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Supplementary Figure 1. Calibration of frequency detuning with time for a linear voltage ramp.

The red dots are measured by noting positions of the cavity resonances, which are equally spaced

by 15.04 MHz. The blue line is a quadratic fit to the measured data.

Supplementary Figure 2. A ring cavity with periodic boundary conditions.
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Supplementary Figure 3. A cavity with a small time modulated section.

SUPPLEMENTARY NOTE 1 - COUPLED MODE EQUATIONS FOR A MODU-

LATED RING

In this section we derive the coupled mode equations for a ring resonator with a portion

of the ring’s refractive index modulated in time, say, using a phase modulator.

We consider a ring cavity where the dimensions are such that the variation only along

the propagation direction plays an important role. An example would be a ring as shown in

Supplementary Figure 2 whose radius is much larger than the cross sectional width of the

waveguide forming the ring. The Maxwell’s equations for this system then read:

∇× E = −∂B
∂t

(1)

|B| = µ|H| = µ
|E|√
µ/ε

=
n|E|
c

(2)

In cylindrical polar coordinates, for fields Ez, Br and propagation along φ̂ on a ring of

radius R,

∇× E = r̂
1

R

∂

∂φ
Ez (3)

Substituting Supplementary Eqs. (2) and (3) into Supplementary Eq. (1),

1

R

∂Ez
∂φ

= − ∂

∂t

(
nEz
c

)
(4)

⇒ c

nR

∂Ez
∂φ

= −∂Ez
∂t
− Ez

1

n

∂n

∂t
(5)
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At every moment in time, e−imφ forms a complete basis, so we can expand

Ez(φ, t) =
∞∑

m′=0

Cm′am′(t)e−im
′φ + c.c. (6)

where the prefactor Cm will be chosen so that |am|2 represents the photon number flux in

mode m for an unmodulated cavity. Substituting this in Supplementary Eq. (5), we get,

− c

n(φ, t)R

∑
m′

imCm′am′(t)e−im
′φ = −

∑
m′

Cm′ ȧm′(t)e−im
′φ −

∑
m′

Cm′am′(t)e−im
′φ 1

n(φ, t)

∂n

∂t

(7)

Applying
∫ 2π

0
eimφ dφ/2π to both sides yields:

c

2πR

∑
m′

[
im′Cm′ am′(t)

∫ 2π

0

ei(m−m
′)φ

n(φ, t)
dφ

]
= Cmȧm(t)+

1

2π

∑
m′

[
Cm′am′(t)

∫ 2π

0

ei(m−m
′)φ

n(φ, t)

∂n

∂t
dφ

]
(8)

or,
d

dt
am(t) = i

∑
m′

(κmm′ − iγmm′)am′(t), (9)

where

κmm′ =
m′c

2πR

Cm′

Cm

∫ 2π

0

ei(m−m
′)φ

n(φ, t)
dφ (10)

γmm′ =
1

2π

Cm′

Cm

∫ 2π

0

ei(m−m
′)φ

n(φ, t)

∂n

∂t
dφ (11)

For the remainder of this section we will ignore γmm′ since the contribution from ∂n/∂t is

estimated to be negligible for the modulation frequencies and modulation depths used in

the experiment.

Limiting cases

A. Constant index

If n(φ, t) = n0,

κmm′ =
m′c

2πRn0

2πδmm′ = m′2π
c

n0L
δmm′ = ωm′δmm′ , (12)

where we recover ωm′ = m′ × 2πc/n0L as the frequency of the m′-th cavity resonance.

⇒ ȧm(t) = iωmam(t) (13)
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The unmodulated cavity mode spacing is then ΩR = ωm′+1 − ωm′ = 2πc/n0L. The mode

spacing is equal over a range of frequencies as long as the group velocity dispersion of

material and the geometric dispersion due to the cavity are negligible. Since the energy of a

photon in mode m is ~ωm, and |am|2 represents the photon number flux, we can determine

the prefactor Cm to be,

Cm =

√
~ωm

2ε0n2
0L

(14)

B. Uniform time varying index

If n(φ, t) = n0 + n1(t), where n1 � n0,

κmm′ =
m′c

L

2π δmm′

n0 + n1(t)
≈ 2πm′c

L

δmm′

n0

(
1− n1(t)

n0

)
= δmm′(ωm′ − ωm′(t)) (15)

⇒ ȧm(t) = i(ωm − ωm(t))am(t) (16)

C. A small portion of the ring is time-modulated

If the length of the modulated section is 2w [Supplementary Figure 3], then the spa-

tiotemporal index distribution in the ring is,

n(φ, t) = n0 + n1(t) [u(φ− φw/2)− u(φ+ φw/2)] = n0 + n1(t) rect(φ/φw) (17)

where u(·) is the Heaviside theta function, φw = 2π × 2w/L and n1(t)� n0 at all times t.

κmm′ =
m′c

L

Cm′

Cm

∫ 2π

0

ei(m−m
′)φ

n0 + n1(t) rect(φ/φw)
dφ (18)

≈ c
√
mm′

L

∫ 2π

0

ei(m−m
′)φ

n0

[
1− n1(t)

n0

rect(φ/φw)

]
dφ (19)

=
c
√
mm′

n0L
2πδmm′ − c

√
mm′

n0L

n1(t)

n0

∫ φw/2

−φw/2
ei(m−m

′)φ dφ (20)

= ωm′δmm′ − ΩR

√
mm′

φw
2π

n1(t)

n0

sinc((m−m′)φw/2) (21)

Thus, κmm′ is nonzero for all m,m′ for a point modulation.

Eqs. (10) and (21) show that the coupling coefficient depends predominantly on m′ −m

since the prefactor
√
mm′ varies slowly for large m,m′ and small m′ − m. This justifies

the assumption in the main text that Jm,m′ depends on m′ − m, establishing a discrete
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modal translational symmetry along the frequency axis. In our experimental setup, m ≈

n0L/λ = 1.6× 107 and |m′ −m| ≤ 20, so the modal translational symmetry is a very good

approximation.

Using φw/2π = 2w/L, the coupled amplitude equations then take the form,

d

dt
am(t) = iωmam(t)− i

∑
m′

ΩR

√
mm′

2w

L

n1(t)

n0

sinc

(
(m−m′)w

2πL

)
am′(t) (22)

≈ iωmam(t) + i
∑
m′

Jm′−m(t) am′(t) (23)

which is the same as Eq. (1) in the main text.

For the specific case of a phase modulator based on a second-order nonlinear material

with an electro-optic coefficient r and a thickness d, the applied voltage VM(t) is related to

the index change n1(t) in the modulated section of the ring by the expression [1, 2]:

n1(t) =
n3
0r

2d
VM(t) (24)

The half-wave voltage – the voltage needed to cause a phase change of π in the modulator

at a wavelength λ – is [1],

Vπ =
λd

2wrn3
0

(25)

Plugging this expression for Vπ in Supplementary Eq. (24), we get a more experimentally

accessible relationship between n1(t) and VM(t):

n1(t) =
λ

4w

VM(t)

Vπ
(26)

Hence, for modes around a central mode number m0, ΩR

√
mm′ ≈ ωm0 , and the coupling

coefficients are related by,

Jm′−m0(t) = −ωm0

2w

L

n2
0r

2d
sinc

(
(m0 −m′)w

2πL

)
VM(t) (27)

= −ωm0
λm0

2n0L
sinc

(
(m0 −m′)w

2πL

)
VM(t)

Vπ
(28)

≈ − πc

n0L
sinc

(
(m0 −m′)w

2πL

)
VM(t)

Vπ
(29)

= −ΩR

2
sinc

(
(m0 −m′)w

2πL

)
VM(t)

Vπ
(30)

Note that this relationship and Supplementary Eq. (23) are quite general – it does not make

any assumption about the periodicity of VM(t). The weak optical frequency dependence of
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this coupling is now completely contained in the half-wave voltage Vπ. From Supplementary

Eq. (28), we can see that the coupling coefficient can approach or even exceed the FSR if

the amplitude of VM exceeds 2Vπ.

SUPPLEMENTARY METHODS

Details of the experimental setup

The input laser was a grade 3 Orion laser from Redfern integrated optics [3] with a

linewidth of 2.8 kHz and a center wavelength of 1542.057 nm. We apply a 0.6 Vpp triangular

ramp signal to the frequency modulation input of the laser to scan the optical frequency over

∼50 MHz. The polarization of the light circulating in the fiber ring resonator is adjusted

to excite only one principal polarization mode of the ring and match it to the principal axis

of the electro-optic modulator (EOM). The EOM was a lithium niobate phase modulator

with a 4.7 GHz bandwidth and a 3.4 dB insertion loss. To realize a high-Q cavity, the loss

from this and other components was partially compensated by the semiconductor optical

amplifier (SOA) which could provide a maximum gain of more than 12 dB when driven by a

laser diode controller. In our experiment, a lower gain was used to prevent lasing. A dense

wavelength-division multiplexing (DWDM) filter with a center wavelength of 1542.14 nm

(Channel 44) and a 26.5 GHz passband was used after the cavity for two reasons. First,

it prevented spurious lasing near the peak gain wavelength of the SOA, or at wavelengths

where the roundtrip loss of the cavity is lower than at the input laser wavelength. Second, it

helped to filter out amplified spontaneous emission noise outside the passband of the filter.

The 100 GHz passband is much wider than the 15.04 MHz FSR, allowing a large number

of modes of the ring cavity to experience flat transmission through the filter. The 2×2

fiber couplers for the through and drop ports had a nominal 99:1 splitting ratio. Both the

ramp signal for the frequency sweep of the laser and the modulation signal for the EOM

were generated by the two outputs of a 125 Msamples/s Red Pitaya STEMlab with 14-

bit resolution and 50 MHz analog bandwidth [4–6], controlled by the open-source software

package PyRPL (Python Red Pitaya Lockbox) [7].

The RF signal input to the EOM was amplified using a Mini-Circuits ZHL-3A+ coaxial

amplifier, which could provide a gain of 24 dB between 0.4–150 MHz. The amplification

enabled us to access strong hopping coefficients exceeding the FSR, as can be seen in the
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bottom panel of Fig. 3. Note that the amplitudes of the modulation signal in Fig. 3 (0–0.233

Vpp) are the values before the RF amplifier. We also optically and electrically amplified the

output of the drop-port photodiode before sending it to an oscilloscope to achieve a high

signal-to-noise for the band structure measurement.

The SOA in the cavity increases the background photon flux that is not associated with

the band structure. In our case the background photon flux does not significantly hinder

the band structure measurement, since we control the SOA gain to operate the cavity suf-

ficiently below the lasing threshold such that the peaks in the time-resolved transmission

measurement can be located correctly. Some of the background noise seen outside the bands

in Figs. 3 and 4 is attributable to the SOA. While the SOA helps to compensate the EOM’s

insertion loss and achieve a high Q ¿ 600 million, the maximum achievable drop-port trans-

mission efficiency was observed to be still limited to 5% due to intracavity losses. Attempts

to increase the efficiency by increasing the SOA gain initiates lasing.

The issues discussed above are specific to our fiber-based implementation due to the

substantial insertion loss of the EOM. The implementation of synthetic frequency dimension

in cavity systems with low-insertion loss modulators, such as integrated lithium niobate rings,

may not need an intracavity optical amplifier and hence may not suffer from the issues of

background photon flux.

SUPPLEMENTARY DISCUSSION

Extension to higher dimensional lattices

There are several avenues one could pursue to extend the 1D frequency dimension lattice

we have presented to a higher dimensional lattice, as mentioned in the Discussion section.

Since theoretical proposals exist for all these schemes, we focus on an extended discussion

of the experimental challenges here and ways to overcome them.

First, one could extend the lattice along a real spatial dimension, as in Refs 8 and 9,

by evanescently coupling multiple rings. The main challenge here would be to match the

resonance frequencies of all the rings in the lattice, which can be mitigated by actively

locking the lengths of each ring using a feedback stabilization scheme.

Second, one could combine other internal degrees of freedom, such as the orbital angular

momentum (OAM) of light [10–12], and form a lattice with one frequency dimension and one
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OAM dimension [13]. Preliminary experiments along this direction by Cheng et al. [14], have

demonstrated a resonator with 46 nearly degenerate Laguerre-Gauss modes. Further work

is needed to couple these modes along the OAM dimension and the frequency dimension

by incorporating spatial-light modulators and electro-optic phase modulators, respectively,

within the resonator.

Third, one could use the Floquet dimension generated by time-periodic modulation, inde-

pendent of the FSR-separated modes, as in Refs. 15 and 16. This synthetic lattice, however,

is concomitant with a synthetic electric field along the Floquet dimension, so one would have

to include its effects in the theoretical description and in experimental measurements.

Finally, one could use the strategies outlined in Refs. 17 and 18 to add modulations at n

times the FSR (n � 1), to form an effective 2D or higher dimensional lattice, still within

a single resonator. Experimentally, this is the most straightforward of the three schemes,

but it is somewhat restrictive in terms of the lattice geometries that can be achieved. For

example, it would involve spurious long-range coupling between the 1D strips of a 2D square

lattice, and it is difficult to achieve arbitrary gauge potentials in such a system. Some of

these constraints can be mitigated by coupling two or three rings with different resonance

frequencies [17].

The number of lattice sites that can be coupled along the synthetic frequency dimension is

ultimately limited by group velocity dispersion (GVD). For the fiber-based setup considered

here, the GVD is 23 ps2 km−1 at telecom wavelengths. We can estimate the change in FSR

per mode based on the expression [19, 20]:

∆FSR = −2π

L2

β2
β3
1

= 2πL · (FSR)3 · β2 (31)

where β2 = d2β/dω2 is the GVD and β1 = ng/c = is the first-order dispersion. The long

resonator length of 13.5 m amounts to a very small FSR drift of ∆FSR = 7 mHz per mode.

Thus, we estimate ∼ 106 modes to be uniformly spaced within a fraction of the 300-kHz

linewidth of the cavity, before third-order dispersion starts to play a role. Practically, the

bandwidth of the fiber components in the cavity, especially the bandpass filter and the SOA,

will limit the number modes to ∼ 2000.
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