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SUPPLEMENTARY NOTE 1: JOSEPHSON PARAMETRIC AMPLIFIERS

The Josephson parametric amplifiers (JPA) used in this work consist of a quarter-wavelength superconducting mi-
crowave resonator in a coplanar waveguide geometry which is short-circuited to the ground plane via a direct current
superconducting quantum interference device (dc-SQUID)1,2. The JPAs were designed and fabricated at NEC Smart
Energy Research Laboratories, Japan and RIKEN, Japan. The resonator and pump line are patterned into a 50 nm
thick Nb film which has been deposited by magnetron sputtering onto 300µm thick silicon substrates covered by
a thermal oxide. The dc-SQUID is fabricated using an aluminum shadow evaporation technique. The flux-tunable
resonant frequency f0 of the JPA can be tuned by an external magnetic flux applied to the dc-SQUID loop via an
external coil or via an on-chip antenna acting as the pump line. In order to squeeze incoming vacuum fluctuations or
perform phase-sensitive amplification of the mode f0, we apply a strong coherent pump tone at frequency fp = 2f0 to
the pump line. The squeezing strength (degenerate gain) and squeezing angle (amplified quadrature) are controlled
by the pump amplitude and pump phase, respectively, when the JPA is operated as squeezer (degenerate amplifier).
For each JPA, a commercial cryogenic circulator is used to separate the incoming from the outgoing signal (see Sup-
plementary Figure 1). In order to pre-characterize the JPAs and find a suitable working frequency f0 for all JPAs,
we perform spectroscopic measurements2. The extracted parameters are summarized in Supplementary Table 1.

Supplementary Table 1: JPA Parameters extracted by fitting the dependence of the resonant frequency f0 of the JPAs on the
applied magnetic flux2. Here, Ic and EJ = IcΦ0/2π are the critical current and coupling energy of a single Josephson junction,
respectively, Lloop and βL = 2LloopIc/Φ0 are the loop inductance and screening parameter of the dc-SQUID, respectively, and
fr is the resonant frequency of the bare resonator. The Josephson junctions of the dc-SQUID are assumed to be identical.
The external quality factors Qext and internal quality factors Qint are obtained from independent fits of the JPA spectral
linewidths2. The parameters of JPA 3 are similar to the ones of JPA 1 and JPA 2.

Sample Ic (µA) βL Lloop (pH) fr/2π (GHz) EJ/h (THz) Qext Qint

JPA 1 2.45 0.09 35.8 5.808 1.22 300–360 >30000
JPA 2 2.41 0.10 40.7 5.838 1.20 240–260 >30000

SUPPLEMENTARY NOTE 2: EXPERIMENTAL SETUP

The experimental room temperature and cryogenic setup is shown in Supplementary Figure 1. The digitizer card
and the microwave pump sources for each JPA are pulsed with a data timing generator (DTG). JPA 1 and JPA 2
are both temperature stabilized at 50 mK in order to ensure a stable JPA operation and produce squeezed states
with orthogonal squeezing angles. The two squeezed states are superimposed by a cryogenic hybrid ring (50:50 beam
splitter) in order to produce path-entangled two-mode squeezed (TMS) states at the outputs of the hybrid ring.
By operating JPA 1 and JPA 2 at the same squeezing level, we are able to produce symmetric TMS states with local
statistics of a thermal state. The entanglement strength of the TMS states is characterized by the two-mode squeezing
level of STMS = 7.1 dB and the negativity criterion of N = 2.2. Additionally, a lower bound on the entanglement of
formation, EF = 1.2, can be calculated for our experimental TMS states3. One output path of the beam splitter is
connected to JPA 3 which is operated as a phase-sensitive amplifier. The JPA 3 output signal is then either detected
or sent to a directional coupler which couples to the other hybrid ring output. The first amplification stage of a high-
electron-mobility transistor (HEMT) is followed by additional rf-amplifiers which are temperature stabilized with a
Peltier cooler. We use a vector network analyzer for the characterization of the JPAs and a heterodyne detection
setup for the tomographic measurements.
The heterodyne detection setup and data processing is similar to those described in Supplementary References 4,5
where the signal is roughly filtered around the working frequency and down-converted to 11 MHz by image rejection
mixers. The signal is then digitized with analog-to-digital (ADC) converters on an Acqiris DC440 card. After sending
the digitized data to a computer, digital data processing is performed where digital down-conversion (DDC) and
finite-impulse response (FIR) filtering with a full bandwidth of 430 kHz is applied. Finally, all correlation quadrature
moments 〈In1 Im2 Qk1Ql2〉 with n+m+ k+ l≤ 4 for n,m, k, l ∈ N are calculated and averaged. The data within a single
averaging cycle consists of 4 × 108 averaged sample points per part of the pulse and is used to perform a reference
state reconstruction for each pulse in order to obtain the signal moments 〈(â†)nâm〉 with n+m≤ 4. During each
measurement cycle, the moments of JPAs 1-3 are used to calculate the squeezing angles γexpi for each JPA “on the

fly” in order to obtain the angle correction δγi = γexti − γtargeti which is used to adjust the phase of the microwave
pump tone by 2δγi. Finally, the described averaging cycle is repeated 10 times. The vector network analyzer, DTG,
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Supplementary Figure 1: Experimental scheme for the measurements. The JS3-25-8P rf-amplifiers are removed for the mea-
surements concerning the quantum one-time pad. The RSP and quantum one-time pad measurements are performed with the
cryogenic switch in position A. The intertwined lines between the outputs of the hybrid ring symbolize the entanglement. JPA 3
and the directional coupler are separated by 35 cm of superconducting cable.

Acqiris card and local oscillator are synchronized to a 10 MHz rubidium frequency standard. The pump microwave
sources are daisy chained to the local oscillator with a 1 GHz reference signal.
The experimental states are reconstructed under the assumption that the states are Gaussian, and thus fully described
by their signal moments up to the second order. In order to check for the Gaussianity of the states, we verify that
the cumulants of third and fourth order are vanishingly small, as expected for Gaussian states6. The cumulants
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〈〈(â†)nâm〉〉 are calculated from the signal moments 〈(â†)nâm〉 according to

〈〈(â†)nâm〉〉 = ∂nx∂
m
y ln

∑
α,β

〈(â†)αâβ〉xαyβ

α!β!

∣∣∣∣
x=y=0

, (1)

where ∂nx is the n-th partial derivative with respect to x and ln is the natural logarithm7,8.

SUPPLEMENTARY NOTE 3: THEORETICAL MODELING AND FITTING PROCEDURE
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Supplementary Figure 2: Scheme for theoretical description of the RSP setup with used parameters. The experimentally varied
feedforward gain Gf and angle γf are marked in blue. Due to a carefully designed symmetric implementation in the experiment,
the losses ε1 = ε2 = ε in both paths before the beam splitter are assumed to be equal and include the insertion loss of the beam
splitter. The angles γ1, γ2 and γf are used in units of radians for all equations.

In order to theoretically describe the remote state preparation (RSP) setup, we use an input-output model for each
component as shown in Supplementary Figure 2. JPA 1 and JPA 2 are modeled as squeezers with the same squeezing
parameter r1 = r2 = r but different squeezing angles γ1 and γ2 in order to produce symmetric TMS states after the beam
splitter. In the experiment, the pump of JPA 3 leaks through to JPA 1 and JPA 2 which results in a finite crosstalk
between JPA 3 and the other two JPAs. Since experimentally the crosstalk to JPA 1 dominates, we approximate the
effect of the crosstalk by a linear dependence of γ1 on the gain Gf and angle γf of JPA 3

γ1 = γ
(0)
1 + κGf + λγf , (2)

where γ
(0)
1 is the unperturbed squeezing angle of JPA 1. This approximation is consistent with independent measure-

ments of the crosstalk. The squeezing operator Ŝ12 for JPA 1 and JPA 2 acting on the annihilation operators âi of
path 1 (Alice) and path 2 (Bob) is given by9

Ŝ†12

(
â1
â2

)
Ŝ12 =

(
â1cosh r − â†1e−2iγ1sinh r

â2cosh r − â†2e−2iγ2sinh r

)
. (3)

The added noise of JPA 1 and JPA 2 is taken into account by an effective thermal state with a noise photon number
n1 =n2 =n incident to the JPAs. In order to describe the action of JPA 3, we assume that classical noise is added to
the JPA input signal followed by ideal phase-sensitive amplification

Ŝ†3

(
â1
â2

)
Ŝ3 =

(
(â1 + ζ) cosh rf −

(
â†1 + ζ∗

)
e−2i(γf+θf )sinh rf

â2

)
, (4)

where Gf is related to rf as Gf = e2rf and θf is the theoretically optimal JPA 3 amplification angle. The classical noise is
described by the complex Gaussian random variable ζ with 〈ζ〉= 0, 〈ζζ∗〉=nf and 〈Re(ζ)2〉= 〈Im(ζ)2〉=nf/2, where
nf is the effective thermal noise photon number. In general, the JPA noise is gain dependent which we take into
account by a linear dependence on Gf for JPA 3. For that, we use nf =n′fGf , where n′f is a proportionality constant.
Losses ε and ηi of the microwave components are modeled with a beam splitter10

L̂†1

(
â1
â2

)
L̂1 =

(√
1− εâ1 +

√
εv̂1√

1− εâ2 +
√
εv̂2

)
, (5)
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L̂†2

(
â1
â2

)
L̂2 =

(√
1− η1â1 +

√
η1v̂1√

1− η2â2 +
√
η2v̂2

)
, (6)

where v̂i is the operator describing the environment for path i. The environment can be safely approximated to be in
the vacuum state due to the low temperature of the lossy components in the experiment.
The hybrid ring is described by a 50:50 beam splitter11

B̂†
(
â1
â2

)
B̂ =

1√
2

(
â1 + â2
−â1 + â2

)
. (7)

The displacement on Bob’s side is implemented with a directional coupler and is described as an asymmetric beam
splitter12

Ĉ†
(
â1
â2

)
Ĉ =

( √
τ â1 +

√
1− τ â2

−
√

1− τ â1 +
√
τ â2

)
, (8)

where τ = 1− 10β/10 is the transmissivity and β is the coupling in decibel.
In order to describe the realistic setup, we need to take the electrical length of the different components into account.
The total electrical lengths as well as different path lengths after the beam splitter are compensated with a rotation R̂
by the angle θrp of the final remotely prepared state on Bob’s side

R̂†
(
â1
â2

)
R̂ =

(
â1

â2e
−iθrp

)
. (9)

With the operator definitions in Supplementary Equations (3)–(9), we can write the overall RSP protocol as

|Ψ〉 = R̂ Ĉ Ŝ3 L̂2 B̂ L̂1 Ŝ12|n, n〉 , (10)

where n is the noise photon number of JPA 1 and JPA 2, and |Ψ〉 is the final state on both paths. The moment
matrices for both paths of the final state are calculated as(

〈(b̂†)nb̂m〉1
〈(b̂†)nb̂m〉2

)
= 〈Ψ|

(
(â†)n1 â

m
1

(â†)n2 â
m
2

)
|Ψ〉 , (11)

where 〈(b̂†)nb̂m〉1 are the moments of the second directional coupler output signal and 〈(b̂†)nb̂m〉2 are the moments of

the remotely prepared state. With the definition of the quadratures q̂ = (b̂+ b̂†)/2 and p̂ = (b̂− b̂†)/2i, the moments

〈(b̂†)nb̂m〉2 are used to calculate the squeezing angle γrp, squeezed variance σ2
s and antisqueezed variance σ2

a of the
remotely prepared state as

γrp = −1

2
arg
(
−〈b̂2〉2

)
, (12)

σ2
s =

1

4

(
〈b̂2〉2e2iγrp + 〈(b̂†)2〉2e−2iγrp + 2〈b̂†b̂〉2 + 1

)
, (13)

σ2
a =

1

4

(
−〈b̂2〉2e2iγrp − 〈(b̂†)2〉2e−2iγrp + 2〈b̂†b̂〉2 + 1

)
, (14)

where arg(·) is the argument of a complex number and the first order moments are taken to be zero. These quantities
are then fitted simultaneously to the corresponding quantities of the experimental remotely prepared states (see
Supplementary Figure 3 for antisqueezed variance). We are able to describe the RSP protocol presented in the
main article with the parameters shown in Supplementary Table 2. We emphasize that the bare model only requires
three fitting parameters (n, r, n′f) in order to obtain a good fit when estimating the remaining parameters from

independent measurements. Including β, θf , θrp, and the crosstalk parameters (γ
(0)
1 , κ, λ) as fitting parameters, only

slightly improves the quantitative agreement between the experiment and the theory.
In order to derive equation (1) in the main article, we choose γ1 = γf = 0◦, γ2 = θf = 90◦, same losses after the beam
splitter (η1 = η2), neglect the effect of the electrical path lengths (θrp = 0), and define the total loss χ1 =χ2 =χ, where
χ1 = 1− (1− ε)(1− η1) = ε+ η1− εη1 and χ2 = 1− (1− ε)(1− η2) = ε+ η2− εη2. Furthermore, we do not consider the
experimental crosstalk (κ=λ= 0). The protocol works optimally for fixed resources if a state with the highest purity is
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Supplementary Figure 3: a,b Antisqueezed variance Arp of the remotely prepared states as a function of the feedforward
parameters for experiment and fit. The optimal point is marked by the blue star.

Supplementary Table 2: Model parameters used to theoretically describe the RSP protocol in the main article. The losses ε,
η1 and η2 are estimated from the individual loss of the components. γ2 is fixed to the experimentally chosen squeezing angle
of JPA 2.

n r γ
(0)
1 (◦) γ2 (◦) n′f β (dB) ε η1 η2 θf (◦) θrp (◦) κ (◦) λ

0.04 1.20 49.6 135.0 0.0059 −14.6 0.15 0.08 0.07 136.5 68.5 −0.17 0.02

remotely prepared. In the limit of high JPA 1 and JPA 2 squeezing, r� 1, we reach this optimal point for Gf = τ/(1−τ)
and obtain for the optimally remotely prepared state by using Supplementary Equations (12)-(14)

γ̃rp = γ1 , (15)

σ̃2
s =

1

4

[
2(1 + 2n)e−2r(1− χ)τ + 2(χ+ nf)τ

]
, (16)

σ̃2
a =

(1 + 2n)(1− χ)
[
e2r + e−2r(1− 2τ)2

]
8τ

+
2nf(1− τ)2 +

(
1− 2τ + 2τ2

)
χ

4τ
. (17)

In general, the optimal JPA 3 gain depends on r in a nontrivial manner and converges to Gf = τ/(1 − τ) for r→∞.
However, the latter expression offers a good approximation to the optimal JPA 3 gain even for r≈ 1 since the deviation
of γ̃rp, σ̃2

s , and σ̃2
a between the optimal JPA 3 gain and Gf = τ/(1−τ) is below 1% for the parameters in Supplementary

Table 2.

SUPPLEMENTARY NOTE 4: PHASE SPACE OF PREPARABLE STATES

The model described in the previous section allows us to theoretically investigate the phase space of the preparable
states of our RSP protocol in the phase space spanned by (Srp, γrp) and (Srp, Arp). For this purpose, we use
the parameters from Supplementary Table 2 and calculate the contour around the remotely prepared states for
the experimental range of JPA 3 gain Gf and amplification angle γf (green contour in Supplementary Figure 4a,b).
Alternatively, we use an iterative method to calculate the maximum error contour (blue contour in Supplementary
Figure 4a,b). Here, we randomly select a value from the 95% confidence intervals of each fitting parameter and
calculate the resulting contour. If the current contour lies partly or fully outside the maximum error contour, the
latter is expanded so that it includes the current contour. The process is repeated until the change of the area of the
maximum error contour is negligible between iterations.
We observe that the direct contour does not include all experimentally prepared states but shows a good qualitative
agreement. The maximum error contour includes all measured remotely prepared states. We note that all remotely
prepared states inside the contour can be continuously prepared. However, the position in the phase space does not
uniformly depend on Gf and γf . Since we select a finite and uniform step size of Gf and γf in the experiment, the
measured remotely prepared states do not uniformly occupy the phase space.
In Supplementary Figure 4c,d, we show the expected contours of the accessible prepared states upon reducing the
JPA noise photon numbers by one order of magnitude and the different losses (ε, η1 and η2) to 0.1 dB each. The
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range of preparable Arp and γrp is only slightly affected by the optimized parameters while the squeezing level Srp is
significantly increased.

SUPPLEMENTARY NOTE 5: FEEDFORWARD SIGNAL

The feedfoward signal is characterized by toggling the cryogenic switch into position B (see Supplementary Figure 1)
and measure both the signal from JPA 3 (Alice’s side) as well as the signal on Bob’s side while all JPAs are pumped.
The squeezing level of JPA 1 and JPA 2 for these measurements is S= 7.3 dB which results in an entangled state with
a negativity kernel6,13 Nk = 1.8 after the beam splitter. The JPA 3 amplification angle is fixed to the optimal angle
γf = 0◦. As shown in Supplementary Figure 5, we observe no entanglement (Nk≤ 0) between Alice and Bob after the
local amplification for Gf ≥ 11 dB. The feedforward signal is squeezed below the vacuum for low Gf and becomes
non-squeezed above Gf ' 13 dB. Our theory model and experimental evidence show that the deamplified, and possibly
squeezed, quadrature has a negligible effect on the prepared state. This can be understood by considering that the
feedforward signal is only weakly coupled to Bob’s part of the entangled state by the directional coupler. Therefore,
only the strongly amplified quadrature in the feedforward signal will affect the prepared state on Bob’s side.
We consider the feedforward signal as classical if it has a positive Wigner function, is not squeezed below the vacuum
and is not entangled with the signal on Bob’s side. Therefore, all feedforward signals with Gf ≥ 13 dB are classical.
For Gf < 13 dB, the information about the to-be-prepared state in the feedforward signal can be described classically
as well since it is only encoded in the strongly amplified quadrature which, on its own, does not show any quantum
signatures.
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Supplementary Figure 5: Negativity kernel Nk (blue) and squeezing level (green) of the feedforward signal. The error bars are
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SUPPLEMENTARY NOTE 6: ENTROPY OF GAUSSIAN STATES

The von Neumann entropy H(X) = −Tr(ρ̂xlog ρ̂x) of a quantum state X with density matrix ρ̂x is the quantum
information analogue of the entropy used in thermodynamics (up to a factor of the Boltzmann constant kB). For a
Gaussian state, H(X) can be calculated from its covariance matrix V . The von Neumann entropy of a single-mode
Gaussian state is given by14

H(X) = f
(√

detV
)
, (18)

where f(x) =
(
2x+ 1

2

)
log
(
2x+ 1

2

)
−
(
2x− 1

2

)
log
(
2x− 1

2

)
.

For a two-mode Gaussian state AB, the covariance matrix can be expressed in the form

V =

(
A C
CT B

)
, (19)

where A, B and C are 2× 2 matrices describing the local state A, local state B and cross-correlations between both
parties, respectively. From V , one can calculate the two symplectic eigenvalues of the bipartite Gaussian state

ν± =

√
∆±

√
∆2 − 4detV

2
, (20)

where ∆ = detA+ detB + 2detC. The joint entropy of the whole bipartite state is given by

H(A,B) = f (ν+) + f (ν−) , (21)

and the entropy of A conditioned on knowing B

H(A|B) = H(A,B)−H(B) (22)

is called the conditional entropy. If both parties are correlated, knowledge about B will reveal information about A,
and thus decrease its entropy, H(A|B)<H(A).
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