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Supplementary Note 1 | Magneto-conductance for different disorder strengths 

The Methods section in the main text contains details of conductance calculation. Here, 

we add conductance maps for different disorder strengths. 

 
Supplementary Figure 1 | Conductance maps at disorder strengths of (a) 𝑊𝑊 = 1.5 ∆, (b) 
𝑊𝑊 = 3.0 ∆. 
 

Without disorder, the band gap is at 𝜇𝜇 = 6.0 ∆, where ∆ is the level spacing between 

neighboring transverse modes at 𝑘𝑘 = 0. The Supplementary Figure 1 is conductance maps at 

disorder strengths of 𝑊𝑊 = 1.5 ∆ and 3.0 ∆. The horizontal axis is magnetic flux from zero 

to two quanta. The AB modulation of conductance is clearly seen along the energy (vertical 

axis), as well as along the magnetic flux. As opposed to a step-like jump of conductance in a 

clean nanowire, in disordered cases we can see dips develop between conductance plateaus. 

This indicates that, in the presence of onsite random chemical potential, and near the energy 

following the diamond-shaped lines, the number of transverse modes engaged in transport 

fluctuates, thereby causing backscattering. The width of such dips widens for 𝑊𝑊 = 3.0 ∆. 
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Supplementary Figure 2 | Conductance maps at disorder strengths of (a) 𝑊𝑊 = 4.5 ∆ and 
(b) 𝑊𝑊 = 6.0 ∆. 
 

Next, the Supplementary Figure 2 is conductance maps for disorder strengths of 𝑊𝑊 =

4.5 ∆  and 6.0 ∆ . Quite remarkably, a feature of weak anti-localization or so-called 

Altschuler–Aronov–Spivak (AAS) oscillation1 begins to develop as the crossover from a 

quasi-1D wire to diffusive 2D transport takes place, when the energy broadening by disorder 

is larger than the energy spacing between neighboring transverse modes. The period of AAS 

oscillation along the magnetic flux is Φ = 𝜋𝜋 , and it is energy independent. The 

Supplementary Figure 2b shows clear ‘pillars’ of conductance along the energy. 

For Gaussian-correlated impurities in continuum space, 〈𝑉𝑉(𝑟𝑟′)𝑉𝑉(𝑟𝑟)〉 =

𝐾𝐾0
(ℏ𝑣𝑣F)2

2𝜋𝜋𝜉𝜉2
𝑒𝑒−|𝑟𝑟−𝑟𝑟′|2/2𝜉𝜉2, the elastic linewidth broadening 𝜂𝜂 is given by2: 

ℏ
𝜏𝜏 = �

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
4𝜋𝜋

�1 − 𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃𝑞𝑞�𝛿𝛿(𝑘𝑘F − 𝑞𝑞)〈𝑉𝑉(0)𝑉𝑉(𝑟𝑟)〉𝑒𝑒𝑖𝑖𝑖𝑖∙𝑟𝑟  , 

=
ℏ𝑣𝑣F
𝜉𝜉

2𝐾𝐾0𝐼𝐼1[(𝑘𝑘F𝜉𝜉)2]
𝑘𝑘F𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉[(𝑘𝑘F𝜉𝜉)2] , 

where 𝑘𝑘F  is a wavenumber at Femi energy, ℏ is the reduced Planck's constant, 𝐾𝐾0 =

1
3
𝛾𝛾02/(ℏ𝑣𝑣F𝑑𝑑)2 is dimensionless disorder strength, d is mean distance between impurities, 

and 𝐼𝐼1 is a modified Bessel function. We want to compute this quantity for our lattice model. 

We set onsite random chemical potential on every lattice with uniform distribution 𝑉𝑉𝑛𝑛 ∈
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[−𝑊𝑊,𝑊𝑊], 𝐻𝐻dis = ∑ 𝜓𝜓𝑛𝑛
†(𝑉𝑉𝑛𝑛𝛤𝛤0)𝜓𝜓𝑛𝑛𝑛𝑛∈𝑆𝑆  instead of impurities with Gaussian profiles spread in 

space. In this case, with the lattice spacing 𝑎𝑎, 𝑑𝑑 = 𝑎𝑎, 𝑊𝑊 = 𝛾𝛾0𝑎𝑎2, 𝜉𝜉 = 𝑎𝑎 (spatial resolution), 

Δ = ℏ𝑣𝑣F
𝑅𝑅

 (transverse mode energy-level spacing), and 𝑘𝑘F𝜉𝜉 = 𝐸𝐸
Δ
𝑎𝑎
𝑅𝑅
. Collecting all, 

ℏ
𝜏𝜏 �

1
Δ� =

2
3 �
𝑊𝑊
Δ �

2

�
Δ
𝐸𝐸�

𝐼𝐼1[(𝑘𝑘F𝜉𝜉)2]
𝑒𝑒𝑒𝑒𝑒𝑒[(𝑘𝑘F𝜉𝜉)2] . 

For example, when ℏ
𝜏𝜏

= 0.2 Δ, the scattering time is 𝜏𝜏 = 0.7 ps. Note that the scattering 

time goes to infinity at the Dirac point as 𝐼𝐼1(𝑥𝑥)~𝑥𝑥 for 𝑥𝑥 ≪ 1. Linewidth broadening 𝜂𝜂 for 

four disorder strengths is plotted Supplementary Figure 3. 

 
Supplementary Figure 3 | Linewidth broadening η for four disorder strengths of 𝑊𝑊 =
1.5 ∆, 3.0 ∆, 4.5 ∆, and 6.0 ∆. 
 

For 𝑊𝑊 = 6.0 ∆, as the energy broadening becomes comparable to the energy level 

spacing of neighboring transverse modes, the crossover from quasi-1D to diffusive 2D 

transport can be observed, with our conductance map (Supplementary Figure 2b) clearly 

showing AAS oscillation as well as AB oscillation with increasing Fermi energy. Lastly, we 

comment that the energy broadening factor (𝜂𝜂 = 0.20 ∆) used in our DOS calculation 

corresponds to an impurity strength between 𝑊𝑊 = 3.0 ∆ and 𝑊𝑊 = 4.5 ∆. Even though the 
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resonant frequency shift map and the conductance map (Supplementary Figure 12) are 

obtained in different energy windows, the energy broadening used for the former is consistent 

with the disorder strength used for the latter.  
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Supplementary Note 2 | Modeling and calculation of geometric capacitance 

Multiple experimental observations provided guidance for our numerical modeling: (i) an 

approximated chemical potential ( ~24 ∆ ) estimated from the measurement of total 

conductance, Fig. 2c; (ii) the periodicity (~5.7 V/∆) of Aharonov–Bohm (AB) oscillation 

along the energy, Fig. 2b; (iii) the value of 𝐶̈𝐶G at 𝑉𝑉g = 0 obtained from the quadratic 

functional shape of the resonant frequency shift, Fig. 1c; and (iv) the out-of-phase relation 

between magneto-conductance and resonant frequency shift, Supplementary Figure 12a–b in 

Supplementary Note 7, which indicates ΔfI < ΔfII. In this section, we devise a geometric 

capacitance model that satisfies the above conditions. 

Supplementary Figure 4 plots the relation between gate voltage and chemical potential 

( 𝜇𝜇0 = 29 Δ  is chosen) according to Kirchhoff’s circuit law based on a geometric 

capacitance of 𝐶𝐶G = 1.5×10-17 F. The oscillation of d𝑉𝑉g/𝑑𝑑𝑑𝑑 (inset) reflects the modulation 

of the DOS, which is computed with energy broadening 𝜂𝜂 = 0.2 Δ (see Supplementary 

Note 4 for details). Near 𝑉𝑉g = −30 (V), we can see that chemical potential is 𝜇𝜇 ~ 24 ∆ 

and d𝑉𝑉g/𝑑𝑑𝑑𝑑 ~ 5.5 (V/∆), consistent with experimental values. 

 
Supplementary Figure 4 | Calculated relation of gate voltage 𝑉𝑉g and chemical potential 𝜇𝜇 
based on geometric capacitance 𝐶𝐶G = 1.5×10-17 F. Inset: 𝑑𝑑𝑉𝑉g 𝑑𝑑𝑑𝑑⁄  value of about 5.7 V/∆ at 
a 𝜇𝜇 range of 23 ∆ to 25 ∆. This chemical potential (𝜇𝜇) range corresponds to a 𝑉𝑉g range of 
–32 V to –15 V. 
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Our device setup contains two metals separate in space, namely the Bi2Se3 nanowire and 

the gate plate, so geometric capacitance is the ratio of induced charge and voltage difference 

between them. We adopt the following two-parallel-plate model: 

𝐶𝐶G(𝑥𝑥) =
𝜀𝜀0𝐴𝐴

𝑑𝑑 + 𝛼𝛼𝛼𝛼 , 

where A is effective area, d is distance, x is displacement during the vibration, and 𝛼𝛼 (= 

0.523) is a geometrical correction as neither end of the nanowire moves3. From this, 

derivatives are necessary to compute the resonant frequency shift (see Supplementary Note 4 

for details): 

𝐶̇𝐶G = −𝛼𝛼
𝜀𝜀0𝐴𝐴

(𝑑𝑑 + 𝛼𝛼𝛼𝛼)2  , 𝐶̈𝐶G = 2𝛼𝛼2
𝜀𝜀0𝐴𝐴

(𝑑𝑑 + 𝛼𝛼𝛼𝛼)3 . 

As seen in Fig. 1c, the shift of resonant frequency is nearly symmetric with 𝑉𝑉g. This overall 

shape is deduced from the classical circuit model where the change of chemical potential is 

ignored (𝜇𝜇 = 𝜇𝜇0):  

δ𝑈𝑈ec =  δ �
1
2𝐶𝐶G𝑉𝑉g

2� −  𝑉𝑉g𝛿𝛿𝛿𝛿 = −δ �
1
2𝐶𝐶G𝑉𝑉g

2� . 

Here, the first term is the charging energy of the capacitor, and the second term is work done 

to the battery for a fixed gate voltage, 𝛿𝛿𝛿𝛿 = 𝑉𝑉g𝛿𝛿𝛿𝛿G. Thus, the change in spring constant is 

∆𝑘𝑘 = 𝑈̈𝑈ec = − 1
2
𝐶̈𝐶G𝑉𝑉g2, and a parabolic shape with respect to 𝑉𝑉g naturally appears. From our 

measurement of resonant frequency shift: 

∆𝑓𝑓 =
𝑓𝑓0

2𝑘𝑘0
∆𝑘𝑘 = −

𝑓𝑓0
4𝑘𝑘0

𝐶̈𝐶G𝑉𝑉g2 , 

where 𝑘𝑘0 = (2𝜋𝜋𝑓𝑓0)2𝑚𝑚eff  and 𝑚𝑚eff = � 0.397
0.5232

�𝑚𝑚 , where m = 1.246×10-16 kg and the 

numerical coefficient is again due to the way the nanowire vibrates in its fundamental 

flexural mode3. 𝐶̈𝐶G = 9.91×10-4 F/m2 is estimated from Fig. 1c. Following the two-parallel-

plate model, we use d = 174 nm. Since vibration amplitude is much smaller than distance as 
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estimated in the next paragraph, 𝑥𝑥 ≪ 𝑑𝑑, we set x = 0. As a result, 𝐶̇𝐶G = −1.65×10-10 F/m. 

On the other hand, we found 𝐶𝐶G = 1.5×10-17 F is needed to explain 5.7 V/∆, while the value 

obtained from integration is 𝐶𝐶′G = 𝐶̈𝐶G
𝑑𝑑2

2𝛼𝛼2
= 5.48×10-17 F. Such difference in geometric 

capacitance may come from an additional capacitance, 𝐶𝐶0, which is uninvolved in the 

mechanical vibration but connected in series to the TI nanowire. Together, 𝐶𝐶G = 𝐶𝐶′G𝐶𝐶0/

(𝐶𝐶′G + 𝐶𝐶0) yields the desired geometric capacitance with 𝐶𝐶0 = 2.07×10-17 F. 

A driven mechanical oscillator with natural frequency may have a large oscillating 

amplitude: 

𝑥𝑥RF =
𝐹𝐹RF/𝑚𝑚eff

�(𝜔𝜔0
2 − 𝜔𝜔2)2 + 𝜔𝜔2𝛽𝛽2

 , 

where force induced by the voltage source with radio frequency is 𝐹𝐹RF ≅ 𝐶̇𝐶G𝑉𝑉g𝑉𝑉RF and the 

Q-factor is defined by 𝑄𝑄f = �𝜔𝜔0
2 − (𝛽𝛽2/2)/𝛽𝛽 ≅ 𝜔𝜔0/𝛽𝛽 for a system with a high quality 

factor (damping rate 𝛽𝛽 is much smaller than 𝜔𝜔0). From Fig. 1c, our device has 𝑄𝑄f ≅

11900. We apply 𝑉𝑉RF = 0.4 mV, which is much smaller than the gate voltage (𝑉𝑉g~ −

30 V) to maintain the small mechanical vibration amplitude 𝑥𝑥RF ≈ 265 pm, which is to 

minimize chemical potential change arising during vibration.  

With the application of gate voltage, the distance between the nanowire and gate would 

change by the force associated with the electrostatic energy by 

𝐹𝐹 = −𝑈̇𝑈ec − 𝑘𝑘0∆𝑥𝑥0 =
1
2 𝐶̇𝐶G𝑉𝑉g

2 − 𝑘𝑘0∆𝑥𝑥0 , 

which is zero at equilibrium position. We get ∆𝑥𝑥0 = 0.89 nm. This displacement is much 

smaller than the nanowire length (1.5 µm) and the distance between the nanowire and gate 

electrode (d ~ 100 nm). Thus, we assume that the magnetic flux direction is parallel to the 

current direction along the nanowire, and in the calculation of the resonant frequency shift, 

we neglect the change of equilibrium position.   
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Supplementary Note 3 | Density-of-states calculation from the continuum model 
Numerical calculation of the DOS of a quasi-1D wire is explained in the Methods section 

of the main text. Here, we add a few more DOS maps to provide more insight. 

 
Supplementary Figure 5 | DOS (the number of states per unit length per unit energy eV) of 
a quasi-1D wire for η = 0.05 ∆ when (a) wire length is much longer than circumference, 
𝐿𝐿/(2𝜋𝜋𝜋𝜋) ≫ 1 and (b) wire length is three times the circumference, 𝐿𝐿/(2𝜋𝜋𝜋𝜋) ≅ 3. 
 

For the energy broadening 𝜂𝜂 = 0.05 Δ used in Fig. 1f, DOS maps are generated in the 

domain of magnetic flux and chemical potential. When wire length is much longer than 

circumference, 𝐿𝐿/(2𝜋𝜋𝜋𝜋) ≫ 1 (Supplementary Figure 5a), the DOS shows peaks whenever a 

new transverse mode is encountered, as the band bottom of a quasi-1D mode has a diverging 

DOS (~1/𝑣𝑣F). The Supplementary Figure 5b reflects the DOS of the actual dimension ratio, 

𝐿𝐿/(2𝜋𝜋𝜋𝜋) ≅ 3. On top of the diamond-shaped lines, there are additional modulations of the 

DOS due to the discretization of eigenmodes along the direction of current propagation, 

Δ′ ≅ ℏ𝑣𝑣F/𝐿𝐿 = Δ/3. While conductance is dependent on the number of transverse modes, 

mechanical resonance shift is influenced by all details of the DOS. While this may 

complicate characterization of the nanowire, it also provides more information on 

microscopic details. 
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Supplementary Figure 6 | DOS (the number of states per unit length per unit energy eV) of 
of a quasi-1D wire for η = 0.20 ∆ when (a) wire length is much longer than circumference, 
𝐿𝐿/(2𝜋𝜋𝜋𝜋) ≫ 1 and (b) wire length is three times the circumference, 𝐿𝐿/(2𝜋𝜋𝜋𝜋) ≅ 3. 
 

We present DOS maps for 𝜂𝜂 = 0.20 Δ (Supplementary Figure 6) for the two geometries 

used for calculation in the main text. Here, modulation of the DOS is smoothed out, and 

detailed features of the eigenmodes for the 𝐿𝐿/(2𝜋𝜋𝜋𝜋) = 3 case are significantly reduced. The 

quantum capacitance is  

C𝑄𝑄 = 𝐿𝐿𝑒𝑒2𝜈𝜈(𝐸𝐸) ≅ (1.5 × 10−6) × (1.6 × 10−19)2 �
50
ℏ𝑣𝑣F

� = 3.6 × 10−14  F, 

where 𝜈𝜈(𝜇𝜇 ≅ 25∆) is approximated to the DOS of fifty 1D wire with Fermi velocity4 𝑣𝑣F = 

5×105 m/s. As claimed in the manuscript, in the energy window of our measurement the 

quantum capacitance is ~1000 times larger than the geometric capacitance. 
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Supplementary Note 4 | Calculation of mechanical resonant frequency shift 

To compute the shift in the mechanical resonant frequency of a TI nanowire, we need to 

know the change in total energy caused by the flexural mode: 

δ𝑈𝑈tot = δ �
1
2𝑚𝑚𝑥̇𝑥

2 +
1
2 𝑘𝑘0𝑥𝑥

2�+ δ𝑈𝑈ec , 

δ𝑈𝑈ec =  δ �
𝑄𝑄2

2𝐶𝐶G
� −  𝑉𝑉g𝛿𝛿𝛿𝛿 +  𝛿𝛿 �𝑄𝑄

𝜇𝜇 − 𝜇𝜇0
𝑒𝑒 � , 

where in the first line, total energy is the sum of mechanical energy and electrostatic energy 

δ𝑈𝑈ec, and in the second line, δ𝑈𝑈ec contains three circuit elements: charging energy of the 

geometrical capacitor, work done to the gate battery, and charging energy of the TI nanowire. 

Note that the last term cannot be replaced by δ�𝑄𝑄2/2𝐶𝐶Q� as quantum capacitance is a 

nonlinear function of induced charge. Since our measurements are made by varying gate 

voltage and magnetic field, hereafter we focus on the resonant frequency shift induced by 

changes in electrostatic energy. 

Our goal is to simply compute the second derivative of 𝑈𝑈ec with respect to x. Several 

quantities are dependent on x. First, as discussed in Supplementary Note 2, geometric 

capacitance is position-dependent. For a fixed gate voltage, induced charge 𝑄𝑄 is position-

dependent and so is the resulting change of chemical potential 𝜇𝜇. Two relations are helpful to 

simplify further calculation; one is Kirchhoff’s law as shown in the main text, and the other is 

its derivative for a fixed gate voltage: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 =

𝐶𝐶Q
𝐶𝐶G

𝑄𝑄
𝐶𝐶G + 𝐶𝐶Q

𝜕𝜕𝐶𝐶G
𝜕𝜕𝜕𝜕  , 

where change in chemical potential is expressed in terms of induced charge and quantum 

capacitance (the DOS) by: 

1
𝑒𝑒
𝜕𝜕𝜇𝜇
𝜕𝜕𝜕𝜕 =

1
𝐶𝐶𝑄𝑄

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕  , 
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where 𝐶𝐶Q = 𝑒𝑒2𝐿𝐿𝐿𝐿  and 𝜈𝜈 =  δ(𝑄𝑄/𝐿𝐿𝐿𝐿)/δ𝜇𝜇 . Electrostatic energy is first simplified by 

Kirchhoff’s law: 

𝑑𝑑𝑈𝑈ec
𝑑𝑑𝑑𝑑 = −

𝑄𝑄2

2𝐶𝐶G2
𝜕𝜕𝐶𝐶G
𝜕𝜕𝜕𝜕 +

𝑄𝑄
𝐶𝐶𝑄𝑄

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕  , 

= −
𝑄𝑄2

2𝐶𝐶G2
𝜕𝜕𝐶𝐶G
𝜕𝜕𝜕𝜕 +

1
𝐶𝐶G

𝑄𝑄2

𝐶𝐶G + 𝐶𝐶Q
𝜕𝜕𝐶𝐶G
𝜕𝜕𝜕𝜕  . 

By taking one more derivative, we obtain the desired result: 

𝑑𝑑2𝑈𝑈ec
𝑑𝑑𝑥𝑥2 =

1
𝐶𝐶G2

�
2𝐶𝐶Q − 𝐶𝐶G
�𝐶𝐶G + 𝐶𝐶Q�

2 𝐶𝐶Ġ
2 +

𝐶𝐶G − 𝐶𝐶Q
2�𝐶𝐶G + 𝐶𝐶Q�

𝐶𝐶G̈� 𝑄𝑄2 +
1
2�

𝐶̇𝐶G
𝐶𝐶G
�
2

𝑒𝑒
𝜕𝜕
𝜕𝜕𝜕𝜕

�
1

�𝐶𝐶G + 𝐶𝐶Q�
2�𝑄𝑄3 , 

= 𝑘𝑘I + 𝑘𝑘II , 

where the dots indicate the derivatives with respect to displacement x. So far, no 

approximation has been made except for the electrostatic condition of our circuit, assuming 

that mechanical vibration is much slower than the time required for electrical equilibration. 

The above expression is used for Fig. 3. Since our device has 𝐶𝐶G ≪ 𝐶𝐶Q and 𝐶𝐶Ġ
2 ≅ 𝐶𝐶G𝐶𝐶G̈, 

the expression is simplified to the one shown in the main text. In Supplementary Figure 7, 

two contributions of resonant frequency shift Δ𝑓𝑓I,II are plotted separately to show their 

qualitative difference in modulation and scaling over energy. 

 
Supplementary Figure 7 | Mechanical resonant frequency shifts (∆𝑓𝑓0) as a result of DOS 
oscillation via quantum capacitance effects. 
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Supplementary Note 5 | Characterization of the Bi2Se3 nanowire 

Bi2Se3 nanowire dimensions 

 
Supplementary Figure 8 | Transmission electron microscope characterization of Bi2Se3 
nanowire. a, High-resolution transmission electron microscope (TEM) image and (inset) 
selected area electron diffraction pattern of the single-crystalline Bi2Se3 nanowire. Scale bar, 
2 nm. b, Energy-dispersive X-ray spectroscopy elemental maps showing homogeneous 
atomic distribution of Bi (violet) and Se (green). Scale bar, 100 nm. c, TEM image of the 
Bi2Se3 nanowire indicating a 2.5-nm-thick native oxide layer is present on its surface. Cross-
sectional area S is calculated by 𝑆𝑆 = (width – 2×native oxide layer thickness) × (thickness – 
2×native oxide layer thickness). With a native oxide thickness of 2.5 nm, the nanowire in 
Device 1 has dimensions of width = 105 nm and thickness = 116 nm with 𝑆𝑆 = 1.11×104 nm2. 
The ∆𝐵𝐵 deduced from the cross-sectional area S of Device 1 is 0.37 T, which is given by 
∆𝐵𝐵 = Φ0/𝑆𝑆 (Φ0 = ℎ/𝑒𝑒 , ℎ is Planck’s constant, and 𝑒𝑒  is the elementary charge). The 
effective cross-section is Φ0/Δ𝐵𝐵 = 1.04×104 nm2, which is slightly smaller than the actual 
value possibly due to the finite penetration depth of boundary states. 
 

Gate response and Dirac point 

 
Supplementary Figure 9 | Conductance vs. gate voltage in Device 1. Inset: From 
comparison with another device of identical geometry (Device 2), the Dirac point is estimated 
to be at 𝑉𝑉g ≈ –113 V. 
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Supplementary Figure 10 | Dirac point of Bi2Se3 nanowire. a, Conductance measurement 
schematic showing the Bi2Se3 nanowire on a SiNx/Si substrate with back-gate voltage 𝑉𝑉g. b, 
Nanowire (NW) conductance 𝐺𝐺 response to 𝑉𝑉g. The four different nanowires exhibit Dirac 
points at 𝑉𝑉g = –57.6 V (NW 1), –58.1 V (NW 2), –57.0 V (NW 3), and –59.1 V (NW 4). 
 

In Supplementary Figure 9, the nanowire conductance of Device 1 decreases with 

decreasing gate voltage, showing n-type semiconductor behavior. Because Device 1 was 

destroyed during gating, its Dirac point (𝑉𝑉g = –113 V) was estimated from another similarly 

fabricated nanowire (Device 2). Even though two nanowires may have a different 

circumference and impurity concentration, their intrinsic chemical potential 𝜇𝜇0 would be 

close to each other as it is determined by average chemical composition. As such, the gate 

voltage required to bring the chemical potential all the way down to the Dirac point is similar 

for each nanowire, because the DOS per unit length and the induced charge are both linearly 

proportional to nanowire circumference. This argument is supported by additional 

measurements of four more nanowires that are in contact with the substrate instead of being 

suspended (Supplementary Figure 10a). The gate voltage at the Dirac point is different (𝑉𝑉g ~ 

–58 V) on account of the different geometry, but it is consistent among all four nanowires 

(Supplementary Figure 10b). It is interesting to note that the wires have different total 

conductance even though their intrinsic chemical potentials are supposedly the same. This 

might be due to differences in device-specific impurity concentration; while the amount of 
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induced charge (integration of the DOS) is less sensitive to impurities, the total conductance 

could be significantly reduced (see Supplementary Note 1 for conductance calculations for 

different disorder strengths). 

 

Supplementary Note 6 | Mechanical resonant frequency shift measurement 

 
Supplementary Figure 11 | Mechanical resonant frequency shift measurement. a, Amplitude 
response of mechanical resonance. Inset: Amplitude response after subtracting background 
response. The solid red line is a Lorentzian fit with resonance frequency 𝑓𝑓0 and quality 
factor 𝑄𝑄f. b, Phase response of mechanical resonance. Inset: Phase response after subtracting 
background response. c, Phase response change (e.g. from blue to green) when f0 is 
modulated by ∆𝑓𝑓0 (≪ 𝑓𝑓0 𝑄𝑄f⁄ ), and the phase at f0 shifts by ∆𝜑𝜑0. d, Extracted relation 
between ∆𝑓𝑓0 and ∆𝜑𝜑0. 
 

From our device, we obtain electric signal 𝑉𝑉OUT oscillating at the frequency of applied 

radio-frequency voltage 𝑉𝑉RF, but with a phase difference. The amplitude and phase of 𝑉𝑉OUT 
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is plotted in Supplementary Figure 11a–b, respectively. A typical mechanical resonant 

frequency 𝑓𝑓0  is approximately 115 MHz and quality factor 𝑄𝑄f  is ~1.2 × 104 . After 

subtracting the background, a Lorentzian function of amplitude near the resonance and a 180° 

change of phase are plotted in the insets. In Supplementary Figure 11c, the resonant 

frequency shift induced by a threading magnetic field and corresponding phase shift at the 

resonant frequency are shown. Measurements of the phase shifts for a given 𝑉𝑉RF and 𝑉𝑉g 

were made by varying the magnetic field. The frequency shift is obtained based on the 

relation plotted in Supplementary Figure 11d. 
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Supplementary Note 7 | Correlation between conductance and mechanical resonant 

frequency shift 

Our TI nanowire device setup allows for the simultaneous measurements of electrical 

conductance and mechanical resonant frequency, with the observation of strong correlation 

between the two independent signals confirming their common origin: AB oscillation. For 

two representative magnetic fluxes Φ = 1.5 Φ0 and 2 Φ0, conductance modulation Δ𝐺𝐺 

and resonant frequency shift ∆𝑓𝑓0 with respect to gate voltage are shown in Supplementary 

Figure 12a–b. We note that the resonant frequency shift is close to being out of phase with 

conductance modulation in the range of 𝑉𝑉g = -32 V ~ -26 V. The observed out of phase 

correlation is successfully reconstructed by a quasi-1D wire model of a gapless Dirac fermion 

(Supplementary Figure 12c–f). To compute magneto-conductance, we employ the Landauer–

Buttiker formalism for a 3D TI lattice model maintaining the aspect ratio of our nanowire5,6. 

We simulate conductance at the chemical potential in our device by introducing a disorder 

strength that yields a scattering time close to the one in the nanowire (see Supplementary 

Note 1 for details). In this way, the observed AB oscillation of conductance is reproduced 

reasonably well (Supplementary Figure 12d–f). For the modulation of mechanical resonant 

frequency shift, we employ the quasi-1D model of a Dirac fermion with complete 

eigenenergy information for a given magnetic flux from equation (3) in the manuscript. Using 

a scattering time consistent with the disorder strength used in the magneto-conductance 

calculation, we first obtain the DOS from the Green’s function and then compute the shift of 

resonant frequency according to equation (5) in the manuscript. The calculated frequency 

modulation successfully explains the experimental data in the range of chemical potential 

(Supplementary Figure 12c,e,f). Most importantly, the out-of-phase relation between 

conductance and mechanical resonant frequency shift in Supplementary Figure 12a–b is 
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clearly reproduced in our model calculations in Supplementary Figure 12e–f, confirming the 

nature of the TI surface states. 

 
Supplementary Figure 12 | AB oscillations in the mechanical resonant frequency and 
conductance of a TI nanowire. a–b, Measured mechanical resonant frequency shift ∆𝑓𝑓0 and 
conductance modulation Δ𝐺𝐺 as a function of gate voltage 𝑉𝑉g at half-integer flux quanta and 
integer flux quanta, showing an out-of-phase relation. c–d, Model calculations of ∆𝑓𝑓0 and 
Δ𝐺𝐺 plotted as a function of chemical potential 𝜇𝜇 and magnetic flux Φ. e–f, Calculated ∆𝑓𝑓0 
and Δ𝐺𝐺  at half-integer and integer flux quanta conditions demonstrating an out-of-phase 
relation, plotted from the corresponding vertical cuts in (c) and (d). 
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Supplementary Note 8 | Correspondence between the experimental data and simulation 

maps of mechanical resonant frequency shifts 

 
Supplementary Figure 13 | Correspondence between experiment and simulation. a–b, 
Normalized 2D experimental data (a) and simulation color map (b) of mechanical resonant 
frequency shifts. c, Overlaid plot of experimental data in (a) with the simulation color map in 
(b). d, Mechanical resonant frequency shift as a function of gate voltages at half-integer and 
integer flux quanta showing out-of-phase relation. e–f, The Fourier component slower than 
1.5 h/e period in flux (e) and the Fourier components within 20 % window about the major 
oscillation ∆ period in energy (f) are extracted to plot the experimental data in (a) and (d). 
 

We compare the 2D experimental data and simulation maps of mechanical resonant 

frequency shifts in Supplementary Figure 13. The repeating diamond pattern is shown in both 

maps (Supplementary Figure 13a–b) and matches each other as shown in Supplementary 

Figure 13c. To compare the pattern, we extract the selected Fourier component 

(Supplementary Figure 13e–f) in the experimental data and normalize the amplitude in both 

of the experimental data and simulation map. The mechanical resonant frequency shift versus 

𝑉𝑉g curves (Supplementary Figure 13d) for integer and half-integer flux quanta also show 

clear out-of-phase relation with each other after extracting the selected Fourier component 

(Supplementary Figure 13e–f).  
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Supplementary Note 9 | Estimate of spin-orbit coupling effect associated with 

nanomechanical motion 

We examine here the possibility of having a Zeeman-type spin splitting by the threaded 

magnetic field B ( ~1 T) into the nanowire. We find that, associated with the motion of the 

resonator, which is driven by the radio-frequency AC voltage source, spin polarization arises 

on the sides of the nanowire, and that the polarization can couple to the external magnetic 

field. However, the effect turns out small enough to be neglected. In short, it originates from 

the interplay between the external AC electric field and the relaxation of helical electronic 

states. The detailed calculation is as follows. 

 
Supplementary Figure 14 | Schematic representation of the topological insulator nanowire 
device. 

 

In Supplementary Figure 14, the direction of the external magnetic field is out of plane, 

𝐵𝐵�⃗ = 𝐵𝐵𝑥𝑥�. The effective Hamiltonian of Dirac surface states is specified assuming that the 

penetration depth into the bulk is smaller than the size of nanowire. A time-dependent electric 



21 
 

field is applied from the gate to the nanowire direction, 𝐸𝐸z(𝑡𝑡) = 𝑉𝑉RFsin(2𝜋𝜋𝑓𝑓RF𝑡𝑡)/𝑑𝑑 with 

frequency 𝑓𝑓RF = 115 MHz and 𝑉𝑉RF = 0.4 mV. On the other hand, the relaxation time of 

electrons is 𝜏𝜏 ~1 ps. This implies that the effective external electric field is reduced as  

𝐸𝐸eff(𝑡𝑡) ≈ 𝜏𝜏
𝑑𝑑𝐸𝐸z(𝑡𝑡)
𝑑𝑑𝑑𝑑 = 2𝜋𝜋𝑓𝑓RF𝜏𝜏

𝑉𝑉RFcos(2𝜋𝜋𝑓𝑓RF𝑡𝑡)
𝑑𝑑 , 

due to screening by electrons. Note that the vibration amplitude of the nanowire (~265 pm) is 

negligible compared to 𝑑𝑑. 

The effective electric field drives the electron population out of equilibrium. According to 

the Boltzmann equation: 

𝛿𝛿𝑓𝑓𝑘𝑘𝑧𝑧 = 𝑓𝑓𝑘𝑘𝑧𝑧 − 𝑓𝑓0 

    = 𝑒𝑒𝑒𝑒𝐸𝐸eff
𝑑𝑑𝑓𝑓𝑘𝑘𝑧𝑧
𝑑𝑑𝑝𝑝𝑧𝑧

≈ 𝑒𝑒𝑒𝑒𝐸𝐸eff𝑣𝑣𝐹𝐹
𝑑𝑑𝑓𝑓𝑘𝑘𝑧𝑧
𝑑𝑑𝑑𝑑 ≈ 𝑒𝑒𝑒𝑒 �2𝜋𝜋𝑓𝑓RF𝜏𝜏

𝑉𝑉RF
𝑑𝑑 � 𝑣𝑣𝐹𝐹

1
𝑘𝑘𝑘𝑘 

    = 0.329 

where T = 50 mK and 𝑣𝑣F = 5 × 105 m/s. In other words, on the right surface of the 

nanowire (see figure), there are a greater number of electrons going upward (𝑧̂𝑧) than going 

downward (–𝑧̂𝑧). Because Dirac surface states are helical, this naturally makes net spin 

polarization 𝑆𝑆𝑥𝑥 , which in turn causes a spin-dependent energy shifting by the external 

magnetic field. Note that on the left surface, the effective surface Hamiltonian is 𝐻𝐻left =

−𝐻𝐻right, and thus the opposite spin polarization and the total energy do not change by the 

Zeeman splitting. 

The energy scale of the Zeeman effect under B = 1 T, 

∆𝐻𝐻Zeeman = 𝜇𝜇𝐵𝐵𝑔𝑔𝑠𝑠
ℏ
𝐒𝐒 ∙ 𝐁𝐁 ≈ 0.058 meV. 

Therefore, the energy shift due to the time-dependent electric field is Δ𝐸𝐸Zeeman ≈ 0.329 × 

0.058 meV = 0.019 meV, which is more than two orders of magnitude smaller than the 

energy level spacing between neighboring transverse modes, Δ = 4.7 meV. As a result, we 
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conclude that spin polarization along the magnetic field direction (𝑥𝑥�) would appear during 

the relaxation of electrons in the presence of an AC external electric field, but its influence on 

our TI nanowire is negligibly small. 
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