1	Supplementary Information
2	
3	
4	
5	The Pseudomonas aeruginosa lectin LecB binds to PsI and stabilizes the biofilm
6	matrix
7	
8	Passos da Silva D. <i>et al.</i>
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	

- disaccharide is highlighted in the red box, while water molecules are represented in cyan, Ca⁺²
- in green and the remaining are LecB amino acids involved in the interaction.
- 35

~ 7	O	F !		- (D A O 4 I		441 0 401
२ /	Sunniementary	FIGURE 2 SUD	rimnosition		-R-PSI and PA	14 I ACK- M-1 31
57	ouppionioniuity	i iguic z. oup	si iniposition			

38 mannobiose interactions. PAO1 LecB is represented in white, while PA14 LecB is

39 represented in blue. For the saccharides, the pentasaccharide from PsI is represented as α-D-

40 mannopyranose in cyan, β -D-mannopyranose in grey, α -L-rhamnopyranose in orange, and β -

41 D-glucopyranose in yellow, while the disaccharide α -1,3' mannobiose is represented in cyan

- 42 and violet.

49 Supplementary Figure 3. LecB presence leads to increased roughness of 50 **biofilms.** The presence of complex structures in a biofilm can be determined by the 51 roughness measurements from COMSTAT. We observed that in the absence of LecB, 52 $(\Delta lecB, \Delta cdrA \Delta lecB, and \Delta cdrA \Delta lecB pBADcdrAB)$ biofilms possessed roughness 53 54 close to zero, meaning a very smooth surface, the introduction of lecB leads to increased roughness, which can be interpreted with a more uneven surface 55 charactherized by the presence of aggregates. All COMSTAT measurements were 56 performed in 9 images from 3 different experiments per condition. *** p < 0.0001, t-test, 57 n > 3.

60 Supplementary Figure 4. PAO1 Δ*lecB* does not display a defective phenotype when

grown in LB. (a) 4 day-old biofilm of PAO1 grown in LB 1%. (b) 4 day-old biofilm of PAO1

62	Δ <i>lecB</i> grown in LB 1%.	. Scale bars = 25 µm
----	-------------------------------	----------------------

6	3

- . -

- /1

Supplemntary Figure 5. CdrA levels are reduced in biofilms grown in NB. (a) Western blot from 6 day-old tube biofilms developed using anti-CdrA. (1) PAO1 grown in LB, (2) PAO1 grown in NB, (3) PAO1 $\triangle cdrA$ grown in LB, and (4) purified CdrA. (b) Western blot from 6 day-old tube biofilms developed with anti-LecB. (1) PAO1 grown in LB, (2) PAO1 grown in NB, (3) PAO1 $\Delta lecB$ grown in LB, and (4) purified LecB.

106 Supplementary Figure 6. LecB mutant display defective mature aggregate

- 107 formation in silicone tube biofilms. PAO1 6-day old biofilm display the surface
- 108 completely covered by cells with the presence of mature aggregates, while $\Delta lecB$
- 109 biofilms are characterized by zones void of cells and zones containing
- 110 microaggregates. Scale bars = $25 \mu m$.

1:10 1:20

∆*lecB* pJN*lecB* No arabinose

∆*lecB* pJN*lecB* 0.2% arabinose

113 Supplementary Figure 7. Adherent fraction shows the same levels of Psl retention on tube biofilms.

- 114 Dot blot of adherent fractions derived from $\Delta lecB$ pJNLecB without or with 0.2% arabinose 6-day old
- tube biofilms. Immunodetection was performed using anti-Psl antibodies. Expression of *lecB*
- does not affect the levels of retained PsI when compared to the uninduced condition.

144 Supplementary Figure 8. LecB possess binding affinty towards α-mannobiose,

but not β-mannobiose. ITC titration data of (a) α -1,2' mannobiose (PsI side chain) into

- purified LecB, (b) α -1,3' mannobiose into purified LecB (not present in PsI) and (c) β -1,3'
- 147 mannobiose (Psl linear chain) into purified LecB.

148 Supplementary Table 1. Bacterial strains, plasmids and primers used in this study.

Bacterial strains	Relevant genotype or characteristics	Source
PAO1 PA14 PAO1 Δ <i>psl</i> PAO1 Δ <i>cdrA</i> PAO1 Δ <i>lecB</i> PAO1 Δ <i>cdrA</i> Δ <i>lecB</i>	Wild type Wild type Δ <i>psIBCD</i> ; markless Δ <i>cdrA</i> Δ <i>lecB</i> ; markless Δ <i>cdrA</i> Δ <i>lecB</i> ; markless	1 2 3 4 This study This study
Plasmids		
pJN105 pJNLecB pMJT-1 pBADCdrAB	araC-PBAD cassete cloned into pBBR1MCS5, Gm ^r <i>lecB</i> cloned into pJN105, Gm ^r araC-PBAD cassete from pJN105 cloned in pUCP18, Ap ^r <i>cdrA</i> and <i>cdrB</i> cloned into pMJT-1, Ap ^r	5 This study 6
Primers	Sequence	
lecB UpF lecB UpR lecB DownF lecB DownR lecB over Fw lecB over Rv	GATCGAGCTCGGCGACCAGGTGACGCAGTATA CACTCCTTGTGTTGCCATGGTG AACACAAGGAGTGATCAACTGGCCGCTCGGCTA GATCTCTAGACTCGGCTGGTTCTGCCTGTT ATCTGCAGCAGTGGAGATACACCATGGCA GCACTAGTGAACTCCTAGCCGAGCGG	

150			
151			
152			
153			
154			
155			
156			
157			
158			
159			
160			
161			
162			
163			
164			

165	Supplementary References				
166	Supplementary References				
167	1	Holloway, B. W. Genetic recombination in Pseudomonas aeruginosa. <i>Journal of general microbiology</i> 13 , 572-581, doi:10.1099/00221287-13-3-572 (1955).			
168	2	Rahme, L. G. <i>et al.</i> Common virulence factors for bacterial pathogenicity in plants and animals. <i>Science</i> 268 , 1899-1902 (1995).			
	3	Kirisits, M. J., Prost, L., Starkey, M. & Parsek, M. R. Characterization of colony morphology variants isolated from Pseudomonas aeruginosa biofilms. <i>Applied and environmental</i>			
169	Л	 microbiology 71, 4809-4821, doi:10.1128/AEM.71.8.4809-4821.2005 (2005). Borlee, B. R. <i>et al.</i> Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. <i>Mol Microbiol</i> 75, 827-842, doi:10.1111/j.1365-2958.2009.06991.x (2010). Newman, J. R. & Fuqua, C. Broad-host-range expression vectors that carry the L-arabinose-inducible Escherichia coli araBAD promoter and the araC regulator. <i>Gene</i> 227, 197-203 (1999). 			
170	4				
171	5				
172	6	Kaneko, Y., Thoendel, M., Olakanmi, O., Britigan, B. E. & Singh, P. K. The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. <i>The Journal of clinical investigation</i> 117 , 877-888, doi:10.1172/JCI30783 (2007).			
173					
174					
175					
176					
177					
178					
179					
180					
181					
182					
183					
184					
185					
186					