
Reviewers' comments:  
 
Reviewer #1 (Remarks to the Author):  
 
In this manuscript the authors propose a novel constructive prescription to quantitatively 
determine the extend of quantum critical regions associated with quantum phase transitions in the 
temperature-control parameter plane. The authors demonstrate the working of their definition by 
presenting numerical simulations for two model systems using Monte-Carlo simulations.  
 
Apart from some aspects commented on in more detail below, the manuscript is well written, well 
structured, and well accessible also for non-experts in the field.  
 
As the authors also emphasize, quantum critical regions (QCRs) play a key role in the 
understanding of the low-temperature properties of quantum many-body systems. Thus, being 
able to quantitatively determine QCRs is, in principle, an important and interesting aspect across a 
wide range of physics. In the asymptotic low-temperature limit in the vicinity of the quantum 
phase transition scaling theory predicts the shape of crossover lines surrounding the QCRs, but not 
the numerical prefactors. In the presented work the authors show that for the studied models their 
proposed construction reproduces the correct scaling in the low-temperature region with now 
providing also an estimate of the numerical prefactors. In addition, they determine crossover lines 
also at higher temperatures offering a possible shape of the QCR in the full temperature-control 
parameter plane.  
 
While I consider the studied question, in principle, of great and fundamental interest and therefore 
to be suitable for publication in Nature Communications, the current version of the manuscript 
does not appear sufficiently convincing to me in order to support the general authors claims. In 
the following, let me provide the main points which led to this conclusion.  
 
1. Although the authors show that their construction reproduces the shape of the QCR in the low-
temperature limit, it does not come out clear from the presentation what are the implications of 
the proposed shape of the QCR at higher temperature. For example, is it the case that the 
proposed QCR marks those parts of the temperature-control parameter plane which are still 
dominated by the fixed point associated to the underlying quantum phase transition? If yes, could 
this, in principle, be tested?  
2. The authors don't discuss in their manuscript how general their construction could be applied. 
For example, would it also be possible to obtain the QCR for a quantum phase transition 
separating two symmetry-broken phases of different kind?  
 
In addition, there are a few further aspects which appear important to be clarified in a revised 
version:  
 
1. In the abstract the authors claim that the quantum critical fan is "characterized by power-law 
temperature dependences of all observables". This dependence is certainly true for relevant 
operators, but not for any observable. For example, the transverse magnetization will presumably 
not. I suggest to clarify this.  
2. In the introduction the authors state that in the QCR "thermodynamics is completely controlled 
by the quantum critical point". I would suggest to change this to thermodynamic quantities or 
something equivalent and one might also mention response functions such as susceptibilities.  
3. In the same spirit I would suggest to change the sentence "the special scaling properties of the 
thermodynamics" to "the special scaling properties of the thermodynamic potentials" or 
equivalents.  
4. In Fig. 2a the authors show numerical data for the order parameter connected correlation 
function. The data suggests that quantum correlations are larger in the magnetically ordered 
phase than at the quantum critical point, which appears unconventional to me. Is this a finite-size 
effect?  



5. At the end of the section on "QC regime from quantum correlations" the authors claim that this 
"elevates the QV to the observable of choice". This appears as a rather strong statement, because 
it is not clear whether also other suitable quantities might exist.  
6. Do the authors understand why in Fig. 3b and Fig. 4b there is such a strong quantum 
contribution outside the QCR on the QD side? It might be useful to comment on this in the main 
text in more detail.  
7. From the results presented in the current manuscript some of the claims in the conclusions 
appear a bit too strong to me. I would suggest to mention in the first sentence that their 
conclusions have been drawn from numerical evidence for two model systems (and have therefore 
not been shown on a general level).  
8. Concerning the experimental implications, the authors have included a rather short 
consideration, which might benefit from a more detailed discussion. Moreover, the last sentence of 
the conclusions suggests that it might be possible to directly observe a QCP, which, however, is 
anyway not possible according to the third law of thermodynamics. Thus, I would suggest to clarify 
this.  
 
Summarizing, the general question addressed by the authors appears very interesting to me and 
worth to be considered in Nature Communications. However, a final conclusion can only be drawn 
provided the above critique is addressed.  
 
 
Reviewer #2 (Remarks to the Author):  
 
The authors propose a quantitative definition for the quantum critical (QC) regime of a generic 
quantum phase transition (driven by a parameter g at T=0). In a typical situation, it is known that 
on both sides of the quantum critical point (QCP), one finds respectively a so-called renormalized 
classical (RC) regime and a quantum disordered (QD) one. On both sides, there are characteristic 
energy scales: critical temperature (Tc) and finite gap (Delta) respectively. From this, it naturally 
follows that there is quantum critical fan that allows theoretically (and most importantly 
experimentally) to access the QCP properties at finte temperature T.  
 
It turns out that by measuring the variance of the order parameter, the scaling form associated to 
the QCP is limited to a very small region in the (g,T) parameter space. Based on this observation, 
the authors propose to use the quantum variance (QV) of the same order parameter (a quantity 
that they have introduced 2 years ago, which is easily accessible numerically). Using exact 
solutions and numerical simulations of paradigmatic examples of QPT, they observe that QV allows 
to define a large critical fan regime at finite T.  
 
I find the paper extremely well written and easy to understand. The QV quantity is related to 
quantum information tools but it has the advantage to possess a simple physical interpretation and 
to be accessible in quantum Monte-Carlo simulations. The examples that are given are nice and 
quite generic, so that this simple quantity could be of interest for a broad audience. For all these 
reasons, I recommend its publication. I only have minor comments and questions:  
 
* I am not sure I understand why Ginzburg's criterion is not applicable, or at least why Ginzburg's 
region is so tiny for QV. Indeed, one may expect effective mean-field critical exponents at some 
distance from the QCP ?  
 
* In Fig. 4 of the Sup. Mat., it is claimed that power-law regime is not observed at the exact QCP 
because of strong finite-size effects. Since it is a rather trivial model, is there a simple physical 
interpretation ? It should be possible to investigate size dependence in order to check this 
hypothesis ?  
 
* In Fig. 5(b-c) of the Sup. Mat.: it has been shown by the authors that quantum Fisher 
information (QFI) satisfies: QFI> 4*QV. From the plotted data, it seems to me that it is not 



satisfied ? For instance T/J=0.02 and g=0.48 ? I know that data are obtained on different system 
lengths but it is still a bit misleading.  
 
* It could be useful to also present panel (c) for Fig. 4 (such as in Fig. 3).  
 
* When considering a finite-size estimate of the variance, one needs to compute $m_L^2$. Is it 
given by the largest distance (L/2,L/2) spin-spin correlation or by a correlation along a given axis 
(L/2,0) as apparently written in the text ?  
 
* The value of the critical exponent $\psi$ could be given in caption of Fig. 2.  
 
* I think that it should be mandatory to provide some details about the Monte-Carlo algorithm: 
how many measurements ? How many thermalisation steps etc.  
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Reviewer #1 (Remarks to the 

Author):

In this manuscript the authors propose a novel constructive prescription to quantitatively determine the extend of quantum
critical regions associated with quantum phase transitions in the temperature-control parameter plane. The authors demonstrate
the working of their definition by presenting numerical simulations for two model systems using Monte-Carlo simulations.

Apart from some aspects commented on in more detail below, the manuscript is well written, well structured, and well
accessible also for non-experts in the field.

As the authors also emphasize, quantum critical regions (QCRs) play a key role in the understanding of the low-temperature
properties of quantum many-body systems. Thus, being able to quantitatively determine QCRs is, in principle, an important and
interesting aspect across a wide range of physics. In the asymptotic low-temperature limit in the vicinity of the quantum phase
transition scaling theory predicts the shape of crossover lines surrounding the QCRs, but not the numerical prefactors. In the
presented work the authors show that for the studied models their proposed construction reproduces the correct scaling in the
low-temperature region with now providing also an estimate of the numerical prefactors. In addition, they determine crossover
lines also at higher temperatures offering a possible shape of the QCR in the full temperature-control parameter plane.

While I consider the studied question, in principle, of great and fundamental interest and therefore to be suitable for publication
in Nature Communications, the current version of the manuscript does not appear sufficiently convincing to me in order to
support the general authors claims. In the following, let me provide the main points which led to this conclusion.

1. Although the authors show that their construction reproduces the shape of the QCR in the low-temperature limit, it does
not come out clear from the presentation what are the implications of the proposed shape of the QCR at higher temperature.
For example, is it the case that the proposed QCR marks those parts of the temperature-control parameter plane which are still
dominated by the fixed point associated to the underlying quantum phase transition? If yes, could this, in principle, be tested?

If we understand the Reviewer correctly, (s)he is asking us whether the QCR identified via the thermal scaling of quantum
variance ”exhausts” (in a sense which remains to be clarified) the region of the phase diagram whose thermodynamics is governed
by the existence of the critical point. In response to this remark, we would like to stress that, to the best of our understanding,
there does not exist a sharp definition of the QCR - as a consequence, it is in fact very rare to find a quantitative determination
of the QCR in the literature (and we make this point rather clearly in our manuscript). At a fundamental level, the absence of
a sharp definition of the QCR is due to the fact that the QCR is a thermodynamic regime, and not a proper phase of matter. Its
distinctive features are power-law behaviors of thermodynamics quantities with exponents related to the critical exponents of the
QCP, but, as our results witness, different quantities manifest such power-law behaviors over very different ranges in the g − T
plane. For any given observable, the ”boundaries” of the QCR are crossover regions, whose position depends on the degree of
tolerance with which one requires the observable to verify the expected thermal QC scaling (compare the ε in Eq. (4) of the main
text). Choosing different tolerance levels affects the position of these boundaries, which necessarily collapse onto the very QCP
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at T=0 as the tolerance ε is sent to zero – if this were not the case, one could identify sharp boundaries of the QCR, marked by
non-analiticities of finite-T observables which would be paradoxical in the absence of phase transitions. Our work shows that,
for a given tolerance, the quantum fluctuations of the order parameter, quantified by its quantum variance, allow one to identify
a much larger QCR than the total fluctuations of the same quantity, validating the effectiveness of our approach.

As far as the temperature extent of the QCR is concerned, the criterion based on quantum fluctuations presumably reproduces
the largest temperature range over which any form of thermal QC scaling can be observed (within a given tolerance). Proving
this statement rigorously would require to inspect directly the temperature dependence of all conceivable observables, something
which is impossible. Yet on general grounds this is not strictly necessary, as the temperature extent that we estimate for the QCR
already ranges up to T/J ∼ 0.1 − 0.5, namely to temperature scales at which short-wavelength mode (with wavelengths
comparable to the lattice spacing, and a corresponding energy E ∼ J) can become thermally excited. As pointed out e.g. in
Sachdev’s book, beyond such energy scales one cannot hope to see the universal physics of the QCP, because the latter is only
related to the long-wavelength modes which are shared with the underlying continuous-space field theory description of the
lattice model of interest. Given that the Reviewer asks explicitly for a clarification of this point, we have added an extended
discussion rephrasing this argument in the main text.

As a check of the above argument, in the case of the 1d transverse-field Ising model our estimate of the temperature range of the
QCR matches the one offered by the temperature scaling of the free energy along the quantum-critical trajectory (this is discussed
in details at the very end of the Supplementary Material). Furthermore, within the family of quantum coherence estimators that
the quantum variance belongs to, tight inequalities can be established (of the kind stated in Eq. (12) of the Supplementary
Material), which prevent one estimator to exhibit a very different behavior with respect to all the others. Therefore the thermal
QC scaling of the quantum variance is strongly representative of the one exhibited by all other quantum coherence measures of
this family (such as the quantum Fisher information, the skew information, etc.).

2. The authors don’t discuss in their manuscript how general their construction could be applied. For example, would it also
be possible to obtain the QCR for a quantum phase transition separating two symmetry-broken phases of different kind?

First, we wish to point out that our proposed definition of the QCR is completely general: the definition of the quantum
variance given in Eq. (1) of the main text, together with the definition of the QCR given in Eq. (5), do not depend on the
model. We have further stressed this point in the conclusions of the revised manuscript. The question, then, is how effective
this definition is in identifying a broad, fan-shaped QCR around a quantum critical point, and this can clearly depend on the
model under study. The Reviewer then suggests to apply our approach to a situation where the QCP separates two phases which
break a different symmetry of the Hamiltonian. In the Ginzburg-Landau paradigm, one would generically expect such a phase
transition to be of first order (excluding fine-tuning), hence featuring no QCR at all. The Reviewer may, however, have in mind
the fascinating scenario of the so-called deconfined quantum criticality (Senthil et al., Science 2004, and Phys. Rev. B 2004)
where the transition could generically be of 2nd order. The JQ-model proposed by Sandvik (Phys. Rev. Lett. 2007) is believed
to realize this unconventional scenario, and exhibits quantum-critical scaling at finite temperature (Melko and Kaul, Phys. Rev.
Lett. 2008). Applying our approach to unveil the QCR of this model seems indeed a very promising research direction, that we
have now mentioned in our revised conclusions.

In addition, there are a few further aspects which appear important to be clarified in a revised version:
1. In the abstract the authors claim that the quantum critical fan is ”characterized by power-law temperature dependences of

all observables”. This dependence is certainly true for relevant operators, but not for any observable. For example, the transverse
magnetization will presumably not. I suggest to clarify this.

The fact that all observables acquire a power-law temperature dependence is a consequence of the vanishing of the energy
gap at the QCP, which leaves the system ”orphan” of any characteristic energy scale – apart from the temperature. This is per
se not an exceptional condition – just consider any gapless phase (such as e.g. the ordered phase of the bilayer Heisenberg
antiferromagnet considered in our work), which similarly exhibits power-law temperature dependence of the thermal part of any
quantity at low T . The exceptional aspect of QCPs is that the power-law behavior contains the universal critical exponents of
the QCP. As a matter of fact, all thermal averages can be obtained as derivatives of the free energy, and the latter possesses a
part which is singular at the QCP, and which satisfies a scaling form involving the temperature in its dependence on all external
fields, seen as perturbations of the QCP within the renormalization group approach. The explicit scaling form for the singular
part of the free energy density, including the transverse field g = Γ/J , reads (Fisher et al., Phys. Rev. B 1989):

fs(T, g) = |g − gc|2−α G(|g − gc|/T
1
νz ) = T

d
z+1F(|g − gc|/T

1
νz ) (1)

where we have used the quantum hyperscaling relationship 2 − α = ν(d + z). As mx = −∂f/∂g, along the quantum critical
trajectory g = gc one obtains

mx(T )−mx(0) = −T d
z+1− 1

νzF ′(0) (2)
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The above thermal scaling with an exponent d
z + 1 − 1

νz = 1.412... (stemming from d = 2, z = 1 and ν = 0.6298..) is
indeed exhibited in Fig. 1 by our QMC data. We take this opportunity to show the same quantity in the immediate vicinity of
the quantum critical trajectory below the QCP (g = 1.51). The thermal QC scaling is clearly lost, as the thermal magnetisation
is extremely sensitive to the appearance of a finite Tc; the seemingly strange behaviour of the magnetisation for g = 1.51 is due
to the fact that mx(T ) is not monotonic for g < gc, as it develops a maximum around Tc.
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FIG. 1. Thermal quantum critical scaling of the thermal transverse magnetization in the 2d transverse field Ising model (g = gc), contrasted to
the same quantity for a field value below the QCP (g = 1.51).

2. In the introduction the authors state that in the QCR “thermodynamics is completely controlled by the quantum critical
point”. I would suggest to change this to thermodynamic quantities or something equivalent and one might also mention response
functions such as susceptibilities.

3. In the same spirit I would suggest to change the sentence “the special scaling properties of the thermodynamics” to ”the
special scaling properties of the thermodynamic potentials” or equivalents.

We thank the Reviewer for his/her suggestions; we have amended the text accordingly.

4. In Fig. 2a the authors show numerical data for the order parameter connected correlation function. The data suggests that
quantum correlations are larger in the magnetically ordered phase than at the quantum critical point, which appears unconven-
tional to me. Is this a finite-size effect?

We wish to stress that Fig 2a shows the behavior of the total variance 〈(Jz)2〉, containing both the quantum and the thermal
contribution. The quantum contribution is plotted in Fig 2b, and is maximal along the quantum critical trajectory (g = gc with
variable T ), possibly matching the expectations of the Reviewer. Coming back to the total variance, instead: on the ordered side
of the transition, and below Tc, it scales as N2 on a finite-size calculation, explaining why it exceeds the total variance along the
QC trajectory, whose scaling is instead extensive (∝ N , except at T = 0). If one considered a finite-size estimate of the actual
variance, namely 〈(Jz)2〉 −N2m2

L with mz
L = 〈Szi Szi+L/2〉 (see also the remark to Reviewer # 2), one would find a sharp peak

at Tc on the ordered side, diverging faster than the system size. As a consequence, even this estimate of the total variance in the
ordered regime would exceed the same quantity along the quantum critical trajectory in some temperature range.
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5. At the end of the section on “QC regime from quantum correlations” the authors claim that this “elevates the QV to the
observable of choice”. This appears as a rather strong statement, because it is not clear whether also other suitable quantities
might exist.

We agree with the Reviewer that a priori other observables could be suited as well. We have amended the text, stating that this
“makes the QV an ideal observable”.

6. Do the authors understand why in Fig. 3b and Fig. 4b there is such a strong quantum contribution outside the QCR on the
QD side? It might be useful to comment on this in the main text in more detail.

The “strong quantum contribution” that the Reviewer mentions is actually an artefact of the quantity plotted in the above
cited panels. For g > gc, the QV decays gradually from its ground state value upon increasing the temperature, and slower
than T−ψ as shown e.g. in Fig. 2(b) of the main text, while it decays as T−2 at high T . As a consequence, TψVarQ(Jz) with
0 < ψ < 1 (ψ = 0.964...) is a quantity that increases with T at low T , and that decays as 1/T 2−ψ at high T , possessing
therefore a maximum at some intermediate T . If this maximum happens to be larger than GQ(0), the quantity plotted on Fig. 3b
and 4b of the main text will then vanish twice upon increasing T at g > gc, something which is indeed realized in both models
of our interest. But, in order to signal the QCR, the vanishing of the difference TψVarQ(Jz)−G(Q)(0) should be accompanied
by a logarithmic derivative of VarQ(Jz) becoming compatible with ψ, and this is not the case for the region at lower T where
TψVarQ(Jz)−G(Q)(0) nearly vanishes for g > gc. Hence this region cannot be included in the QCR.

In order to clarify this aspect - which may indeed be confusing, we have added a short discussion rephrasing the above
argument.

7. From the results presented in the current manuscript some of the claims in the conclusions appear a bit too strong to me.
I would suggest to mention in the first sentence that their conclusions have been drawn from numerical evidence for two model
systems (and have therefore not been shown on a general level).

We now specify in the beginning of our conclusion that we provide numerical evidence based on calculations made on two
paradigmatic models of quantum phase transitions, and suggest (as mentioned above), that our method could be employed to
reveal the QCR in a broader variety of situations.

8. Concerning the experimental implications, the authors have included a rather short consideration, which might benefit from
a more detailed discussion.

We have now expanded the discussion on the experimental requirements for the measurement of the quantum variance, and
added several citations to recent work on the spectroscopic study of strongly correlated bulk materials.

Moreover, the last sentence of the conclusions suggests that it might be possible to directly observe a QCP, which, however,
is anyway not possible according to the third law of thermodynamics. Thus, I would suggest to clarify this.

We completely agree with the Reviewer that a direct observation of a QCP in a bulk material is prevented by the impossibility
of reaching absolute zero temperature. As we state it clearly in our manuscript, the very existence of a QCR at finite temperature
acts as a “magnifying lens” of the QCP at finite temperature, and makes quantum criticality observable without the need to cool
the system down to absolute zero. Our last sentence states that our approach can “unveil the existence of zero-T QCPs via
finite-T experiments”: therefore there is no contradiction with the 3rd law of thermodynamics. Yet we understand that the very
concept of “direct observation of a QCP” might be disturbing, and we have rephrased it as “other signatures of the existence of
a QCP in the low-T thermodynamics”.

Summarizing, the general question addressed by the authors appears very interesting to me and worth to be considered in
Nature Communications. However, a final conclusion can only be drawn provided the above critique is addressed.

Reviewer #2 (Remarks to the Author):

The authors propose a quantitative definition for the quantum critical (QC) regime of a generic quantum phase transition
(driven by a parameter g at T=0). In a typical situation, it is known that on both sides of the quantum critical point (QCP), one
finds respectively a so-called renormalized classical (RC) regime and a quantum disordered (QD) one. On both sides, there are
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characteristic energy scales: critical temperature (Tc) and finite gap (Delta) respectively. From this, it naturally follows that
there is quantum critical fan that allows theoretically (and most importantly experimentally) to access the QCP properties at finte
temperature T.

It turns out that by measuring the variance of the order parameter, the scaling form associated to the QCP is limited to a very
small region in the (g,T) parameter space. Based on this observation, the authors propose to use the quantum variance (QV) of
the same order parameter (a quantity that they have introduced 2 years ago, which is easily accessible numerically). Using exact
solutions and numerical simulations of paradigmatic examples of QPT, they observe that QV allows to define a large critical fan
regime at finite T.

I find the paper extremely well written and easy to understand. The QV quantity is related to quantum information tools but
it has the advantage to possess a simple physical interpretation and to be accessible in quantum Monte-Carlo simulations. The
examples that are given are nice and quite generic, so that this simple quantity could be of interest for a broad audience. For all
these reasons, I recommend its publication. I only have minor comments and questions:

* I am not sure I understand why Ginzburg’s criterion is not applicable, or at least why Ginzburg’s region is so tiny for QV.
Indeed, one may expect effective mean-field critical exponents at some distance from the QCP ?

First of all, let us clarify that for us the Ginzburg region is the region around Tc which manifests thermal criticality (namely the
power-law singularities associated with thermal critical behavior), and which shrinks to zero upon moving to the QCP, as widely
sketched in all finite-T phase diagrams around QCPs (see e.g. Fig 1.2 of Sachdev’s book, 2nd edition). The denomination
“Ginzburg region” is probably a form of jargon which is present in the literature on quantum critical points, although we
understand that to a broader audience such a wording can echo the Ginzburg criterion, and that it may implicitly suggest the
existence of a crossover from mean-field criticality to the actual, fluctuation-dominated criticality. We frankly have little or no
numerical evidence that such a crossover is observable in the models of our interest here. To avoid any confusion, we have
changed the expression “Ginzburg region” with “thermal critical region”.

* In Fig. 4 of the Sup. Mat., it is claimed that power-law regime is not observed at the exact QCP because of strong finite-size
effects. Since it is a rather trivial model, is there a simple physical interpretation ? It should be possible to investigate size
dependence in order to check this hypothesis ?

The power-law regime is clearly observed along the QC trajectory for the quantum variance (QV) and the quantum Fisher
information (QFI), but not for the total variance. The explanation is that the thermal transition line is almost vertical above the
QCP. In Fig. 2(a), we show the total variance of the absolute value of the magnetization across the phase diagram for N = 500
spins, together with the exact value of Tc for N =∞ (Tc = g/ log[(1 + g)/(1− g)]).

One sees on panel (a) that the presence of the thermal phase transition precludes a clear observation of the QC scaling along
g = gc = 1 for the total variance. A finite-size scaling analysis, shown in Fig. 3(a), unambiguously reveals the QC region for
the QV and QFI (denoted FQ on panel (b)). The plateau (or broad shoulder) in Fig. 3(b) for the QV and the QFI marks the
QC region, while the total variance exhibits no visible plateau for the sizes we considered, although it must be present in the
thermodynamic limit.

FIG. 2. Ising model with infinite-range interactions for N = 500 spins. (a) Variance of the absolute value of the magnetization. (b) Quantum
variance of the magnetization.
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FIG. 3. Finite-size scaling along the QC trajectory. (a) For T < ∆ ∼ N−1/3, the variances saturate to the ground-state value ∼ N1/3. On
panel (b), the temperature is rescaled to N−1/3.

* In Fig. 5(b-c) of the Sup. Mat.: it has been shown by the authors that quantum Fisher information (QFI) satisfies: QFI >
4*QV. From the plotted data, it seems to me that it is not satisfied ? For instance T/J = 0.02 and g = 0.48 ? I know that data
are obtained on different system lengths but it is still a bit misleading.

The Reviewer is right in pointing out the difference in system sizes in the two figures. Another difference is that panel (b) of
Fig. 5 of the Supplementary Material was calculated for periodic boundary conditions, while panel (c) is for open boundaries.
When we compute the QV for panel (c) (small size and open boundary) we do find that QFI > 4*QV (see e.g. Fig. 2(a) of our
recent work, I. Frérot and T. Roscilde, Phys. Rev. Lett. 121, 020402 (2018)).

To avoid any confusion, we have added a remark in the Supplementary Material stressing out the different condition under
which the two quantities (QFI and QV) have been calculated.

* It could be useful to also present panel (c) for Fig. 4 (such as in Fig. 3).

We thank the Reviewer for his/her suggestion, we have added a panel (c) to Fig. 4.

* When considering a finite-size estimate of the variance, one needs to compute m2
L. Is it given by the largest distance

(L/2,L/2) spin-spin correlation or by a correlation along a given axis (L/2,0) as apparently written in the text ?

Actually the difference between the two estimates would be minor, and both estimates converge to the same value in the
thermodynamic limit. The only requirement is that the spin variables sitting at distance r (be it (L/2, L/2) or (L/2, 0)) become
statistically independent in the thermodynamic limit, so that 〈Szi Szi+r〉 → 〈Szi 〉〈Szi+r〉 = m2 – and this is guaranteed to be so as
long as the separation r diverges with system size. In our manuscript we opted to trade the finite-size estimate of the variance
for the simple average of the square of the order parameter, as this estimate is much less affected by finite-size effects in the
disordered phase (one is effectively setting m = 0 by hand, as expected in the thermodynamic limit). This choice allows us
to exhibit the thermal QC scaling of the total variance on the system sizes we considered. Using the finite-size estimate of the
variance (containing the m2

L term as well) would produce a curve which looks instead very different, since at low temperature
(in the QCR) there is a substantial finite-size mL for the system sizes we considered.

* The value of the critical exponent ψ could be given in caption of Fig. 2.

We have added the value of ψ in the caption, as well as in the caption of Fig. 4 of the main text.

* I think that it should be mandatory to provide some details about the Monte-Carlo algorithm: how many measurements ?
How many thermalisation steps etc.

We have now introduced a short Method section at the end of the main manuscript containing the main lines of the Monte
Carlo calculations as well as of the exact calculations. We thank the Reviewer for prompting us to do so.

NOTE: All the modifications to the manuscript and Supplementary Material are highlighted in blue in the revised version.



REVIEWERS' COMMENTS:  
 
Reviewer #1 (Remarks to the Author):  
 
With their reply and with the changes made in the revised version of the manuscript, the authors 
have taken into account my critique almost fully except one point (Previously point 4).  
 
This concerns the quantity plotted in Fig. 2a. The authors reply that they show the fluctuations 
<(J_z)^2>, from which I can immediately understand the superextensive scaling of the data in 
Fig. 2a in the symmetry-broken phase. The y axis label in Fig. 2a, however, is Var(J_z)= 
<(J_z)^2> - <J_z>^2, as defined also above Eq. (1). For this quantity I would expect extensive 
scaling in system size due to general thermodynamic properties of operator fluctuations. Is it that 
the y axis label is just incorrect?  
 
Provided this can be clarified I can recommend publication of the manuscript in Nature 
Communications. 
 
 
Reviewer #2 (Remarks to the Author):  
 
I would like to thank the authors for their rather complete and detailed answers that clarify all my 
previous comments.  
Therefore, given the importance of proposing a new tool to access at finite temperature a quantum 
critical point, I recommend this paper for publication.  



Reviewer #1 (Remarks to the Author): 
 
With their reply and with the changes made in the revised version of the manuscript, 
the authors have taken into account my critique almost fully except one point 
(Previously point 4).

 
This concerns the quantity plotted in Fig. 2a. The authors reply that they show the 
fluctuations <(J_z)^2>, from which I can immediately understand the superextensive 
scaling of the data in Fig. 2a in the symmetry-broken phase. The y axis label in Fig. 2a, 
however, is Var(J_z)= <(J_z)^2> - <J_z>^2, as defined also above Eq. (1). For this 
quantity I would expect extensive scaling in system size due to general thermodynamic 
properties of operator fluctuations. Is it that the y axis label is just incorrect?


Our answer: The data presented in Fig. 2 are finite-size (quantum Monte-Carlo) 
calculations, for which <J_z>=0, so that Var(J_z) and <(J_z)^2> are rigorously equal. It 
is only in the thermodynamic limit that one can set <J_z>/N = m (the symmetry-broken 
value of the magnetization in the ordered phase). As the distribution for J_z is bi-modal 
in the ordered phase, with the two maxima centered around +/- Nm, the variance of 
J_z is super-extensive on any finite-size calculation. 

 As we explicitly write it in the text, we could have used a finite-size, extensive estimate 
of the variance (by subtracting (N m_L)^2 to <(J_z)^2>), which displays a peak (instead 
of just a sharp rise) at T_c. This finite-size estimate has the disadvantage of being 
numerically more noisy than <(J_z)^2>, and, most importantly, of not revealing any 
form of quantum critical scaling - not even along the quantum critical trajectory! Indeed 
even along the QC trajectory, the quantity (N m_L)^2 is far from zero on the finite sizes 
we considered. Hence using <(J_z)^2> alone allows us to get rid of annoying finite-size 
effects which would make the message of our figures less readable.  

 
Provided this can be clarified I can recommend publication of the manuscript in Nature 
Communications. 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