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SUPPLEMENTARY NOTE 1: WAFER GROWTH AND CHARACTERIZATION
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Supplementary Figure 1. InSb quantum well. (a), Layer stack of the InSb/GaAs heterostructure,

where the layer constituents and thicknesses are indicated. (b), Scanning transmission electron

micrograph of the structure of Supplementary Fig. 1a obtained in High Angle Annular Dark Field

Mode along the [110] zone axis.

The wafer is characterized by measuring the (quantum) Hall effect in a Hall bar geometry

at T = 300 mK. From a linear fit to the transversal resistance in a magnetic field range up

to 1 T, we extract an electron density n = 2.71 · 1011 cm−2, and by using the longitudinal

resistivity at zero field, we obtain a mobility µ = 146, 400 cm2V−1s−1 (see Supplementary

Table I). We calculate the corresponding mean free path to be le = 1.26 µm. In Supple-

mentary Table 1, we also include n, µ and le for the low mobility wafer, obtained from a

quantum Hall measurement on this wafer. Data from the low mobility wafer is shown in

Fig. 1d of the main text.
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High mobility wafer Low mobility wafer

n (cm−2) 2.71 · 1011 2.71 · 1011

µ (cm2/Vs) 146,400 61,500

le (µm) 1.26 0.53

Supplementary Table I. Electron density, mobility and mean free path for the high and low mobility

wafer, obtained from quantum Hall measurements at T = 300 mK.

SUPPLEMENTARY NOTE 2: MULTIPLE ANDREEV REFLECTIONS AND EX-

CESS CURRENT

To further characterize the superconductivity in our JJs, we study multiple Andreev

reflections (MAR) in a representative JJ, by measuring its differential resistance, dV/dI,

as a function of applied bias voltage, V . In Supplementary Fig. 2a, we observe three dips

in dV/dI, the first, at 2∆, corresponding to the coherence peaks of the superconducting

density of states, and two MAR peaks at 2∆/2 and 2∆/3. From these peaks we extract

an induced superconducting gap ∆ = 0.9 meV. In addition, we estimate the transparancy
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Supplementary Figure 2. Josephson junction characterization. (a), Differential resistance,

dV/dI, as a function of bias voltage, V , showing multiple Andreev reflections. Three dips at

V = 2∆, 2∆/2 and 2∆/3 are highlighted. (b), Voltage measured as a function of bias current.

The excess current, Iexc, and V = 2∆ are indicated.

3



of the same JJ by measuring its excess current, Iexc, and normal state resistance, Rn. This

measurement is shown in Supplementary Fig. 2b, where we perform a linear fit in the high

bias region of the I − V curve (V > 2∆) and obtain Iexc = 9 µA and Rn = 50 Ω. Using the

OBTK model [1], we find a value of 0.62 for the transparency of the JJ.

These transparencies are moderate compared to, for example, hybrid devices made with

epitaxial interfaces between Aluminum and InAs 2DEGs [2]. In fact, recent work has shown

that high quality interfaces can even be made between Aluminum and InSb wires [3–5]. We

expect that similar materials developments with InSb 2DEGs would enable strong proximity

coupling, an important requirement for exploring topological superconductivity in these

systems.

SUPPLEMENTARY NOTE 3: WEAK ANTI-LOCALIZATION AND SPIN-ORBIT

INTERACTION ENERGY
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Supplementary Figure 3. Weak anti-localization analysis. Measured longitudinal conductivity

difference, ∆σ, as a function of magnetic field, B, displaying a weak anti-localization peak around

zero field. We fit (red) the data (cyan) using the ILP model and extract the SOI energy at the

Fermi energy, ∆SO, from which we calculate the Rashba spin-orbit parameter α. The inset shows a

schematic of the Hall bar device, indicating its length and width, and the magnetic field direction.

To obtain an estimate of the typical energy scale associated with the spin-orbit interac-

tion, we performed weak anti-localization (WAL) measurements. We use a Hall bar device
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(inset Supplementary Fig. 3) fabricated on the high mobility wafer (Supplementary Fig. 1),

and apply magnetic field perpendicular to the Hall bar. The measurement in Supplementary

Fig. 3 reveals the typical WAL peak around zero field. This peak is caused by suppression

of coherent backscattering at small magnetic fields due to the spin-orbit interaction. As

we expect the Dyakonov Perel scattering mechanism to be dominating in our high mobility

wafer, we use the theory developed by Iordanskii, Lyanda-Geller and Pikus [6] to fit the

data:
∆σ(B)

e2/2πh
= − 1

a
− 2a0 + 1 +Hs

a1(a0 +Hs − 2Hs)
− 2 lnHtr −Ψ (1/2 +Hφ)− 3C

+
∞∑
n=1

[
3

n
− 3a2n + 2anHs − 1− 2(2n+ 1)Hs

(an +Hs)an-1an+1 − 2Hs[(2n+ 1)an − 1]

]
,

where Ψ is the Digamma function, C the Euler constant, and

an = n+
1

2
+Hφ +Hs Htr,φ,s =

h̄

4eDBτtr,φ,s
∆SO =

√
2h̄2

τtrτs
,

withD = vFle/2, and τtr,φ,s the scattering times for elastic, inelastic and spin-orbit scattering,

respectively. We find a spin-orbit energy splitting at the Fermi level (∆SO) of 0.93 meV.

The Rashba spin-orbit parameter of α = 36 meVÅ is calculated following α = ∆SO/kF,

where kF is deduced from a classical Hall measurement. Finally, we compare ∆SO to the

Zeeman energy. For a Landé g-factor of 25, ∆SO > EZ up to 640 mT. We are therefore in

the spin-orbit dominated regime for the 0−π transition.

SUPPLEMENTARY NOTE 4: MAGNETIC FIELD ALIGNMENT

To ensure we are sweeping the magnetic field in the plane of the JJs only, we characterize

the misalignment of our vector magnet axes, B′y and B′z, used to apply the magnetic field

in-plane and out-of-plane of the JJ, By and Bz. In Supplementary Fig. 4a we present a

systematic measurement of the Fraunhofer interference pattern induced by B′z with increas-

ing B′y. We track the magnetic field at which the central lobe reaches its maximum Is,

B′z,max and plot this for all B′y in Supplementary Fig. 4b. The linear dependence observed,

represents a small misalignment angle of θ = 1.4◦. We take this angle into account when

sweeping the in-plane field, By = cos(θ)B′y + sin(θ)B′z, and disregard it for the out-of-plane

direction, Bz = B′z.
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Supplementary Figure 4. Field alignment. (a), Differential resistance, dV/dI maps as a function

of current bias, I, and out-of-plane magnetic field, B′z, with increasing in-plane magnetic field, B′y,

in steps of 20 mT. We track the central lobe of the interference pattern, labeled by white dash lines,

to obtain Bz,max. (b), The B′z,max vs. B′y dependence showing the small perpendicular component

of B′y.

At larger magnetic fields the patterns become asymmetric. This asymmetry has two

possible origins which we expect to coexist in our samples. The first is the effect of magnetic

vortices which nucleate in our type II superconductor (NbTiN) at moderate magnetic fields.

The second has to do with terms in the Hamiltonian that break mirror symmetry of the

potential in the JJ (e.g., small amounts of disorder at the interface) [7]. To ensure that

these asymmetries do not influence our extraction of Is or the magnetic field at which it

revives, we performed two separate cooldowns (Fig. 2a in the main text) and confirmed that

the results are in agreement. The large offset observed at zero in-plane magnetic field is a

trivial offset from the magnet power supply which we have corrected for in Fig. 1c of the

main text.
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SUPPLEMENTARY NOTE 5: IN-PLANE INTERFERENCE CONSIDERATIONS

Supplementary Figure 5. Schematic of quantum well. Cross-sectional illustration of the InSb

quantum well for a JJ with L = 1.1 µm and d = 30 nm. The image is drawn to scale and the

in-plane magnetic field direction, By is indicated.

We observe a switching current, Is modulation in a JJ with L = 1.1 µm, with minima at

470 mT and 1250 mT, which are attributed to Zeeman induced 0−π transitions. One might

be inclined to believe that this modulation is caused by an in-plane Fraunhofer interference

effect, due to the finite thickness (d = 30 nm) of the InSb quantum well. The Is minima

of such a Fraunhofer pattern are expected to occur at Bnode = NΦ0/A, where Φ0 is the

magnetic flux quantum, A = d · L is the cross-sectional 2DEG area and N = 1, 2, 3, .... The

second minimum should thus occur at twice the value of the first, which is not the case

here. Moreover, based on the estimated cross-sectional area of the JJ (see Supplementary

Fig. 5), one would expect the first node to be at 60 mT, inconsistent with the observation.
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Supplementary Figure 6. In-plane magnetoresistance. (a), Normal state resistance (Rn) of JJ

(L = 1.1 µm) as a function of By at two different gate voltages. (b), Calculated MR (in %).
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In fact, it has been shown [8, 9] that a oscillatory interference pattern is not expected at all

in such an SNS junction with L� d. Finally, for an in-plane interference effect one expects

the B value at which the Is minima occur to increase for more negative gate voltages,

since the wavefunction is then squeezed and d effectively reduced. However, we observe the

opposite behavior (i.e., the minima move to lower B), as expected for Zeeman-induced 0−π

transitions. To conclude, we rule out an in-plane interference effect as a possible explanation

for the supercurrent modulation.

We also performed measurements of the normal state resistance (Rn) as a function of

in-plane magnetic field By to rule out possible magnetoresistance (MR) effects as a cause

for the observed modulation in supercurrent (see Supplementary Fig. 6). To eliminate any

remnant effects of superconductivity, the measurements are performed at high temperature

(4 K) and high DC current bias (90 µA). We see a small MR (a few %) only at the highest

density (Vg = 0 V), however there is no correlation with the supercurrent modulation (see

Fig. 2 in main text), which changes by almost two orders of magnitude in the same magnetic

field range.

SUPPLEMENTARY NOTE 6: ADDITIONAL GATE-DRIVEN 0−π TRANSITIONS

AND ERROR ANALYSIS

Here, we present additional data of the gate-driven 0−π transitions in the JJ with

L = 1.1 µm. The gate voltages of the 0−π transitions presented in the phase diagram

are extracted from the plots in Supplementary Fig. 7. To systematically extract the value

where gate-driven 0−π transition occurs and its error, we use a fit of the linetraces from

Supplementary Fig. 7, at zero I. At the transition point, a peak in dV/dI indicates the 0−π

transition. As an example, we show a single linetrace at 310 mT in Supplementary Fig. 8a,

and extract the standard deviation, σ, based on a Gaussian fit of the peak. Subsequently, we

used the gate to density mapping to convert σ to the error bar shown in the phase diagram.

This fitting procedure is used for all magnetic fields (Supplementary Fig. 8b).
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Supplementary Figure 7. Additional gate-driven 0−π transitions. Differential resistance,

dV/dI, as a function of current bias, I, and gate voltage, Vg, for the in-plane magnetic field values,

By, indicated.
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Supplementary Figure 8. Transition point extraction and error analysis. (a-b), Linetraces

of the differential resistance, dV/dI, in the JJ with L = 1.1 µm as a function of gate voltage, Vg, for

magnetic fields, By of 310 mT for (a), and as indicated for (b), respectively. The peaks observed

are fitted with a Gaussian curve, to obtain the standard deviation, σ. In (b) the traces are shifted

for clarity.
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SUPPLEMENTARY NOTE 7: EFFECTIVE MASS MEASUREMENT
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Supplementary Figure 9. Temperature dependence of Shubnikov-de Haas oscillations

and fitting for effective mass. (a), Shubnikov-de Haas oscillation amplitude after polynomial

background subtraction as a function of filling factor for temperatures T = 1.73 − 10 K. The

symbols denote points that are used to extract the effective mass. (b), Temperature dependence

of the oscillation amplitude (symbols). The solid lines are fits to the data (using Eq. 1) in order

to obtain the effective mass.

To extract the effective mass of the electrons in the InSb 2DEG, the temperature de-

pendence of the Shubnikov-de Haas (SdH) oscillation amplitude is measured in a Hall bar

geometry. Supplementary Figure 9a shows the magnetoresistance oscillations after the sub-

traction of a polynomial background, ∆ρxx, as a function of filling factor, ν, for temperatures

ranging from T = 1.73 K to T = 10 K. At a fixed filling factor, the effective mass, m∗,

can be obtained from a fit to the damping of the SdH oscillation amplitude with increasing

temperature, using the expression

∆ρxx(T )

ρxx,0(T )
∝ αT

sinh(αT )
, (1)

where ρxx,0(T ) is the temperature-dependent low-field resistivity and α = πkBm
∗ν/(h̄2n).

Supplementary Figure 9b shows such fits to the oscillation minima and maxima of ν = 10

and ν = 12, resulting in a mean effective mass of m∗ = (0.022± 0.002) ·me, with me being

the free electron mass.
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