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Supplementary Figure 1. Experimental setup for U ′ and the complete phase diagram. (a) Experimental setup for detecting
momentum-time skyrmions governed by U ′. (b) Phase diagram for QWs governed by the Floquet operators (U , U ′) with
the corresponding winding numbers (ν, ν′) as functions of coin parameters (θ1, θ2). Solid black lines are the topological
phase boundary, dashed red lines represent boundaries between PT -symmetry-unbroken and broken regimes. The open black
star represents coin parameters of U ′i. Blue open triangle and black open square correspond to coin parameters of U ′f in
Supplementary Figs. 2 and 3, respectively. The black filled star and black filled square respectively correspond to coin parameters
of U i and U f in Supplementary Figure 4.
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Supplementary Figure 2. Experimental results of n(k, t) for the PT -symmetric preserving dynamics governed by U ′. (a) Time-
evolution of n(k, t) for quench processes between an initial non-unitary Floquet operator U ′ characterized by (θi1 = −π/2, θi2 =
π/4) and a final Floquet operator characterized by (θf1 = arcsin( 1

α
cos π

6
), θf2 = −π/2); The period of oscillations is t0 = 6 for all

k. Fixed points are located at {−0.4519π,−0.0124π, 0.5481π, 0.9876π}, which are slightly different from Fig. 3(b) in the main
text. (b) Experimental (upper) and numerical (lower) results of spin texture n(k, t) in the momentum-time space. The color
code represents the value of n3(k, t).
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Supplementary Figure 3. Experimental results of n(k, t) driven by U ′ between the same initial and final topological phases.
(a) Time-evolution of n(k, t) for quench processes between an initial non-unitary Floquet operator U ′ characterized by (θi1 =
−π/2, θi2 = π/4) and a final Floquet operator characterized by (θf1 = −9π/20, θf2 = 7π/25). Fixed points are located at
{−0.5101π,−0.0399π, 0.4899π, 0.9601π}. (b) Experimental (upper) and numerical (lower) results of spin texture n(k, t) in the
momentum-time space. The color code represents the value of n3(k, t).
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Supplementary Figure 4. Experimental results for the PT -symmetry-unbroken QW dynamics governed by U between the
same topological phase. (a) Time-evolution and (b) spin textures of n(k, t) in the momentum-time space for a quench process
between the initial non-unitary Floquet operator given by (θi1 = π/4, θi2 = −π/2) and the final Floquet operator given by
(θf1 = 7π/25, θf2 = −9π/20). Fixed points are located at {−1.0319π,−0.5069π,−0.0319π, 0.4931π}. Red dashed lines in (b)
show the momentum-dependent period π/Ef

k for the oscillations of n(k, t), which, together with fixed points in momentum
space, mark the boundary of the momentum-time submanifolds. The color code represents the value of n3(k, t).
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Supplementary Figure 5. Experimental results of spin textures n(k, t) (a) and normalized n′(k, t) (b). The quench process is
the same as that in Fig. 4(b) of the main text. Locations of fixed points in (a) are the same as those in (b). The color codes
represent values of n3(k, t) and n′

3(k, t), respectively.
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SUPPLEMENTARY NOTES

Supplementary Note 1: Experimental detection of the matrix element 〈ψx2(t)|σi |ψx1(t)〉

In this section, we detail the experimental detection of matrix elements 〈ψx2(t)|σi |ψx1(t)〉 (i = 0, 1, 2, 3), which are
critical for the detection of momentum-time skyrmions.

For matrix elements with x1 = x2 = x, we perform polarization analysis on each lattice site in the basis
{|H〉 , |V 〉 , |L〉 = (|H〉 − i |V 〉)/

√
2, |D〉 = (|H〉 + |V 〉)/

√
2}. Denoting probabilities of photons measured in the

four basis states respectively as PH(x, t), PV(x, t), PL(x, t) and PD(x, t), we have the matrix elements

〈ψx(t)|σ0 |ψx(t)〉 = PH(x, t) + PV(x, t), (1)

〈ψx(t)|σ1 |ψx(t)〉 = 2PD(x, t)− PH(x, t)− PV(x, t),

〈ψx(t)|σ2 |ψx(t)〉 = −2PL(x, t) + PH(x, t) + PV(x, t),

〈ψx(t)|σ3 |ψx(t)〉 = PH(x, t)− PV(x, t).

For matrix elements with x1 6= x2, we need to measure

〈ψx2
(t)|σ0 |ψx1

(t)〉 = a∗x2
(t)ax1

(t) + b∗x2
(t)bx1

(t), (2)

〈ψx2
(t)|σ1 |ψx1

(t)〉 = a∗x2
(t)bx1

(t) + b∗x2
(t)ax1

(t),

〈ψx2
(t)|σ2 |ψx1

(t)〉 = −ia∗x2
(t)bx1

(t) + ib∗x2
(t)ax1

(t),

〈ψx2
(t)|σ3 |ψx1

(t)〉 = a∗x2
(t)ax1

(t)− b∗x2
(t)bx1

(t),

where we have denoted |ψx(t)〉 =
[
ax(t), bx(t)

]T
. Here instead of projective measurements, we perform interference-

based measurements. As illustrated in Fig. 1 of the main text, photons in spatial modes x1 and x2 are injected into
the same spatial mode by passing through half-wave plates (HWPs, H1 and H2) and beam displacers (BDs). After
passing through H1 and H2 with specific setting angles, the polarization states of the photons are prepared into one
of the following four states:

|φ1〉c ∝
[
ax1(t), ax2(t)

]T
when H1 is at 0,H2 is at 45◦, (3)

|φ2〉c ∝
[
bx1

(t),−bx2
(t)
]T

when H1 is at 45◦,H2 is at 0

|φ3〉c ∝
[
bx1(t), ax2(t)

]T
when H1 is at 45◦,H2 is at 45◦,

|φ4〉c ∝
[
ax1

(t), bx2
(t)
]T

when removing H1 and H2.

We then apply a projective measurement {|L〉 〈L| , |D〉 〈D|} with a quarter-wave plate (QWP), a HWP and a polarizing
beam splitter (PBS) to obtain probabilities of photons in the basis states {|L〉 , |D〉}. Depending on their polarization
states |φj〉c (j = 1, 2, 3, 4) prior to the projective measurement, we denote the measured probabilities as P jL(x1, x2, t)

and P jD(x1, x2, t), respectively.
We are then able to calculate both the real and imaginary parts of 〈ψx2

(t)|σi |ψx1
(t)〉 (i = 0, 1, 2, 3) through

Re
[
〈ψx2(t)|σ0 |ψx1(t)〉

]
= P 1

D(x1, x2, t)− P 2
D(x1, x2, t)−

PH(x1, t) + PH(x2, t)− PV(x1, t)− PV(x2, t)

2
, (4)

Im
[
〈ψx2(t)|σ0 |ψx1(t)〉

]
= P 1

L(x1, x2, t)− P 2
L(x1, x2, t)−

PH(x1, t) + PH(x2, t)− PV(x1, t)− PV(x2, t)

2
,

Re
[
〈ψx2(t)|σ1 |ψx1(t)〉

]
= P 3

D(x1, x2, t) + P 4
D(x1, x2, t)−

PV(x1, t) + PH(x2, t) + PH(x1, t) + PV(x2, t)

2
,

Im
[
〈ψx2(t)|σ1 |ψx1(t)〉

]
= P 3

L(x1, x2, t) + P 4
L(x1, x2, t)−

PV(x1, t) + PH(x2, t) + PH(x1, t) + PV(x2, t)

2
,

Re
[
〈ψx2(t)|σ2 |ψx1(t)〉

]
= P 3

L(x1, x2, t)− P 4
L(x1, x2, t)−

PV(x1, t) + PH(x2, t)− PH(x1, t)− PV(x2, t)

2
,

Im
[
〈ψx2(t)|σ2 |ψx1(t)〉

]
= P 4

D(x1, x2, t)− P 3
D(x1, x2, t) +

PV(x1, t) + PH(x2, t)− PH(x1, t)− PV(x2, t)

2
,

Re
[
〈ψx2(t)|σ3 |ψx1(t)〉

]
= P 1

D(x1, x2, t) + P 2
D(x1, x2, t)−

PH(x1, t) + PH(x2, t) + PV(x1, t) + PV(x2, t)

2
,

Im
[
〈ψx2(t)|σ3 |ψx1(t)〉

]
= P 1

L(x1, x2, t) + P 2
L(x1, x2, t)−

PH(x1, t) + PH(x2, t) + PV(x1, t) + PV(x2, t)

2
,
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from which we construct the corresponding matrix elements.

Supplementary Note 2: Quench dynamics in the alternative time frame

As we have discussed in Methods, a complete description of topological properties of the system requires another
winding number associated with the Floquet operator U ′ in a different time frame, with

U ′ = M
1
2R

(
θ2
2

)
SR (θ1)SR

(
θ2
2

)
M

1
2 , (5)

where M
1
2 = 1w ⊗

(
|+〉 〈+|+ (1− p) 1

4 |−〉 〈−|
)

. It is straightforward to show that U ′ has passive parity-time (PT )

symmetry, similar to U in the main text. Similar to the definition of the winding number ν in Methods, we define
the winding number associated with U ′ as ν′. Following the arguments and discussions in Ref. [1], it is easy to show
that (ν0, νπ) = [(ν + ν′) /2, (ν − ν′) /2], where topological invariants ν0 and νπ are related to the number of edge
states with quasienergies Re ε = 0 and Re ε = π, respectively, through the bulk-boundary correspondence. We have
numerically checked that edge states in inhomogeneous quantum walks are consistent with the topological invariants
(ν0, νπ). However, as we explicitly demonstrate below, for quench dynamics of homogeneous quantum walks (QWs),
it is sufficient to choose a single time frame and focus on the corresponding bulk winding number.

To illustrate quench dynamics in the alternative time frame, we first plot the phase diagram in Supplementary
Figure 1, where labels correspond to (ν, ν′). We then experimentally implement U ′ and simulate quench dynamics
starting from a localized initial eigenstate of U ′i (open black star in Supplementary Figure 1) with ν′i = 0 and evolving
it under U ′f with different parameters. As illustrated in Supplementary Figs. 2 and 3, skyrmion structure emerges only
when the winding number ν′f of U ′f differs from ν′i. We have therefore experimentally confirmed that choosing different
time frames does not qualitatively change the relation between the pre- and post-quench topological invariants and
the emergence of skyrmion structures. Note that, similar to the case of U , skyrmion structures would also disappear
when the system is quenched into PT -symmetry-broken regimes. Therefore, all our previous conclusions on fixed
points, dynamic skyrmions, and PT symmetry are qualitatively the same for both time frames, whereas spin textures
and locations of fixed points are quantitatively different.

Supplementary Note 3: Quench between FTPs with the same winding number

As we have discussed in the main text, when the system is quenched between FTPs with the same winding number,
skyrmion-lattice structures are no longer present. This is shown in Supplementary Figure 4, where we set the coin
parameters for U f as (θf1 = 7π/25, θf2 = −9π/20). The initial state and the loss parameter p are the same as those
in Fig. 3(b) of the main text. Therefore, the post-quench FTP is in the PT -symmetry unbroken regime with νf = 0
and belongs to the same phase regime for U i. As shown in Supplementary Figure 4(a), dynamics of n(k, t) is still
oscillatory; however, skyrmion-lattice structures are no longer present in Supplementary Figure 4(b). Note that, as
θf1,2 are not chosen along the purple dashed lines in Fig. 2(a), the corresponding quasienergy band Ef

k is not flat, which
leads to oscillations of n(k, t) with momentum-dependent periods. This is shown in Supplementary Figure 4(b).

Supplementary Note 4: Choice of density matrix

As we have discussed in the main text and in Methods, the definition of the density matrix ρ(k, t) in Equation (5)
of the main text under the biorthogonal basis makes the dynamics transparent on the Bloch sphere. Such a definition
offers a simple and elegant proof on the relation between topologically protected fixed points and winding numbers
of the Floquet operators. An alternative choice of density matrix is ρ′(k, t) = |ψk(t)〉〈ψk(t)|, which is Hermitian
and therefore easier to probe experimentally. In fact, we experimentally probe ρ′(k, t) and construct ρ(k, t) through
Equation (9) of the main text. In the following, we show that dynamic skyrmion structures should also emerge in
n′(k, t) = Tr [ρ′(k, t)σ]; albeit n(k, t) generically differs from n′(k, t). Here σ = (σ1, σ2, σ3).

Applying the definition of τ and making use of the properties of biorthogonal base, it is straightforward to show
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that

n(k, t) = Tr [ρ(k, t)τ] =
∑
µ,ν=±

cµc
∗
νe
−iεfk,µt+iε

f∗
k,νt〈φν |σ|φµ〉, (6)

n′(k, t) = Tr [ρ′(k, t)σ] =
∑
µ,ν=±

cµc
∗
νe
−iεfk,µt+iε

f∗
k,νt〈ψf

k,ν |σ|ψf
k,µ〉, (7)

where {|φ±〉} = {|H〉, |V 〉}. Physically, n(k, t) and n′(k, t) are related by a basis transformation of the Pauli operators

in the summand. As
{
|ψf
k,±〉

}
are not orthonormal, such a transformation is non-unitary. As a result, n′(k, t) is

not normalized, and one needs to enforce a normalization on n′(k, t) to visualize it on the Bloch sphere. Even then,
characterizing the dynamics of n′(k, t) on the Bloch sphere remains cumbersome, and it is difficult to establish a
connection between dynamic skyrmion structures and winding numbers. Nevertheless, information of topological

fixed points and dynamic skyrmion structures are encoded in the coefficients cµc
∗
νe
−iεfk,µt+iε

f∗
k,νt. Therefore, dynamic

topological structures appearing in n(k, t) should also emerge in n′(k, t) under the same conditions. We show in
Supplementary Figure 5 an explicit comparison of momentum-time skyrmions in n(k, t) and a normalized n′(k, t)
following the same quench in Fig. 4(b) of the main text. Whereas fixed points and skyrmion structures exist in both
cases, it is apparent that the spin textures are quite different.

Finally, we emphasize that it is also possible to directly construct ρ(k, t) from experimental data via non-unitary
time evolution of both |ψ(t)〉 and |χ(t)〉 and taking the adjoint of |χ(t)〉. Evidently, this is at the cost of additional
experiments.
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