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SUPPLEMENTARY NOTES

Supplementary Note 1.

Here, we show the relation between reactant and product harmonic oscillator operators. Let us consider the
vibrational Hamiltonians for the single-molecule reactant and product electronic states (we omit label (i) for simplicity
hereafter),
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where m is the reduced mass of the mode, ωA is the frequency of the mode in each electronic state (A = R,P), dP is
the difference between nuclear equilibrium configurations, ∆E is the energy difference between the electronic states,
and p̂ and x̂ are the momentum and position operators for the described mode; therefore, the harmonic oscillator
potential energy surface for P is a displaced-distorted version of that for R. The creation and annihilation operators
are defined in terms of position and momentum (dR = 0),
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conversely, the position-momentum representation is written in terms of the creation and annihilation operators as

x̂− dA =

√
~

2ωAm

(
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Equation (4) implies
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â†P + âP + d̃P√

ωP
,

√
ωR

(
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where d̃P =
√

2m/~ dP; therefore, the reactant operators are written in terms of product ones as
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These transformations can be written in terms of a squeezing and a displacement operator [1]:
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with actions given by

Ŝ†P(r)â†PŜP(r) = â†P cosh r − âP sinh r, (9)
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Therefore,
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Supplementary Note 2.

Here, we introduce the initial and final many-body vibronic states. The rate to calculate corresponds to the
stoichiometric process

(M −N)R +NP −→ (M −N − 1)R + (N + 1)P, (14)

where N is the number of molecules in the product electronic state P, and M −N is the number of molecules in the
reactant electronic state R, such that M is the total number of molecules in the reaction vessel. Assigning labels to
each molecule, without loss of generality, the transformation of the N + 1-th molecule can be written in the form
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with many-body vibronic states given by
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In Supplementary equation (19), we have used the notation introduced in equation (2), and Ĥ±(Y ) = ~ω±
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are the Hamiltonians of the upper/lower and k-th dark modes, respectively, all

with creation and annihilation operators as defined in equation (3). Therefore, the matrix element corresponding to
the transition becomes
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Supplementary Note 3.

Here, we derive the tridimensional Franck-Condon factor in equation (12) of the main text. The non-vanishing
overlaps between the vibrational ground state of the reactants and an arbitrary vibrational excitation with quantum
numbers {v+, v−, vD} on the products can be written in terms of creation operators as
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These operators acting in the UP and LP can be written as linear combinations of the operators acting on the
electromagnetic mode and the bright mode [equation (3)], i.e.,
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â†0 sin θ

)n (
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Since [â0, âB(N)] = 0, the only non-vanishing terms are those with m = n = 0, otherwise the overlap in the photonic
mode would be between non-displaced states with different excitations; therefore,
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Moreover, the creation operators acting on the bright and dark modes can be expressed as linear combinations of
operators acting on the N -th molecule and the bright mode that excludes it [equation (6)], i.e.,〈
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By expanding the binomials as before, and discarding the terms that excite the B(N − 1) mode, we arrive at〈
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Acting the creation operator on the N -th mode allows us to write
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Supplementary Note 4.

Here, we discuss the integration of the rate law.
Chemical Master Equation. The chemical master equation for the reaction in equation (7) is given by

∂

∂t
Pr(NR, t |M, 0) = a(NR + 1) Pr(NR + 1, t |M, 0)− a(NR) Pr(NR, t |M, 0), (29)

where Pr(n, t | m, 0) is the conditional probability to observe n molecules of the donor at time t given that there were
m at t = 0, and a(n) = nkV SC

R→P (n) is the propensity function [2]. Since Pr(M + 1, t |M, 0) ≡ 0, this equation can be
solved exactly by successively plugging NR = M,M − 1, . . . , 0, yielding

Pr(M − n, t |M, 0) = (−1)n
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a(M − i)
n∑
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e−a(M−j)t∏n
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This probability density function can be used to determine the average number of donor molecules at a given time:

〈NR(t)〉 .=
M∑
n=0

(M − n) Pr(M − n, t |M, 0). (31)

Taking the time derivative of this average yields equation (18).
However, for the number of molecules considered, M = 107, this calculation becomes intractable; therefore, we

resort to the strategy described in the Materials and Methods section of the main manuscript and corroborate its
validity with the stochastic simulation algorithm [2].

Stochastic Simulation Algorithm (SSA). For the decomposition reaction in equation (18), we can define

p(τ |M − n, t) = a(M − n) exp [−a(M − n)τ ] , (32)

as the conditioned probability density function for the time of the next reaction (τ) given that the number of donor
molecules left is M − n at t. This function enables the construction of an exact numerical realization of the reaction
with the following algorithm:

1. Initialize the system at NR(0) = M .

2. With the system in state NR(t) = M − n(t), evaluate a(NR).

3. Generate a value for τ = − ln(r)/a(NR), where R is a uniformly distributed random number.

4. Perform the next reaction by making NR(t+ τ) = NR(t)− 1.

5. Register NR(t) as needed. Return to 2 or else end the simulation.

In Supplementary Table 1, we show the correlation (r2) between the reaction times calculated according to the mean-
field finite difference approach described in the manuscript and the reaction times corresponding to the same step in
the reaction with populations obtained from the mean of 100 trajectories computed with the SSA algorithm. Since
these correlations are very close to the unity, we conclude that the compared methods are numerically equivalent [3].
These observations are consistent with a recent study that shows that mean-field theories provide good descriptions
for polaritonic systems involving a large number of molecules [4].

Supplementary Table 1.

Ω ∆/ωP r2

0 - 0.9970

≥ 0

–0.02 0.9965

0 0.9982

0.02 0.9973

0.04 0.9970

0.06 0.9969
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SUPPLEMENTARY FIGURES

Supplementary Fig. 1. Probability coefficients for each molecular mode in the quasi-localized basis of dark modes defined in
equation (6). As the dark mode index, k, increases, it becomes more localized in the k-th molecule, leaving a long tail behind
it [5].
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Supplementary Fig. 2. Amplification of Fig. 3, showing a situation where a polariton channel dominates the kinetics of a
reaction starting at reactant R. The channel involving a vibrational excitation in the lower polariton of the product (PLP )

features a small enough activation barrier E‡
001 that can effectively compete against the many channels ending with a vibrational

excitation in any of the dark modes, PD, which feature corresponding activation energies E‡
001. These two activation energies

are much smaller than E‡
000, the one associated with the channel leading to the global ground state of the products, P0 (not

shown in this amplified figure).


