To estimate the diffraction within the spacer we consider diffraction of a wave with

Gaussian profile, noting that this gives a minimum possible diffraction (e.g. the perhaps

usual square-profile would diffract faster). The diffraction length is then quantified by the

Rayleigh length

zR =
πw2

λ
, (36)

where w is the radius of the acoustic wave incident on the outside of the spacer and λ

its wavelength. Assuming that the liquid in which the sensor is immersed is water, the

longitudinal sound velocity is v = 1, 500 m s−1. For their 1 MHz acoustic wave frequency,

this gives a wavelength of λ = v/f = 1.5 mm. We then ask, what radius of acoustic wave

would be required for it to not diffract significantly over the 2 mm propagation distance to
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the laser beam axis? This is given by setting the Rayleigh length equal to 2 mm, so that

w =

√
zRλ

π
∼ 1 mm, (37)

or an acoustic wave diameter of 2 mm. This implies that even an acoustic wave fully

spanning the 2 mm by 2 mm field of view of the sensor would experience significant diffraction

propagating through the spacer, and indeed given that the incident pressure wave profile

will not be Gaussian, that the effective area of the sensor is likely to be larger than the field

of view. To be conservative, in Figure 5 of the main text we choose the effective area to

match the field of view.

Given the reported noise equivalent pressure of 0.45 mPa Hz−1/2 in Ref. [12], we then

arrive at an ultrasonic force sensitivity of 1.8 nN Hz−1/2.

SUPPLEMENTARY NOTE 8. ESTIMATION OF SENSITIVITY OF TRACE

GAS SENSING BY PHOTO-ACOUSTIC SPECTROSCOPY

Photo-acoustic gas spectroscopy is based upon sensing the acoustic waves generated by

gas moleucles due the light absoprtion. Excitation light is properly chosen to be on resonance

with one of the spectral lines of the gas molecules. Absorption of light in the gas produces

local heating in the sample which results in local pressure increase. If the excitation light

is pulsed or a modulated continuous-wave (CW), the generated heat in the gas will result

in generation of acoustic waves at the modulation frequency. Photo-acoustic gas sensing is

based on measuring the generated acoustic pressure to measure the gas absorption and so

the concentration of the sample gas. The optomechanical sensor has high sensitivity together

with microscale area. Hence, it offers the possibility to image gas concentrations with high

resolution. Here we consider one example, the possibility to measure the CO2 exchange of

photosynthetic cells.

We can estimate the lowest gas concentration which can be measured by the optomechan-

ical acoustic sensor in vicinity of a photosynthetic sample such as a plant leaf [20]. For this.

we need to connect the minimum detectable pressure by the opto-mechanical microphone

to the optical absorption coefficient in order to calculate the minimum of gas concentration

which can be measured. We consider a microscale photosynthetic sample which exchanges

CO2 with its environment. We place the acoustic sensor at a distance r from the sample
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and shine a pulsed laser through the gas in the vicinity of the sample. We choose the

spectral line of CO2 at λ = 4, 329.93 nm (k = 2311.105 cm−1) having line intensity of

S = 4.7× 10−19 cm−1(molec cm−2)−1.

For the remainder of the analysis we follow [21] to find the relation between absorption

coefficient of the gas and the generated photoacoutic pressure. As in [21], we consider a

thin optical medium (low absorption) for which αl � 1 where α is the optical absorption

coefficient and l is irradiation length or length of the photoacoustic source. We further

assume that the sound wave can exit the irradiated zone within the pulse duration so that

Rs < vτL, where Rs is the radius of the laser beam, v is the speed of sound and τL is the laser

pulse duration. Therefore, the effective source radius is R = vτL. The second assumption

can therefore be rewritten as Rs < R, i.e. that the radius of the laser beam should be

smaller than the source radius. Moreover, the source volume can be written as V = πR2l.

The coefficient of expansion of air, β is

β =
∆V

V∆T
, (38)

where ∆V = π(R+∆R)2l is the initial expansion of the source volume after the laser beam,

and ∆T , the rise in the temperature after a pulse, is [21]

∆T =
Eαl

ρV Cp
, (39)

in which E is the energy of the laser pulse, ρ is the density and Cp is the heat capacity of

air. Therefore, ∆R, the initial expansion of the source radius becomes [21]

∆R =
βEα

2πρCpvτL

. (40)

The peak displacement, Us(r) at distance r from the photoacoustic source varies as
1

r
for

spherical sound waves. Hence,

Us(r) = ∆R(
R

r
) =

βEα

2πρCpr
. (41)

the peak acoustic pressure is [21]

Ppeak(r) ≈ vρUs(r)

τL

. (42)

Supplementary Equations (41) and (42) result in

α ≈ 2πCpτLr

vβE
Ppeak(r). (43)
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To calculate the minimum detectable concentration we first need to relate the peak acoustic

pressure to the effective acoustic pressure driving the mechanical mode over a period of the

mechanical motion. The conversion factor can be estimated as the ratio of the laser pulse

duration and the mechanical period over which the pressure is being applied. We have

Peff(r) = Ppeak(r)τL
ωm

2π
, (44)

in which ωm is the mechanical frequency. Moreover, the absorption coefficient is proportional

to gas concentration as

α =
cS

2γG
, (45)

in which S = 4.7×10−19 cm−1(molec cm−2)−1 is line intensiy of CO2, γG = 0.06 cm−1 is gas

linewidth of and c is the number density of gas molecules. Using Supplementary Equations

(43), (44) and (45) we can write

cmin ≈
8π2γGCpr

vβESωm

Peff−min, (46)

where Peff−min is the minimum pressure that can be detected by the optomechanical trans-

ducer and cmin is the minimum detectable gas molecules number density. At room temper-

ature, T = 300 K, β = 0.0034 K−1 and Cp = 1.005 kJ kg−1 K−1. We further assume a

pulsed laser having a pulse energy of E = 1 µJ and a pulse duration of τL = 1 µs. This

pulse duration is short enough to satisfy the condition of Rs < vτL for a typical laser beam

radius of Rs = 50 µm but also long enough to avoid thermal diffusion during the exposure.

If we choose the acoustic frequency of ν0 = 318 kHz at which the optomechanical sensor can

detect acoustic pressures as small as Pmin = 84 µPa, using Supplementary Equation (46) at

r = 100 µm, we get cmin = 3.5×1011 molec cm−3 which is equal to 12.5 ppb. The concentra-

tion of CO2 around leaf cells investigated in [20] is of the order of 100 ppm. Therefore, our

sensor can be expected to be sensitive enough to measure CO2 exchange of photosynthetic

cells with a high resolution.

SUPPLEMENTARY NOTE 9. MEASUREMENT OF THE ACOUSTIC WAVES

GENERATED BY THE NANOSCALE VIBRATIONS OF CELLS OR BACTERIA

Bio-identifications are required in various fields including medicine, food and beverages,

water, safety, public health and security. Current procedures of bacteria detection are costly,
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Supplementary Figure 9: Opto-mechanical acoustic sensor performance for cell

vibration detection. The circles are experimental sensitivities (at a bandwidth of 1 Hz)

for our sensor with given size. Our sensor is scalable and it can be fabricated slightly larger

or smaller thereby changing its sensitivity at different frequency. However, more or less the

solid black line shows a guide to the eye for expected sensitivity of such sensor we have.

The colour solid lines show the amount of pressure generated by the cell versus frequency

for different displacements ∆x.

time-consuming and based on cell culture which require laboratory and microscopic analysis

done by a trained person. However, self-contained mobile bio-sensors can simplify fast

diagnosis in place even for the some bacteria that can not be cultured in laboratory [22].

There are recent experiments on bacteria, yeast and plant cell samples in liquid and soil

which show bacteria and yeast produce vibrations with displacement amplitudes of 1-100

nm and plant cells produce vibrations with displacement amplitude of 1-30 nm [23–26].

These experiments are performed for cell concentrations of 108 and 107 CFU ml−1 which

respectively include 96 and 27 bacteria per sample [25]. Our opto-mechanical acoustic sensor

can be used to study micro-organisms through detecting these vibrations and hence there

is no need to grow cells in an especial probing medium. We can consider a very thin layer

of bacteria or cell in a liquid which is coated on a silicon or glass substrate and hold our

acostic sensor very close to the sample such that we can ignore the air attenuation of the

acoustic waves generated by cells. In order to estimate if our sensor is sensitive enough to

probe such vibrations, we need to estimate the pressure produced by these micro-orgnisms

vibrations and compare it with the minimum presure that our sensor can detect at a given
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frequency. The pressure generated by the vibrational displacements can be calculated as

P = πν0Zaird, (47)

in which ν0 is the vibration frequency, Zair =413 Pa s m−1 is air impedance and d is the

displacement. For ν0 = 10 kHz and d =1 nm we have P = 1.3 × 10−2 Pa which suggests

that our acoustic sensor should be able to quite easily detect cell vibrations.

Supplementary Figure 9 shows how the opto-mechanical sensor performs for cells vi-

brating at other frequencies and with smaller displacement amplitudes. As can be seen,

the sensor should be applicable to sensitively detect small cellular vibrations at frequencies

across the full range over which it has been calibrated. We note, further, that the broadband

sensitivity of better than 10 mPa Hz−1/2 is sufficient to monitor cellular vibrations across the

full continuous frequency range. One technical consideration is that, as with other resonant

sensors and as shown in Supplementary Figure 7, the responsively of the sensor fluctuates

significantly over the measurement band. These fluctuations are static in time, and there-

fore could be compensated for in post-processing to produce an accurate spectrum of cellular

vibrations. Alternatively, as discussed in the main text and in more detail later in the Sup-

plementary Note 9, optomechanical cooling techniques could be employed to broaden the

mechanical resonances and flatten the response without degrading singnal-to-noise.

Our opto-mechanical acoustic sensor can also offer some other advantages for cell detec-

tion such as using this sensor one does not need an agent as in [23–26] since the sensor can

measure cells vibration without need to attach them to the sensor. Moreover, we can detect

the magnitude and frequency of the vibrations and scan over xy coordinates to map the

vibrational pattern. This enables studying and investigating different bacteria in a sample.

This sensing enables the experimenter to measure spectral density of the acoustic waves

generated by the cell which may help to understand the difference between different types

of cells (maybe cancer detection) or many other cell biology investigation such as prob-

ing fast phenomena happening on the cell wall or inside it. The cell wall can also behave

like a membrane transferring internal oscillations to the air and finally to the sensor. This

suggest that our sensor has significant potential in developing micromechanical sensors for

micro-organisms.

24



SUPPLEMENTARY NOTE 10. OPTOMECHANICAL COOLING

As discussed in the main text, a range of techniques have been developed in the quantum

optomechanics community to cool the motion of mechanical resonators (see e.g. [27–32]).

These cooling processes also, by necessity broaden the mechanical resonances. This broad-

ening can be used to flatten the resonant response of the sensor. Unlike other methods to

broaden mechanical resonance, for example, by introducing additional damping, however,

since the ideal laser acts as a zero temperature bath [15], these quantum optomechanical

cooling techniques do not add additional thermal noise. Therefore, they can be used to

flatten the response of an optomechanical system without the usual cost of additional noise.

The fractional broadening of the mechanical resonances which is possible can be quantified

using a single parameter, the optomechanical cooperativity

C =
4g2

0N

κγ
, (48)

where g0 is the vacuum optomechanical coupling rate, N is the number of intracavity pho-

tons, κ is the optical decay rate, and γ is the mechanical resonance linewidth. Optome-

chanical cooperativities in the range of 103 to 106 can generally be readily achieved [33].

Application of, for example, feedback cooling [30, 31], can broaden the mechanical linewidth

by as much as a factor of C. So, for example, a mechanical resonance at 500 kHz with

a quality factor of 1,000 (and therefore linewidth of 500 Hz) could to broadened to give a

near-flat response.

SUPPLEMENTARY NOTE 11. DEVICE FABRICATION PROCESS

Supplementary Figure 10 shows the process used to fabricate the ultrasound sensor.
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Supplementary Figure 10: Cross-sectional view of the microfabrication process.

a)-c):Starting from a Oxide-coated Silicon wafer, UV-photolithography and HF-wet-etch

were performed to define the Silica structure. d) and e): A XeF2 dry-etch isotropically

removes silicon and releases the silica-structure.
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