
Reviewers' comments:  
 
Reviewer #1 (Remarks to the Author):  
 
Review: Accurate autocorrelation modeling substantially improves fMRI reliability  
 
The present manuscript addresses important issues regarding the reliability of statistical 
parametric mapping in fMRI. I am convinced that this submission could be of high interest for the 
human brain mapping community and would help to advance the field. While this submission has 
the potential to contribute significantly to ongoing debates on fMRI methodology, there are a 
couple of issues that should be addressed before it would be suitable for publication (in particular 
for the interdisciplinary readership of this journal).  
 
Strengths of this submission:  
- Extensive dataset encompassing various fMRI experiments from different research sites and 
simulations  
- Use of various established data processing and analysis methods/frameworks  
- Code sharing (analysis and preprocessing)  
 
Major Issues:  
First of all, the authors address methodological issues that have already been raised in the seminal 
papers by Eklund et al. It is highly commendable that the authors use a more exhaustive (maybe 
even more realistic) dataset than Eklund et al. On the other hand, it would be very good to see if 
their analyses can replicate Eklund's findings and how different autocorrelation modeling 
approaches affect the overall results.  
 
The authors should spend more time discussing and illustrating the differences of the employed 
autocorrelation models, in particular FAST, which is fairly unknown.  
 
While false positives are an important concern, the authors do not properly address the risk of 
potential false negatives. This should be tested more rigorously.  
 
Why did the authors use three different preprocessing and analysis pipelines when they were 
actually mainly interested in the performance of the different autocorrelation modeling 
approaches? This could introduce more variability and thus bias their results.  
 
Preprocessing did not include slice timing correction, which is a quite established preprocessing 
step. Since it affects the time series (temporal smoothing due to interpolation) this step could 
have an influence on the overall results, which should be investigated in the data where slice 
timing information were available.  
 
 
Minor Issues:  
 
Please explicitly explain why the the variance was normalized when calculating the power spectra.  
 
Sometimes (e.g., figure 2) it is not clear why particular parameters were selected and how they 
relate to other configurations that were not reported. While I appreciate the high complexity of the 
dataset and analyses, it would be really helpful if the authors could discuss how the reported 
findings generalize to the whole dataset.  
 
Color figures (figure 3, S4) would be helpful.  
 
 
Reviewer #2 (Remarks to the Author):  



 
Summary:  
 
This paper addresses a significant problem in fMRI data analysis methodology, namely, the impact 
of unaccounted-for autocorrelation in fMRI time series. This work is timely given the recent 
concerns about the accuracy and reliability of statistical analyses in fMRI, and the broader 
concerns about reproducibility and reliability in science. This paper analyzes the shortcomings of 
popular approaches, and takes the constructive step of identifying existing methods that can solve 
the problem. It also provides a diagnostic tool to assess the extent of the problem in previously 
analyzed data sets. The work seems very thorough, as the authors analyzed nearly 1000 data sets 
to arrive at their conclusions. 
 
Although the approach is prosaic in some respects, in that no novel methodology is developed, I 
think this is a reflection of the nature of the problem. It is an unexpected result, because the 
problem of temporal autocorrelation in fMRI time series has probably been considered a “solved” 
problem. To the contrary, the authors show that, in practice, not all solutions are equal in 
performance; the more commonly-used solutions seem to perform the worst, while existing but 
less-commonly used approaches perform well. A major limitation of the work is that it focuses on 
first-level analyses. The effect on group-level inferences was not studied, which limits the potential 
significance of the result. I believe that this is something that the authors could readily address. 
The implication of this paper is that the high error rates reported in Eklund (PNAS, 2016) could 
come from residual temporal autocorrelation that is not accounted for in popular methods, but that 
is easily remedied using less-common existing methods. If that is the case, it would be a very 
important result. I truly hope the authors follow this story to the end by characterizing the effect 
on the group level.  
 
 
Major Comments:  
 
1. My main criticism is that the influence of poorly controlled temporal autocorrelation on group-
level analyses was not characterized, limiting the potential significance and impact of this work. 
The supplementary materials briefly describe analyses comparing the false positive rates for a 
random effects analysis using either SPM or FAST, which seems to confirm the assertion made in 
the main text that temporal autocorrelation would not affect this type of analysis. But as the 
authors themselves say, the group-level mixed effects analysis is where temporal autocorrelation 
would likely make a significant difference. The mixed-effects analyses rely on the parameter 
variances estimated at the first level, which would be under-estimated if the temporal 
autocorrelations were not accounted for properly. Although it would entail more work, an analysis 
of 3dMEMA or FLAME under different first-level temporal autocorrelation processing schemes would 
be extremely valuable. Without such an analysis, we cannot know how much of an impact, if any, 
more accurate temporal autocorrelation analysis would have on the accuracy of group-level 
inferences that form the bulk of fMRI research. As I mention above, the implication of the present 
work is that accurate estimates of temporal autocorrelation might address the problems reported 
in Eklund (PNAS, 2016). If that were the case, it would be a huge result, and is something the 
authors should pursue.  
 
Minor Comments:  
 
1. On Page 1, line 32, the authors cite Purdon and Weisskoff (1998) in regards to the “AR(1) plus 
white noise” model used in SPM. Purdon and Weisskoff have nothing to do with what is 
implemented in SPM, and I imagine, might not want their paper to be incorrectly associated with 
that specific implementation. Perhaps Penny et al (2011) might be a better citation for this point. 
On the other hand, for the statement on Page 1, lines 7-10, “If this autocorrelation is not 
accounted for...,” Purdon and Weisskoff (1998) might be a highly appropriate paper to cite.  
 



2. On Page 4, lines 223-226, the author state “As the assumed design was a wrong design, a low 
power spectrum at the true design frequency suggests too strong pre-whitening, during which 
negative autocorrelations can be introduced. “ Is this true? If the true design alternates at 1/24 
Hz, but the assumed design is at a different frequency, the power attributable to the (unknown) 
true design will be in the residuals, which in turn will be accounted for by the temporal 
autocorrelation model and subsequent whitening. So, in this way, if the modeling/whitening is 
doing its job, the “true” design frequency will be suppressed. So my interpretation of this figure is 
that, in this scenario, the autocorrelation modeling and whitening are actually working correctly.  
 
3. On Pages 6 through 8, lines 352 through 366, the authors attempt to provide an intuitive 
explanation of why lower assumed design frequencies result in increasing numbers of false 
positives. I understand the desire to provide an intuitive explanation that is accessible to non-
statistical audiences. But I think the authors fall short here, and the explanation they provide 
seems too convoluted, and ends up being unnecessarily difficult to follow. A quite parsimonious 
explanation can be made using statistical principles. Auto-correlated processes have increasing 
variances at lower frequencies (or longer time scales). Thus, when the frequency of the design 
decreases, the mismatch between the true auto-correlated residual variance, and the incorrectly-
estimated white noise variance grows. In this mismatch, the variance is under-estimated, resulting 
in a larger number of false positives.  
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Reviewers' comments: 

 

Reviewer #1 (Remarks to the Author): 

 

Review: Accurate autocorrelation modeling substantially improves fMRI reliability 

 

The present manuscript addresses important issues regarding the reliability of 

statistical parametric mapping in fMRI. I am convinced that this submission could be of 

high interest for the human brain mapping community and would help to advance the 

field. While this submission has the potential to contribute significantly to ongoing 

debates on fMRI methodology, there are a couple of issues that should be addressed 

before it would be suitable for publication (in particular for the interdisciplinary 

readership of this journal). 

 

Strengths of this submission: 

- Extensive dataset encompassing various fMRI experiments from different research 

sites and simulations 

- Use of various established data processing and analysis methods/frameworks 

- Code sharing (analysis and preprocessing) 
 

 

Thanks a lot for the time you spent on reading and for the very interesting comments! The 

revised manuscript refers to your comments. Changes to the previous version are marked. 

 

 

Major Issues: 

First of all, the authors address methodological issues that have already been raised in 

the seminal papers by Eklund et al. It is highly commendable that the authors use a 

more exhaustive (maybe even more realistic) dataset than Eklund et al. On the other 

hand, it would be very good to see if their analyses can replicate Eklund's findings and 

how different autocorrelation modeling approaches affect the overall results. 

 

There are three papers of Anders Eklund that were fundamental for our study: 

 

1. Eklund, Anders, et al. "Does parametric fMRI analysis with SPM yield valid results?—An 
empirical study of 1484 rest datasets." NeuroImage 61.3 (2012): 565-578. 

2. Eklund, Anders, et al. "Empirically investigating the statistical validity of SPM, FSL and AFNI 
for single subject fMRI analysis." Biomedical Imaging (ISBI), 2015 IEEE 12th International 
Symposium on. IEEE, 2015. 

3. Eklund, Anders, Thomas E. Nichols, and Hans Knutsson. "Cluster failure: why fMRI 
inferences for spatial extent have inflated false-positive rates." Proceedings of the National 
Academy of Sciences (2016): 201602413.  

 

The main finding of Eklund et al. 2012 was that the pre-whitening performance in SPM 

deteriorates with shorter TR. We wrote: “The highly significant responses for the NKI 

datasets are in line with Eklund et al. (2012), where it was shown that for fMRI scans with 

short TR it is more likely to detect significant activation. The NKI scans that we considered 

had TR of 0.645s and 1.4s, in both cases much shorter than the usual repetition times”. In 

addition to Eklund et al. 2012, we found the same relationship to be true for the AFNI’s pre-

whitening method and the current manuscript says: “For short TRs, AFNI’s performance 

deteriorated too, as autocorrelation spans much more than one TR and an ARMA(1,1) noise 
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model can only partially capture it”. For FSL, this relationship is not very strong, which 

could be explained with the high flexibility of the FSL’s pre-whitening approach and two 

TRs (3s and 1.5s) that the method was calibrated to in Woolrich et al. 2001 “Temporal 

autocorrelation in univariate linear modeling of FMRI data”. 

 

One of the main findings of Eklund et al. 2015 was that familywise error rates (FWERs) in 

FSL are higher than in SPM, while FWERs for SPM are slightly higher than for AFNI. We 

also observed lowest FWERs for AFNI: “Interestingly, in Eklund et al. 2015 AFNI, FSL and 

SPM were already compared in the context of first level fMRI analyses. AFNI resulted in 

substantially lower false positive rates than FSL and slightly lower false positive rates than 

SPM. We also observed lowest false positive rates for AFNI. Opposed to Eklund et al. 2015, 

which compared the packages in their entirety, we compared the packages only with regard 

to pre-whitening.” 

 

Eklund et al. 2016 pointed to problems in some analyses which make multiple testing 

correction with the cluster inference. Most worrying problems were reported when using the 

cluster defining threshold (CDT) of 0.01. In our study we opted to use only one multiple 

testing correction procedure: FSL’s default cluster inference with CDT 0.001 and 

significance level of 5%. We expect that some results in Eklund et al. 2016 would have been 

less problematic if there had been less bias in the standard error maps. Two datasets used in 

our study were also used in Eklund et al. 2016 (“FCP Beijing” and “FCP Cambridge”). Like 

for other datasets, we observed strong residual autocorrelated noise in the GLM residuals 

using both FSL’s and SPM’s pre-whitening methods also for these two datasets. 

 

Eklund et al. 2015 and Eklund et al. 2016 compared the packages in their entirety. While 

their approach pinpointed a number of problems, it makes the evaluation of single processing 

steps in the analysis more difficult and, as a result, a direct comparison to our results is not 

straightforward. Perhaps the most relevant conclusion of Eklund’s two previous studies might 

be that many statistical methods used in task fMRI analyses are not working as well as it had 

been assumed for years. 

 

Finally, and in response to the second reviewer’s comments on group studies, we have now 

performed 1-sample t-test analyses with SPM’s random effects model and with AFNI’s 

mixed effects model on all the datasets. To make a comparison with Eklund et al. 2016 more 

straightforward, we considered sample sizes of 20, just like in analyses summarized in Fig. 1 

of Eklund et al. 2016. Our resulting work led to the results section “Group studies” (pages 7-

9), Fig. 4, Supplementary Tables 2-4 and discussion on page 10. More information about 

relationship of our work to Eklund et al. 2016 can be found in our response to the first 

comment of the second reviewer (pages 12-13 of this document). 

 

As the above comparison of our work to Anders Eklund’s studies could confuse some readers 

of the main part of the paper, we would be glad if, in the case of a publication, the reviewers 

wanted to publish our correspondence alongside the paper, as is the case with some papers 

published in this journal. 

 

 

The authors should spend more time discussing and illustrating the differences of the 

employed autocorrelation models, in particular FAST, which is fairly unknown.  
 

javascript:void(0)
javascript:void(0)
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We tried to keep the manuscript concise. However, another problem is the lack of literature 

describing the different methods. For example, there is not any paper or other documentation 

describing the SPM’s default pre-whitening exactly in the way it is used today. Regarding 

FAST, the first paper describing the approach appeared after we submitted the paper. In the 

revised manuscript we refer to this work (“Accurate modeling of temporal correlations in 

rapidly sampled fMRI time series”, Nadege Corbin et al. 2018). AFNI’s pre-whitening 

approach is not described in any paper, though the method is very straightforward. For FSL, 

there is a dedicated paper of Woolrich et al. (2001): “Temporal autocorrelation in univariate 

linear modeling of FMRI data”, but the method was updated after the publication of the 

paper. For example, the parameter of the Tukey taper used to smooth the spectral density 

estimates was originally fixed to 15, while in current FSL logs one can observe different 

values of this parameter. The value depends now on the length of the time series. 

 

We have extended the introduction to include more information on the methods. 

 

 

While false positives are an important concern, the authors do not properly address the 

risk of potential false negatives. This should be tested more rigorously. 
 

This is a very good point. In our study we evaluated primarily false positives as there is a 

more reliable ground truth. For example for a flickering checkerboard experimental design, 

significant activations found in CSF/WM or in GM, but for a completely different assumed 

experimental design than the true one, could be treated as false positives. Yet, the full extent 

of the active site in V1 for this experiment (or any other task fMRI experiment) is unknown. 

For four datasets with flickering boxcar checkerboard tasks, we observed relatively similar 

significant activation in visual cortex across AFNI/FSL/SPM/FAST pre-whitening 

algorithms, cf. Fig. 3 (in manuscript) and Supplementary Fig. 1. 

However, sensitivity losses might be expected when the design is event-related and when at 

high frequencies there is residual positive autocorrelated noise (power spectra above 1). This 

causes the activation and the rest periods not to be well decorrelated. This is shown and 

discussed in section “Event-related design studies” on page 7 (together with Supplementary 

Fig. 4). With increasing autocorrelation, the coefficients in the regression model go to zero 

(in the limit). We have acknowledged the previous limitations of the paper in the discussion 

by adding “False negatives can occur when the design is event related and there is residual 

positive autocorrelated noise at high frequencies. In our analyses, such false negatives 

propagated to the group level both when using a random effects model and a mixed effects 

model, although only to a small extent.”. 

 

 

Why did the authors use three different preprocessing and analysis pipelines when they 

were actually mainly interested in the performance of the different autocorrelation 

modeling approaches? This could introduce more variability and thus bias their results. 
 

We minimized variability in the software packages to negligible levels, so that pre-whitening 

is the only relevant difference. Preprocessing was not exactly the same, as high-pass 

filtering/detrending is applied both to the data and to the model, and the use of the very same 

high-pass filter would require hard-coding in two packages. Then, the possible resulting 

numerical problems could have confounded the results. However, motion correction was 

performed in each of the packages using the same number of parameters (six), high-pass 

javascript:void(0)
javascript:void(0)
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filtering employed the same frequency cut-off (1/100 Hz), while the spatial smoothing 

applied the same sizes of the kernel. All in all, we expect the confounding effect of the 

slightly different preprocessing to be negligible. Importantly, the brain mask, the multiple 

comparison correction, and the MNI registration were kept exactly the same across the 

AFNI/FSL/SPM pipelines, cf. Fig. 1 and: 

https://github.com/wiktorolszowy/fMRI_temporal_autocorrelation/blob/master/multiple_com

parison_correction_and_registration_to_MNI.R 

 

 

Preprocessing did not include slice timing correction, which is a quite established 

preprocessing step. Since it affects the time series (temporal smoothing due to 

interpolation) this step could have an influence on the overall results, which should be 

investigated in the data where slice timing information were available. 

 

Following your suggestion, we reanalyzed the “CRIC checkerboard” and “CamCAN 

sensorimotor” datasets. For the “CRIC checkerboard” dataset, slice timing information was 

included in the scans’ headers, while for the “CamCAN sensorimotor” dataset, slice timing 

information was given in the paper describing the dataset (Shafto et al. 2014 “The Cambridge 

Centre for Ageing and Neuroscience (Cam-CAN) study protocol: a cross-sectional, lifespan, 

multidisciplinary examination of healthy cognitive ageing.”). Scripts which we used for this 

additional analysis are at: 

 

https://github.com/wiktorolszowy/fMRI_temporal_autocorrelation/tree/master/slice_timing_c

orrection 

 

The revised manuscript contains the new results section “Slice timing correction” (page 7). 

Page 10 discusses the results. 

 

 

Minor Issues: 

 

Please explicitly explain why the the variance was normalized when calculating the 

power spectra. 

Power spectrum at a given frequency represents the variance of the time series attributable to 

an oscillation of this frequency. If the overall variance of the time series is not normalized, it 

will be difficult to average power spectra across voxels or subjects. The following MATLAB 

example confirms that power spectra indeed depend on the overall variance of the time series: 

 
>> mean((abs(fft(randn(200, 1))).^2)/200) 

ans = 

    0.9822 

>> mean((abs(2*fft(randn(200, 1))).^2)/200) 

ans = 

    3.7700 

 

Initially, we did not put this comment to the manuscript as it is a very technical issue and 

variance normalization was used without explanation for example in Eklund et al. 2015 

https://github.com/wiktorolszowy/fMRI_temporal_autocorrelation/blob/master/multiple_comparison_correction_and_registration_to_MNI.R
https://github.com/wiktorolszowy/fMRI_temporal_autocorrelation/blob/master/multiple_comparison_correction_and_registration_to_MNI.R
https://github.com/wiktorolszowy/fMRI_temporal_autocorrelation/tree/master/slice_timing_correction
https://github.com/wiktorolszowy/fMRI_temporal_autocorrelation/tree/master/slice_timing_correction
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“Empirically investigating the statistical validity of SPM, FSL and AFNI for single subject 

fMRI analysis”. Following your comment, we added the following text to the methods 

section: “Without variance normalization, different signal scaling across voxels and subjects 

would make it difficult to interpret power spectra averaged across voxels and subjects”. 

 

 

Sometimes (e.g., figure 2) it is not clear why particular parameters were selected and 

how they relate to other configurations that were not reported. While I appreciate the 

high complexity of the dataset and analyses, it would be really helpful if the authors 

could discuss how the reported findings generalize to the whole dataset. 

 

We did consider different levels of spatial smoothing, different assumed experimental designs 

and different types of data (simulated rest, acquired rest and acquired task). This way we 

tested if the results were an artefact of the employed parameters. Importantly, differences 

between AFNI/FSL/SPM/SPM+FAST were consistent across different smoothing levels, 

different assumed experimental designs and different types of data. The highlighted 

parameters were chosen to represent a broad range of typical use cases, and this is made clear 

in the text. Further results are available from the GitHub repository and these are now 

referenced in the text (page 7): 

 

https://github.com/wiktorolszowy/fMRI_temporal_autocorrelation/tree/master/figures 

 

On the next pages you can see the power spectra of the GLM residuals for smoothing of 4 

mm and for 8 mm, as well as for the assumed boxcar design of 10s off + 10s on and for the 

assumed boxcar design of 40s off + 40s on. In all these four scenarios, pre-whitening from 

FSL and SPM led to substantial residual positive autocorrelated noise at low frequencies, 

while FAST pre-whitening led to most flat power spectra. Figs. 5-6 show power spectra for 

the task datasets tested with true designs. Again, FSL and SPM pre-whitening methods led to 

much positive autocorrelated noise left at low frequencies. Manuscript’s Fig. 3 and 

supplement show that these consistent differences between AFNI/FSL/SPM/SPM+FAST 

exist with regard to first level results too (Supplementary Figs. 1, 2, 3). All in all, we consider 

the results from the main part of the manuscript to be generalizable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://github.com/wiktorolszowy/fMRI_temporal_autocorrelation/tree/master/figures
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Figure 1 Power spectra of the GLM residuals for assumed experimental boxcar design 10s off + 10s on and for 
spatial smoothing of 4 mm 
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Figure 2 Power spectra of the GLM residuals for assumed experimental boxcar design 10s off + 10s on and for 
spatial smoothing of 8 mm. This figure is in the manuscript (Fig. 2). 
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Figure 3 Power spectra of the GLM residuals for assumed experimental boxcar design 40s off + 40s on and for 
spatial smoothing of 4 mm. 
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Figure 4 Power spectra of the GLM residuals for assumed experimental boxcar design 40s off + 40s on and for 
spatial smoothing of 8 mm. 
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Figure 5 Power spectra of the GLM residuals for true experimental designs and for spatial smoothing of 4 mm. 

 

 

 

 
 
 
Figure 6 Power spectra of the GLM residuals for true experimental designs and for spatial smoothing of 8 mm. 
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Color figures (figure 3, S4) would be helpful. 
 

We chose black-white-gray palette in Fig. 3 and Supplementary Figure 4 as we did not want 

to suggest these are group level results. Such black-white-gray figures depicting spatial 

distribution of significant clusters overlaid on each other from different runs were used in the 

supplement of Eklund et al. 2016 (Fig. S18, page 25): 

 

http://www.pnas.org/content/pnas/suppl/2016/06/27/1602413113.DCSupplemental/pnas.160

2413113.sapp.pdf 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

Summary: 

 

This paper addresses a significant problem in fMRI data analysis methodology, namely, 

the impact of unaccounted-for autocorrelation in fMRI time series. This work is timely 

given the recent concerns about the accuracy and reliability of statistical analyses in 

fMRI, and the broader concerns about reproducibility and reliability in science. This 

paper analyzes the shortcomings of popular approaches, and takes the constructive step 

of identifying existing methods that can solve the problem. It also provides a diagnostic 

tool to assess the extent of the problem in previously analyzed data sets. The work seems 

very thorough, as the authors analyzed nearly 1000 data sets to arrive at their 

conclusions.  

 

Although the approach is prosaic in some respects, in that no novel methodology is 

developed, I think this is a reflection of the nature of the problem. It is an unexpected 

result, because the problem of temporal autocorrelation in fMRI time series has 

probably been considered a “solved” problem. To the contrary, the authors show that, 

in practice, not all solutions are equal in performance; the more commonly-used 

solutions seem to perform the worst, while existing but less-commonly used approaches 

perform well. A major limitation of the work is that it focuses on first-level analyses. 

The effect on group-level inferences was not studied, which limits the potential 

significance of the result. I believe that this is something that the authors could readily 

address. The implication of this paper is that the high error rates reported in Eklund 

(PNAS, 2016) could come from residual temporal autocorrelation that is not accounted 

for in popular methods, but that is easily 

remedied using less-common existing methods. If that is the case, it would be a very 

important result. I truly hope the authors follow this story to the end by characterizing 

the effect on the group level. 
 

 

Thanks a lot for the time you spent on reading and for the very interesting comments! The 

revised manuscript refers to your comments. Changes to the previous version are marked. 

 

 

 

http://www.pnas.org/content/pnas/suppl/2016/06/27/1602413113.DCSupplemental/pnas.1602413113.sapp.pdf
http://www.pnas.org/content/pnas/suppl/2016/06/27/1602413113.DCSupplemental/pnas.1602413113.sapp.pdf
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Major Comments: 

 

1. My main criticism is that the influence of poorly controlled temporal autocorrelation 

on group-level analyses was not characterized, limiting the potential significance and 

impact of this work. The supplementary materials briefly describe analyses comparing 

the false positive rates for a random effects analysis using either SPM or FAST, which 

seems to confirm the assertion made in the main text that temporal autocorrelation 

would not affect this type of analysis. But as the authors themselves say, the group-level 

mixed effects analysis is where temporal autocorrelation would likely make a significant 

difference. The mixed-effects analyses rely on the parameter variances estimated at the 

first level, which would be under-estimated if the temporal autocorrelations were not 

accounted for properly. Although it would entail more work, an analysis of 3dMEMA 

or FLAME under different first-level temporal autocorrelation processing schemes 

would be extremely valuable. Without such 

an analysis, we cannot know how much of an impact, if any, more accurate temporal 

autocorrelation analysis would have on the accuracy of group-level inferences that form 

the bulk of fMRI research. As I mention above, the implication of the present work is 

that accurate estimates of temporal autocorrelation might address the problems 

reported in Eklund (PNAS, 2016). If that were the case, it would be a huge result, and is 

something the authors should pursue. 

 

Bias in mixed effects analyses resulting from non-white noise at the first level was reported 

in Bianciardi et al. 2004 “Evaluation of mixed effects in event-related fMRI studies: impact of 

first-level design and filtering”. If the group analysis employs standard error maps and these 

are biased, one would expect biased/inaccurate group analysis results. Following your 

suggestion, we investigated this issue further with AFNI’s 3dMEMA. To make our group 

analyses more comparable to results presented in Eklund et al. 2016 (addressing the first 

comment of the first reviewer), for each dataset and each assumed experimental design, we 

ran 1-sample t-tests on 20 subjects, both with SPM’s summary statistic approach and with 

3dMEMA. The corresponding scripts are on GitHub: 

 

https://github.com/wiktorolszowy/fMRI_temporal_autocorrelation/blob/master/make_group_

analyses_random_effects.m 

https://github.com/wiktorolszowy/fMRI_temporal_autocorrelation/blob/master/make_group_

analyses_mixed_effects.R 

https://github.com/wiktorolszowy/fMRI_temporal_autocorrelation/blob/master/make_combin

ed_results_from_group_runs.R 

 

Our resulting work led to the results section “Group studies” (pages 7-9), Fig. 4, 

Supplementary Tables 2-4 and discussion on page 10. Overall, we did not show that better 

pre-whitening would improve results from Eklund et al. 2016 a lot, at least not for the SPM’s 

summary statistic approach and not for 3dMEMA. However, the most worrying results from 

Eklund et al. 2016 were for CDT of 0.01, which we did not consider. For multiple 

comparison correction, we only used CDT of 0.001, as this is now the most standard 

approach (e.g. default in FSL and SPM). 

 

In our analyses, 3dMEMA results were surprisingly similar to results for the SPM’s summary 

statistic approach. As we observed for 3dMEMA a strange negative relationship between the 

magnitude of the t-statistic map and the amount of significant activation, we think the method 

https://github.com/wiktorolszowy/fMRI_temporal_autocorrelation/blob/master/make_group_analyses_random_effects.m
https://github.com/wiktorolszowy/fMRI_temporal_autocorrelation/blob/master/make_group_analyses_random_effects.m
https://github.com/wiktorolszowy/fMRI_temporal_autocorrelation/blob/master/make_group_analyses_mixed_effects.R
https://github.com/wiktorolszowy/fMRI_temporal_autocorrelation/blob/master/make_group_analyses_mixed_effects.R
https://github.com/wiktorolszowy/fMRI_temporal_autocorrelation/blob/master/make_combined_results_from_group_runs.R
https://github.com/wiktorolszowy/fMRI_temporal_autocorrelation/blob/master/make_combined_results_from_group_runs.R
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does not always work as well as it was shown in the simulations in Chen et al. 2012 “FMRI 

group analysis combining effect estimates and their variances”. In fact, Chen et al. 2012 

compared 3dMEMA with FLAME and found lower FWER for 3dMEMA than for FLAME. 

This conflicts with Eklund et al. 2016 (cf. Fig. 1, Eklund et al. 2016). We discussed our 

results with Gang Chen, the author of 3dMEMA, and currently we try to understand with 

Gang Chen why the use of 3dMEMA led to such surprising results (both in our work 

resulting from your comment, and in Eklund et al. 2016). However, we think further work on 

group analyses could be beyond the scope of this paper. Mixed effects models can be 

considered more optimal than random effects models as they make use of more information. 

Even if better pre-whitening does not lead to better specificity with one of the currently 

available mixed effects models, bias in standard error maps should be avoided. 

 

In our study we showed that imperfect pre-whitening can lead to higher sensitivity for event-

related designs. This leads to higher regression coefficients and affects group analyses both 

when using random and mixed effects models. However, main results in Eklund et al. 2016 

refer to false positives, so in our study it was only 3dMEMA where better pre-whitening 

could have led to statistically better results than those that were presented in Eklund et al. 

2016. We think we were not able to find higher specificity for better pre-whitening 

approaches, as it seems to us now that 3dMEMA is not an ideal group analysis technique. 

 

Importantly, in the recent follow-up study of Eklund et al.: “Cluster failure revisited: Impact 

of first level design and data quality on cluster false positive rates” (2018) it was shown that 

cleaning the data using ICA FIX improves specificity a lot. Such an approach corresponds to 

more accurate pre-whitening, although this was not mentioned in Eklund et al. 2018. The new 

version of the manuscript refers to Eklund et al. 2018 (page 10). 

 

 

Minor Comments: 

 

1. On Page 1, line 32, the authors cite Purdon and Weisskoff (1998) in regards to the 

“AR(1) plus white noise” model used in SPM. Purdon and Weisskoff have nothing to do 

with what is implemented in SPM, and I imagine, might not want their paper to be 

incorrectly associated with that specific implementation. Perhaps Penny et al (2011) 

might be a better citation for this point. On the other hand, for the statement on Page 1, 

lines 7-10, “If this autocorrelation is not accounted for...,” Purdon and Weisskoff (1998) 

might be a highly appropriate paper to cite.  

 

Indeed, Purdon and Weisskoff 1998 did not suggest exactly the same pre-whitening as the 

one which is used in SPM now. For example SPM estimates the noise model only based on 

voxels which seem to be active when no pre-whitening is conducted (zstat>3.1) and the 

specific implementation of the Restricted Maximum Likelihood has changed several times, 

among others between v6906 and v7219. However, Friston et al. 2000 “To Smooth or Not to 

Smooth? Bias and Efficiency in fMRI Time-Series Analysis” says: “Purdon and Weisskoff 

(1998) suggested the use of an AR(1) plus white noise model.”. Furthermore, Friston et al. 

2002 “Classical and Bayesian Inference in Neuroimaging: Applications” says “These bases 

were chosen given the popularity of AR plus white noise models in fMRI (Purdon and 

Weisskoff, 1998).” As Friston et al. 2002 describes the current SPM’s pre-whitening approach 

quite accurately, we are now citing this work instead of Purdon and Weisskoff 1998. Also, 

following your suggestion we added Purdon and Weisskoff 1998 to the intuitive explanation 

why pre-whitening matters. 

javascript:void(0)
javascript:void(0)
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2. On Page 4, lines 223-226, the author state “As the assumed design was a wrong 

design, a low power spectrum at the true design frequency suggests too strong pre-

whitening, during which negative autocorrelations can be introduced. “ Is this true? If 

the true design alternates at 1/24 Hz, but the assumed design is at a different frequency, 

the power attributable to the (unknown) true design will be in the residuals, which in 

turn will be accounted for by the temporal autocorrelation model and subsequent 

whitening. So, in this way, if the modeling/whitening is doing its job, the “true” design 

frequency will be suppressed. So my interpretation of this figure is that, in this scenario, 

the autocorrelation modeling and whitening are actually working correctly. 

 

Indeed, if the pre-whitening procedure was perfect, all signal at frequencies unrelated to the 

experiment would be removed. However, the pre-whitening algorithms were not developed to 

deal with such strong “noise”, so that assuming wrong design to task data and looking at the 

power spectra could be treated as an implicit way of investigating sensitivity. Nevertheless, it 

is only an implicit way. 

 

The differences in the amount of significant activation for the true design between AFNI/FSL 

and SPM/FAST for this dataset (“BMMR checkerboard”, TR=3s) were surprisingly large. 

Lenoski et al. 2008 “On the performance of autocorrelation estimation algorithms for fMRI 

analysis” described how inflexible methods (like global noise models) could lead to negative 

autocorrelations being introduced during pre-whitening for long TRs. Given the differences 

between AFNI/FSL and SPM in power spectra for the wrong designs, we initially thought 

that SPM’s pre-whitening was the culprit. However, in the meantime we investigated this 

dataset further and found that a lot of significant activation was found for SPM in the motion 

regressors, which were considered as confounders in the GLM analysis. As our statistical 

inference was based on t-test on the canonical function (rather than F-test on all regressors), 

SPM led to very little significant activation in our original analysis. Motion correction 

algorithms from AFNI and FSL did not lead to significant activation in the motion regressors. 

It is surprising given the study Oakes et al. 2005 “Comparison of fMRI motion correction 

software tools”, where it was shown that different motion correction algorithms lead to only 

negligibly different analysis results. We contacted the authors of the “BMMR checkerboard” 

study (Aini Ismafairus Abd Hamid and Oliver Speck), who made us aware of a recent paper 

describing the problem which we encountered: Yakupov et al. 2017 “False fMRI Activation 

After Motion Correction”. The authors found that SPM’s motion correction works much less 

accurately than AFNI and FSL for the special case of ultra high field data and limited 

acquisition field of view, a situation which was not covered in Oakes et al. 2005. The 

“BMMR ckeckerboard” scans are ultra high field data and were made with a limited 

acquisition field of view. 

 

Importantly, the “BMMR checkerboard” scans were prospectively motion corrected using 

the approach from Thesen et al. 2000 “Prospective acquisition correction for head motion 

with image-based tracking for real-time fMRI”. We originally conducted motion correction 

on the “BMMR checkerboard” scans, since no motion correction is perfect and we wanted to 

keep the processing pipeline the same across all the eleven datasets. Given the problems with 

SPM’s motion correction for the special case of ultra high field data and limited acquisition 

field of view, and the fact that prospective motion correction was performed on this dataset, 

we reran all AFNI/FSL/SPM/FAST analyses for the “BMMR checkerboard” dataset without 

additional motion correction. Now there are much more similar results across the different 

pre-whitening algorithms for the “BMMR checkerboard” dataset. The new version of the 

manuscript shows the updated analysis. 
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The “BMMR checkerboard” dataset was the only dataset where scans were prospectively 

motion corrected. As performing double motion correction is not a straightforward analysis 

step, we do not refer in the current version of the manuscript to our previous problems with 

motion correction in SPM. Such an explanation could confuse the reader as the study is about 

pre-whitening rather than preprocessing. However, in the case of a publication, we would be 

glad if the reviewers wanted to publish our correspondence alongside the paper, as is the case 

with some papers published in this journal. 

 

 

3. On Pages 6 through 8, lines 352 through 366, the authors attempt to provide an 

intuitive explanation of why lower assumed design frequencies result in increasing 

numbers of false positives. I understand the desire to provide an intuitive explanation 

that is accessible to non-statistical audiences. But I think the authors fall short here, and 

the explanation they provide seems too convoluted, and ends up being unnecessarily 

difficult to follow. A quite parsimonious explanation can be made using statistical 

principles. Auto-correlated processes have increasing variances at lower frequencies (or 

longer time scales). Thus, when the frequency of the design decreases, the mismatch 

between the true auto-correlated residual variance, and the incorrectly-estimated white 

noise variance grows. In this mismatch, the variance is under-estimated, resulting in a 

larger number of false positives.  

 

We did change the description accordingly. 



REVIEWERS' COMMENTS:  
 
Reviewer #1 (Remarks to the Author):  
 
I highly appreciate the authors' efforts to improve this manuscript. While I feel that my concerns 
have been addressed thoroughly from a technical perspective, I have concerns that the relevant 
information might not be clear enough for the target audience. This could lead to confusion in the 
neuroimaging community. Again, I have no concerns about the technical aspects of this 
submission and I am impressed by the authors‘ extensive analyses and truly believe that their 
findings are relevant for the community. However, this would be the right time to address the 
presentation of their results and improve the didactic value of the manuscript.  
 
I am certain that this submission to this prestigious interdisciplinary journal will stimulate 
discussions and the authors can make sure to drive the debate in the right direction from the start. 
Maybe I have been unclear about this, so I will try to be more precise. As a reader I would like to 
know:  
 
Can Eklund's observations (particularly PNAS 2016) be (in part) attributed to improper 
autocorrelation modeling?  
What is the theoretical explanation for this?  
How can this problem be solved or at least reduced?  
Are there any undesired consequences of an improved AR modeling approach?  
 
I fully appreciate that the authors already address most of these issues in their initial submission. 
However, I would be very grateful if they could discuss these topics more concretely and to the 
point. However, if the editor and the authors believe that there is no more room for improvement 
on this level, I am holding my peace.  
 
Reviewer #2:  
[Was not available to re-review. Reviewer #3 agreed to comment on the authors' response to 
Reviewer #2's points from the previous round]  
 
Reviewer #3 (Remarks to the Author):  
 
The authors did a nice job of investigating the impact of different strategies in dealing with the 
temporal correlation embedded in the residuals of the fMRI model at the individual level. The 
investigation was quite thorough and impressive. I only have a couple of minor suggestions as 
below.  
 
I appreciate that the authors examined the effect of modeling the temporal correlation structure at 
the individual level on the group level. However, the exploration was not as thorough as the 
individual level, which is completely understandable in the current context. First of all, the term of 
“random-effects” analysis at the group level may be popular in one particular package, but such a 
usage does not accurately capture the nature of the model. The typical group-level model is GLM 
(or one-sample t-test in the case of the manuscript), which simply ignores the measurement 
errors of effect estimates from the individual subjects. There is no random-effects term in the 
model; therefore, naming it as a random-effect models is misleading. The authors should simply 
call it GLM or t-test.  
 
Secondly, the mixed-effects modeling approach weighs the effect estimates from the individual 
subjects. Those weights are the reciprocals of the sums of two variance components: cross-
subjects variance and within-subject variances. While the first component is constant (but a priori 
unknown), the second component varies across subjects. The GLM approach simply assumes that 
the within-subject variances are the same for all subjects or are very small relative to the first 
component (cross-subjects variance). The report of mixed-effects modeling results “surprisingly 



similar to” those from GLM is actually not surprising at all: it simply means that 1) there was not 
much variability among those within-subject variances, or 2) those within-subject variances are 
relatively small compared to the cross-subjects variance. It seems that the few datasets the 
authors investigated for the task-related scenarios do not actually paint an exhaustive picture 
about the impact of within-subject variances on the group results unless the authors are willing to 
go the extra mile exploring the detailed profiles of those within-subject variances relative to the 
cross-subjects variance. Even then you might still not be able to cover a large portion of the 
scenarios. My personal opinion is that numerical simulations would actually offer a more complete 
and accurate perspective than a few real datasets could reveal. In other words, the few datasets 
adopted in the current manuscript do not necessarily provide a fair demonstration for the potential 
advantages of mixed-effects modeling. It would be more appropriate for the authors to at least 
mention this limitation of their current study.  
 
In addition, the report of “strange negative relationship between the magnitude of t-statistic maps 
and the amount of significant activation” from the mixed-effects modeling is not strange either. 
Again, the weights involved in the mixed-effects modeling are the combinations of those two 
variance components, resulting in an intricate nonlinear relationship. When artificially changing the 
magnitude of the t-statistics, you not only changed the relative magnitudes between the two 
variance components, but also might have magnified the relative impact of any outlying subjects 
in the group. In that case, it may require some special outlier modeling strategy. I believe such a 
complexity was partially explored in Chen et al. (2012). It is beyond the scope of the current 
manuscript to exhaustively investigate the various scenarios and to provide insightful results, so I 
would simply remove this whole “strange relationship” part that was resulted from the artificial 
manipulation of t-statistics.  
 
Lastly, regarding “AFNI’s pre-whitening approach is not described in any paper”: The algorithm 
was published in the Appendix of Chen et al. (2012), NeuroImage 60(1):747-765, which might be 
better cited in the Introduction?  
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REVIEWERS' COMMENTS: 

 

Reviewer #1 (Remarks to the Author): 

 

Thanks a lot for the very interesting comments! 

 

I highly appreciate the authors' efforts to improve this manuscript. While I feel that my 

concerns have been addressed thoroughly from a technical perspective, I have concerns 

that the relevant information might not be clear enough for the target audience. This 

could lead to confusion in the neuroimaging community. Again, I have no concerns 

about the technical aspects of this submission and I am impressed by the authors‘ 

extensive analyses and truly believe that their findings are relevant for the community. 

However, this would be the right time to address the presentation of their results and 

improve the didactic value of the manuscript. 

 

I am certain that this submission to this prestigious interdisciplinary journal will 

stimulate discussions and the authors can make sure to drive the debate in the right 

direction from the start. Maybe I have been unclear about this, so I will try to be more 

precise. As a reader I would like to know: 

 

Can Eklund's observations (particularly PNAS 2016) be (in part) attributed to 

improper autocorrelation modeling? 

What is the theoretical explanation for this? 

How can this problem be solved or at least reduced? 

 

Eklund's observations from 2016 can be attributed to improper autocorrelation modeling only 

to a very small extent. Eklund et al. 2016 referred to group level analyses, while in our 

analyses we found that poor pre-whitening primarily leads to problems at the single subject 

level. We observed that group level analyses had slightly lower sensitivity following poor 

pre-whitening, but Eklund et al. 2016 analysed specificity only, so we could not refer to that 

study. Eklund et al. 2016 identified problems related to the modeling of the spatial 

autocorrelation function. In the current study, we identified problems related to the temporal 

autocorrelation modeling. Our manuscript refers to the other studies (Eklund et al. 2012 and 

Eklund et al. 2015), which are strongly related to the current study (also single subject 

analyses). In particular, our study is an extension of the analyses from Eklund et al. 2012 and 

Eklund et al. 2015. 

 

Now the discussion section includes: “Interestingly, a recent report suggested that the FSL's 

tool ICA FIX applied to task data can successfully remove most of the physiological noise 

(Eklund et al. 2018). This was shown to lower the familywise error rate at the group level 

compared to previous findings (Eklund et al. 2016). Such an approach corresponds to more 

accurate pre-whitening. However, in our analyses the different pre-whitening methods 

affected the group level analyses only in a very negligible way. While Eklund et al. 2016 

found that group level analyses are strongly confounded by spatial autocorrelation modeling, 

we found that single subject analyses were strongly confounded by the pre-whitening 

accuracy.” 

 

Are there any undesired consequences of an improved AR modeling approach? 
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Perhaps slightly lower sensitivity for some experiments with boxcar designs, but only at the 

cost of deteriorated specificity. Sensitivity can be improved with accurate HRF modeling, for 

example using the temporal derivative. However, the temporal derivative increases sensitivity 

only if the statistical inference is based on a test which includes the temporal derivative (F-

test needed rather than t-test). This is rarely the case, as the temporal derivative is used in 

most studies only as a confounder, for example when using the default FSL processing 

pipeline. This is beyond the scope of this paper. 

 

I fully appreciate that the authors already address most of these issues in their initial 

submission. However, I would be very grateful if they could discuss these topics more 

concretely and to the point. However, if the editor and the authors believe that there is 

no more room for improvement on this level, I am holding my peace. 

 

Reviewer #2: 

[Was not available to re-review. Reviewer #3 agreed to comment on the authors' 

response to Reviewer #2's points from the previous round] 

 

Reviewer #3 (Remarks to the Author): 

 

Thanks a lot for the very interesting comments! 

 

The authors did a nice job of investigating the impact of different strategies in dealing 

with the temporal correlation embedded in the residuals of the fMRI model at the 

individual level. The investigation was quite thorough and impressive. I only have a 

couple of minor suggestions as below.  

 

I appreciate that the authors examined the effect of modeling the temporal correlation 

structure at the individual level on the group level. However, the exploration was not as 

thorough as the individual level, which is completely understandable in the current 

context. First of all, the term of “random-effects” analysis at the group level may be 

popular in one particular package, but such a usage does not accurately capture the 

nature of the model. The typical group-level model is GLM (or one-sample t-test in the 

case of the manuscript), which simply ignores the measurement errors of effect 

estimates from the individual subjects. There is no random-effects term in the model; 

therefore, naming it as a random-effect models is misleading. The authors should 

simply call it GLM or t-test.  

 

The name “random effects model” is used in SPM, which is why we previously used this 

term. Now we replaced it with “summary statistic model”. 

 

Secondly, the mixed-effects modeling approach weighs the effect estimates from the 

individual subjects. Those weights are the reciprocals of the sums of two variance 

components: cross-subjects variance and within-subject variances. While the first 

component is constant (but a priori unknown), the second component varies across 

subjects. The GLM approach simply assumes that the within-subject variances are the 

same for all subjects or are very small relative to the first component (cross-subjects 

variance). The report of mixed-effects modeling results “surprisingly similar to” those 

from GLM is actually not surprising at all: it simply means that 1) there was not much 

variability among those within-subject variances, or 2) those within-subject variances 

are relatively small compared to the cross-subjects variance. It seems that the few 
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datasets the authors investigated for the task-related scenarios do not actually paint an 

exhaustive picture about the impact of within-subject 

variances on the group results unless the authors are willing to go the extra mile 

exploring the detailed profiles of those within-subject variances relative to the cross-

subjects variance. Even then you might still not be able to cover a large portion of the 

scenarios. My personal opinion is that numerical simulations would actually offer a 

more complete and accurate perspective than a few real datasets could reveal. In other 

words, the few datasets adopted in the current manuscript do not necessarily provide a 

fair demonstration for the potential advantages of mixed-effects modeling. It would be 

more appropriate for the authors to at least mention this limitation of their current 

study.  

 

We have commented on this in the discussion section now. While simulations are a great way 

of investigating the performance of a statistical test (ground truth is known), our findings on 

real data are interesting too. We see them as complementary to the simulation findings 

presented in Chen et al. 2012. 

 

In addition, the report of “strange negative relationship between the magnitude of t-

statistic maps and the amount of significant activation” from the mixed-effects modeling 

is not strange either. Again, the weights involved in the mixed-effects modeling are the 

combinations of those two variance components, resulting in an intricate nonlinear 

relationship. When artificially changing the magnitude of the t-statistics, you not only 

changed the relative magnitudes between the two variance components, but also might 

have magnified the relative impact of any outlying subjects in the group. In that case, it 

may require some special outlier modeling strategy. I believe such a complexity was 

partially explored in Chen et al. (2012). It is beyond the scope of the current manuscript 

to exhaustively investigate the various scenarios and to provide insightful results, so I 

would simply remove this whole “strange relationship” part that was resulted from the 

artificial manipulation of 

t-statistics.  

 

We do not find this analysis crucial for our study, so we removed it now. 

 

Lastly, regarding “AFNI’s pre-whitening approach is not described in any paper”: The 

algorithm was published in the Appendix of Chen et al. (2012), NeuroImage 60(1):747-

765, which might be better cited in the Introduction? 

 

We did not know such a description was in the Appendix of Chen et al. 2012. Now there is a 

proper citation in the introduction. 
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