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SUPPLEMENTARY NOTE 1:
THEORETICAL MODEL

The geometry is shown in Supplementary Fig. 1. We
assume that the two layers are isotropic, homogeneous
and infinite, with mass density ρi, longitudinal and trans-
verse velocities vLi and vTi, and thicknesses hi, where
i = 1, 2 indicates the layer number. The coupling be-
tween the layers is taken to be perfect, i.e., by assuming
continuity of the displacement and stress components at
the interface (z = 0). The ω (angular frequency) – k
(wavenumber) relation is solved using the scalar potential
φ and the vector potential ψ, where the latter is reduced
to a scalar as the problem is two-dimensional. The tan-
gential and normal displacements are derived from these
potentials as follows:

ux =
∂φ

∂x
− ∂ψ

∂z
, uz =

∂φ

∂z
+
∂ψ

∂x
, (S1)

and the stresses are given by

σxz = µ
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)
, (S2)
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∂x2
+
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∂z2

)
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∂2φ
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∂2ψ

∂x∂z

)
, (S3)

where λ, µ are the Lamé coefficients1.
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Supplementary Fig. 1. Geometry of the bilayer model.

The potentials in the layers can be expressed as


φ1 = [A1L cos(p1z) +B1L sin(p1z)] e

i(kx−ωt)

ψ1 = [A1T cos(q1z) +B1T sin(q1z)] e
i(kx−ωt)

φ2 = [A2L cos(p2z) +B2L sin(p2z)] e
i(kx−ωt)

ψ2 = [A2T cos(q2z) +B2T sin(q2z)] e
i(kx−ωt),

(S4)

where p and q are the z-components of the longitudinal
and transverse wave vectors, respectively. The wavenum-
bers kLi = ω/vLi and kTi = ω/vTi satisfy dispersion re-
lations for bulk waves kLi

2 = k2+pi
2 and kTi

2 = k2+qi
2.

AiL, BiL are the amplitudes of longitudinal components
and AiT , BiT are the amplitudes of shear components.

At the free boundaries (z = −h1 and h2), the stresses
normal to the surface (σxz and σzz) vanish, whereas at
the interface (z = 0), the continuity of displacement and
stresses is applied. It follows that



σzz1 = σxz1 = 0 for z = −h1,
σzz1 = σzz2 for z = 0,

σxz1 = σxz2 for z = 0,

ux1 = ux2 for z = 0,

uz1 = uz2 for z = 0,

σzz2 = σxz2 = 0 for z = h2.

(S5)

From Supplementary Eqs. (S1–S5), the problem can be
rewritten in matrix form, M ·U = [0]:



2ikp1 sin[p1h1] 2ikp1 cos[p1h1] (kt1
2 − 2k2) cos[q1h1] −(kt1

2 − 2k2)sin[q1h1]
−(kt1

2 − 2k2) cos[p1h1] (kt1
2 − 2k2)sin[p1h1] 2ikq1 sin[q1h1] 2ikq1 cos[q1h1]

0 2ikµ1p1 (kt1
2 − 2k2)µ1 0

−(kt1
2 − 2k2)µ1 0 0 2ikµ1q1
ik 0 0 −q1
0 p1 ik 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 −2ikµ2p2 −(kt2

2 − 2k2)µ2 0
(kt2

2 − 2k2)µ2 0 0 −2ikµ2q2
−ik 0 0 q2

0 −p2 −ik 0
−2ikp2 sin[p2h2] 2ikp2 cos[p2h2] (kt2

2 − 2k2) cos[q2h2] (kt2
2 − 2k2)sin[q2h2]

−(kt2
2 − 2k2) cos[p2h2] −(kt2

2 − 2k2)sin[p2h2] −2ikq2 sin[q2h2] 2ikq2 cos[q2h2]
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0
0
0
0
0
0
0
0


. (S6)

Non-trivial solutions are found when the determinant of
the 8× 8 matrix M vanishes, i.e., det(M) = 0. In order
to avoid (unwanted) bulk waves propagating at veloci-
ties vLi (pi = 0) and vTi (qi = 0), the terms p1, q1,

p2 and q2 can be factorized in the 2nd, 4th 6th and 8th

rows, respectively. The dispersion curves of the bilayer
structure is then estimated by determining the zeros of
the secular equation. As the structure is spatially asym-
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Supplementary Fig. 2. Pulse-echo measurements and ZGV mode displacements. a Surface particle velocity temporal
variation, showing acoustic echoes. Zoom-in on the echoes from b the interface and c the rear surface of the sample. d Calculated
dispersion curves of the bilayer system. e–g Calculated normal (solid line) and tangential (dashed line) displacements in the
Ti/Si3N4 bilayer for the first three ZGV Lamb modes e at f th

1 = 1.7248 GHz and kth
1 = 0.620 µm−1 f at f th

2 = 3.0014 GHz
and kth

2 = 0.732 µm−1 and g at f th
3 = 6.9476 GHz and kth

3 = 0.492 µm−1.

metric, modes cannot be classified exactly as symmetric
and antisymmetric. For a given mode, the group veloc-
ity is extracted using vg = ∂ω/∂k. A solution (ω, k) is
identified as a ZGV mode if vg = 0 with k 6= 0. Fur-
thermore, normal and tangential displacements—uz and
ux, respectively—can be estimated from the dispersion
curves. For a solution (ω, k), the equations representing
the boundary conditions can be be solved once a compo-
nent common to U is fixed (e.g., A1L = 1). This gives
access to the relative displacements ux,z.

SUPPLEMENTARY NOTE 2:
SAMPLE AND EXPERIMENTAL PARAMETERS

The sample consists of a silicon-nitride membrane
provided by NTT Advanced Technology Corporation
(MEM-N0302) with a nominal thickness of 2.0± 0.2 µm.
It is mostly composed of Si3N4, but is not a pure crys-
tal (the composition ratio Si:N is between 3:4 and 1:1).
Nevertheless, it is hereafter denoted as Si3N4. The mem-
brane is supported on its edges by a Si frame, provid-
ing a 3 × 3 mm2 area with free surfaces, necessary to
generate ZGV Lamb modes. The membrane is coated
with a ∼650 nm sputtered polycrystalline titanium film.
To calculate the dispersion curves, the elastic constants
and density are taken from Ref. 2: vLTi

= 6130 m.s−1,
vTTi

= 3182 m.s−1, ρ
Ti

= 4508 kg.m−3 for titanium and

vLSi3N4
= 10607 m.s−1, vTSi3N4

= 6204 m.s−1, ρ
Si3N4

=

3185 kg.m−3 for silicon nitride. In order to accurately
determine the thicknesses, an experiment measuring the
surface particle velocity in the time domain is carried
out using an interferometric pulse-echo method with fo-
cused pulsed-laser beams (∼1.5 µm 1/e2 diameter) inci-
dent from the top side of the sample and with picosec-
ond time resolution. The pump beam is modulated at
fp = 1 MHz, and we monitor the in-phase output of
the lock-in amplifier. The result is shown in Supple-
mentary Fig. 2a. The first minimum in the variation
at t0 = 0 is related to the temperature rise and defor-
mation caused by the laser pulse. The echo at t1 corre-
sponds to the acoustic pulse reflected from the Si3N4/Ti
interface, whereas the second echo at t2 corresponds to
the acoustic pulse reflected from the rear surface of the
membrane. The weak reflection from the interface (at
t1) indicates good adhesion (as our model assumes). The
corresponding time intervals are ∆t1 = 215 ± 1 ps and
∆t2 = 560± 1 ps, allowing us to evaluate the thicknesses
of 659 ± 3 and 1830 ± 10 nm for the Ti and the Si3N4

layers, respectively, from the known vL values. (Errors
correspond to those arising from the time resolution of
the apparatus.). For Si3N4 the thickness agrees within
the 10% uncertainty given by the supplier.

The corresponding predicted dispersion curves are
shown in Supplementary Fig. 2d. The mode classifica-
tion follows the one suggested by Mindlin3, where the
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Supplementary Table I. First three ZGV Lamb
mode frequencies f and wavenumbers k for the
Ti/Si3N4 bilayer.

Mode f (GHz) k (µm−1)
1 qS1 1.7248 0.620
2 qA3 3.0014 0.732
3 qA7 6.9476 0.492

integers correspond to the number of antinodes of the
mechanical displacement. This integer can be negative
in case of negative group velocity. The ‘q’ denomina-
tion relates to the term quasi- in the appellations quasi-
symmetric and quasi-antisymmetric, related to the sam-
ple spatial asymmetry. For the zero wave-vector modes
(i.e., for k = 0 µm−1), qA2n, qS2n+1 have an out-of-plane
displacement whereas qA2n+1, qS2n have an in-plane dis-
placement. Therefore, the former are more likely to be
observed in our experiments. Three ZGV Lamb modes
are predicted below 10 GHz. They are then referred
as qS1, qA3 and qA7, and are labelled 1, 2, 3, respec-
tively, for simplicity (see Supplementary Table I). Their
frequencies and associated wavenumbers are displayed in
Table I. With the arbitrary-frequency method (see Meth-
ods in the Main text), these frequencies are accessible by
modulating the pump beam at the frequency fp = 36.8,
fp = 27.3, and fp = 34.9 MHz, for the first, second and
third ZGV Lamb modes, respectively.

We also present the normal and tangential displace-
ments of these three ZGV modes in Supplementary
Figs 2e-g. At the top free surface, i.e., where the excita-
tion and detection occur, the tangential displacement is
significant for the three modes. Conversely, the normal
displacement is different for these modes: it is predom-
inant for the lowest ZGV mode at f th1 = 1.7248 GHz
(Supplementary Fig. 2e), still significant for the second
one at f th2 = 3.0014 GHz (Supplementary Fig. 2f) and
relatively weak for the third one at f th3 = 6.9476 GHz
(Supplementary Fig. 2g).

Finally, the pump beam radius should be carefully
chosen to enhance ZGV Lamb mode generation. For a
single isotropic plate, Bruno et al. demonstrated that,
for a Gaussian beam, the optimum response is reached
when the 1/e2 radius is 2

√
2/k4. Extending this result

for our bilayer system leads to an ideal pump radius of
∼4.6 µm for the first ZGV mode. In our set-up, detection
sensitivity is inversely proportional to the probe beam
radius. As both pump and probe beams are focused
with the same objective lens (see Fig. 1(a) in the main
text), it is difficult to achieve the ideal case. A good
compromise is found with the pump and probe 1/e2

radii, measured by knife-edge technique, set to be 4.2
and 2.8 µm, respectively. This facilitates the generation

of propagating modes with wavenumber k = 0.67 µm−1,
but modes in the range 0.3 . k . 1.4 µm−1 should also
be generated. In the case of the line pump spot with a
1/e2 intensity half-width of 1.5 µm and a length of 5 µm
(used for the dispersion relation measurement), modes
with wavenumbers in the range 0.8 . k . 3.9 µm−1 are
expected to be generated, as observed in experiment.

SUPPLEMENTARY NOTE 3:
TEMPERATURE RISE EVOLUTION

The steady state temperature rise T of the sample at
the centre of the optical pump spot is estimated by con-
sidering a finite-sized effectively 2D circular plate with
its circumference held at constant temperature and ap-
proximating the laser intensity profile to a top hat dis-
tribution. Under such assumptions, the solution of the
heat diffusion equation gives

T =
P

2πhκ
× [ln(a/w) + 1/2], (S7)

where P is the power absorbed by the sample (P =
P0T0(1 − R0) with P0 = 6 mW the measured inci-
dent power before the objective lens, T0=0.83 the op-
tical transmittance of the objective lens at 415 nm—the
pump wavelength—and R0=0.444 the optical reflection
coefficient of Ti at 415 nm), h the bilayer thickness
(with hTi = 660, hSi3N4

= 1830 nm, see Supplementary
Note 2), κ = 27.8 W.m−1.K−1 the thermal conductiv-
ity estimated by weighting the values for each layer by
their thickness (κTi = 21.9, κSi3N4

= 30 W.m−1.K−1),
a = 5.64 mm the plate radius (the circular plate be-
ing chosen to have the same area as the square sample
plate surface 10× 10 mm2) and w = 4.2 µm the 1/e2 in-
tensity radius of the pump beam. Reflection coefficients
and thermal conductivities are taken from Supplemen-
tary Ref. 5. It follows that T=49 K.
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