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SUPPLEMENTARY NOTE 1. EPR MEASUREMENTS IN FIG. 3

EPR spectra of Samples 1 and 2 in Fig.3 were examined with
a microwave power 6 mW, averaging over 50 sweeps, with mod-
ulation amplitudes of 0.1 mT and 0.01 mT and at sweep fields of
3350 - 3500 G and 3300 - 3600 G for the two samples respec-
tively. Concentrations of P1 centers were estimated by using a
CuSO4 reference outlined in Ref. [1].

In order to determine the linewidths of the EPR spectra, a script
was written to determine the data range at which Tsallis fits should
be applied by first finding the indices where the spectral maxima
and minima occured. Midpoints were then determined between
the maximum and minimum indices and the first derivative of the
Tsallis function was fit to the ranges between the calculated mid-
points. Because the baseline was not perfectly zeroed, jumps in
the fit values occurred between each range. Applying fits to each
individual peak rather than applying one Tsallis function to mul-
tiple peaks produced a better baseline correction since the offsets
differed between ranges. Each peak was corrected by subtract-
ing the median y-value over the fit range and then making manual
corrections if necessary. Once the corrections were completed,
the first integrals over each individual range were obtained using
trapezoidal integration. The resulting integral arrays were then
concatenated and a second integral was obtained. The resulting
first integral allowed us to find the line widths of each P1 peak
(FWHMs), and the second integral resembled a step function from
which the relative step heights of each P1 peak could be found. To
account for the hyperfine splittings of the P1 spectra an average
over all peaks linewidths was taken and weighted by the height of
each peak. The ratio of the averaged linewidths between the two
samples in Fig. 3 was found to be 2.97, consistent with the ratio
of the P1 concentration of the two samples up to the accuracy of
the concentration estimates.

SUPPLEMENTARY NOTE 2. FIELD CYCLING

T1 noise spectroscopy relies on our ability to rapidly vary the
magnetic field experienced by a test sample using a homemade
shuttling system built over a 7 T superconducting magnet [2].
Samples are held in an NMR tube (Wilman 8 mm OD, 1 mm thick-
ness) (seeFig. 1D) and pressure-fastened from below the magnet
onto a lightweight, carbon fiber shuttling rod (Rock West com-
posites). Using a high precision (50 µm) conveyor actuator stage
(Parker HMRB08) (see Fig. 1B), we are able to repeatedly and
consistently shuttle from low fields (∼30 mT) below the magnet
for polarization to high fields (7 T) within the magnet for NMR
detection at sub-second speeds (<700 ms). The instrument is in-
terfaced with a low-cost hyperpolarizer (See [3] for details) , al-
lowing generation and detection of bulk nuclear polarization. Be-
cause the average shuttling time is small compared to the nuclear
T1 lifetimes (see Fig. 2) – particularly at fields above 100 mT

– our resulting NMR signals are recorded with minimal loss in
enhancement. High precision shuttling allowed for the measure-
ment of a full z-direction field map (see Fig. 3) ), where the field
was measured as a function of position using an axial Hall probe
for fields less than 3.5 T. To accommodate the fast shuttling tech-
nique, the conventional NMR probe was modified to be hollow,
allowing for shuttling through the probe to low magnetic fields
below the magnet. Custom made printed coils (see [4]) are em-
ployed for direct inductive detection of the NMR signals [2].

From the field map in Fig. 3 it is clear that the gradient expe-
rienced by the samples is field-dependent. To quantify the field
inhomogeneity during the signal decay process, we numerically
estimate the gradient at each height from the acquired field map.
The largest gradient occurs when the sample is just entering the
bore of the magnet, where the field is around 2 T and the gradi-
ent is ∼26 mT mm−1. Because our samples normally occupy a
height under 0.5 mm within the sample tube, they will experience
a maximum field variation of about 13 mT within the sample. Yet
because at this height the magnetic field is so large, this gradient
only adds a 0.5% field variation throughout the sample and so this
effect can be ignored. For heights closer to the knee fields that we
study ∼100 mT, the field gradient is on the order of 1 mT mm−1

and so the gradient can be similarly ignored.

SUPPLEMENTARY NOTE 3. DATA PROCESSING

A. Fit models

Nuclear T1 at a given magnetic field is determined by measur-
ing the decay of NMR signal ε(t) with respect to time t spent
decaying at that field. By measuring the change in signal over
various times, relaxation decay curves are determined, and T1(B)
estimated. We find that all the data can be fit to a stretched expo-
nential of the form (see Fig. 4A),

ε(t) = ε0e
−( t

T1(B)
)p
, (1)

where p ∈ (0, 1] is a stretch factor [5], and ε0 represents the bare
signal enhancement obtained from DNP and assuming no loss dur-
ing shuttling. For certain samples, such as the 10% 13C sample in
Fig. 2C, we observe that p ≈ 1, while for most samples with low
13C enrichment (including at natural abundance), p ∈ (0.5, 1).
We ascribe this stretch factor to be arising from spin diffusion of
the inhomogeneous polarization in the lattice that is driven by the
DNP process.

By measuring the relaxation rate R1(B) = 1/T1(B) over a
range of magnetic fields allowed by the field cycler, a relaxation
field map R1(B) can be obtained, as shown in Fig. 2B. These
relaxation profiles are then fit to a sum of two Tsallis distributions
[36], a generalization of Gaussian and Lorentzian functions that
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Supplementary Figure 1. Field cycling device interfaced with portable
diamond hyperpolarizer. (A) Mechanical shuttler is connected to a 7 T
magnet and interfaced to a portable hyperpolarizer. Sliding rails attached
to the bottom of the device allow for adjustment of hyperpolarizer box
and centering of sample above coil. (B) The carbon-fiber shuttling rod
is moved along a conveyor belt through use of a twin-carriage actuator.
(C) The 8 mm shuttling rod is centered in the 38 mm magnet bore, with
a Teflon guide for self-alignment. (D) Diamond sample is held within an
8 mm wide NMR tube, and fitted with a plunger and mirror to prevent
excess movement of sample and bolster efficacy of optical pumping.

allows greater flexibility in representing the relaxation rate as a
function of field. Additionally our model assumes a constant off-
set to account for the saturation of the relaxation rate at high field,
with functional form of a single Tsallian with respect to field B,

R1(B) = C1

[
1 + (2q−1 − 1)

(
B

C2

)2
]− 1

q−1

+ C3 (2)

where fitting parameters C1, C2, C3 describe the amplitude, width
and vertical offset of the function respectively, and q regulates the
effective contribution of the function’s tail to the overall area un-
der the function, with pointwise limits q = 1 and q = 2 denot-
ing Gaussian and Lorentzian functions respectively. Originally
the fitting models were limited to either Lorentzian/Gaussian line-
shapes, and the model was susceptible to deviate from the experi-
mental relaxation estimates at high field. By allowing variation of
the parameter q, qualitatively better fits to the relaxation profiles
can be found and analyzed in relation to one another.
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Supplementary Figure 2. Sample shuttling repeatability. Shuttler op-
eration (1400 runs) between polarization (∼30 mT) and detection (7 T)
locations, distance of approximately 928 mm depending on sample holder
inserted. Samples are pressure held onto hollow carbon fiber rod along
the center of the magnet bore and shuttled using a mechanical actuator
activated by synchronized pulse trigger. This demonstrates high stability
for repeated experiments, with average travel times of 648±0.6 ms.
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Supplementary Figure 3. Field map (A) Measurement of longitudinal
(z axis) magnetic field over full field cycler range using a sensitive mag-
netometer. Data points were attained by shuttling magnetic field probe
through center of the magnetic bore while held within the hollow carbon
fiber shuttling rod, limiting accuracy to the 50 µm precision of the ac-
tuator. Position of magnet entrance is shown to demonstrate fringe field
profile. Due to magnetometer constraints, high field measurements satu-
rate at 3.5 T. (B) Polarization is generated∼928 mm from the NMR coil,
depending on the sample holder. This range can be traveled in sub-second
speeds (see Fig. 1), allowing fast transport of hyperpolarized diamonds
from low fields below to center of magnet with minimal relaxation loss.

B. Accelerated data collection strategy

We describe here an accelerated technique for data acquisition
that we employ in experiments for long-T1 samples. We work
on the principle that one does not necessarily have to obtain the
entire relaxation curve (with substantial time costs) in order to
accurately measure the relaxation rates. Instead, employing an
appropriate (stretched exponential) model, and with the measure-
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Supplementary Figure 4. Data processing. (A) Spin polarization decay
curves are acquired by repeated hyperpolarization of the diamond sam-
ple followed by time-dependent relaxation at a given field. By varying
wait time and measuring the resulting NMR signal, relaxation parameters
at this field can be estimated by fitting the data to a stretched exponential
function. Because the relaxation rate equation incorporates a phenomeno-
logical stretch factor to account for T1 heterogeneity at different fields,
decay experiments are done at varied fields and the fitted parameters are
used for different field regimes. (B) enhancement data is also taken at
varying fields with wait time kept constant, providing a 1D slice of the
relaxation dynamics at wide field ranges. To maximize signal contrast
the wait times can be dynamically adjusted to account for particularly
smaller relaxation times at lower fields. (C) Using the two previous ex-
periments, a relaxation field map is constructed using the estimated rate
equation parameters and the 1D enhancement data. Errors result from the
quality of the decay curve fits and inaccuracies in the measured magnetic
field.

ment of signal losses at fixed selections of waiting times allows
the relaxation rates to be reconstructed with low error.

To be more precise, consider that due to long relaxation times
at high field, occasionally approaching ∼20 minutes, production
of enhancement decay data at an array of magnetic fields is time-
intensive. In order to hasten measurement times, and to obtain a
denser map of nuclear T1 estimates at a large number (∼100) of
field points (for example in Fig. 3), after hyperpolarization and
subsequent transfer to the field of interest, the signal ε(tw) after
some fixed wait time tw (typically 30 s) is measured. Fig. 4 de-
tails the procedure and benchmarks it. Indeed, the polarization
decay is field-dependent, and the set of enhancement values ob-
tained in this manner allows a quantification of the the relaxation
mechanisms throughout the full field range. To estimate T1 from
this data, however, requires knowledge of the enhancement gen-
erated before relaxation begins. To estimate this quantity, here-
after referred to as ε0, decay curves are experimentally acquired
at certain fields using several averages per experiment, ensuring
low error when fitting this curve to a stretched exponential model.
Using the fit parameters T1 and p, ε0 can then be estimated as

ε0 = ε(tw)e

(
tw
T1

)p

(3)

This estimate allows us to reconstruct the relaxation rate at each
field for which enhancement measurements were acquired. Im-
portantly, this process removes the need to construct a decay curve
like that seen in Fig. 4A for each point of interest. Instead, decay
curves for a subset of the field points can be found and the fit pa-

rameters from those curves can be used to approximate the relax-
ation rate for the points in Fig. 4B where an explicit decay curve
is not created. By reordering the relaxation equation, the estimate
of R1 at field B becomes

R1(B) =
ln
[

ε0
ε(tw)

] 1
p

tw
(4)

The quality of this reconstruction is improved by generating
multiple decay curve experiments at varying fields so that the ap-
propriate initial enhancements ε0 and stretch factors p can be de-
termined for different field regimes. For the two natural abun-
dance 13C samples in Fig. 3 (Samples 1-2 in Table I) we used
decay curve data at fields of 20 mT, 35 mT, 150 mT, and 7 T for
the relaxation field map reconstructions, with stretch factors p ≈
0.75 at lower fields and p ≈ 1 at high fields. For the enriched sam-
ples in Fig. 5 (Samples 5-7 in Table I), the approximation method
was used for the 3% sample whereas the other sample data was
acquired using the longer 2D decay curve procedure.

In certain cases, especially for the ultra-low field data in Fig.
3, rather than using a constant decay time tw for all points, the
sensitivity of the decayed enhancement readings is maximized by
using dynamically varied wait times tw at different fields; the loss
in enhancement then becomes approximately 50% of the initial
polarization value. This process mitigates errors in the measured
enhancement values by creating sufficient contrast between the
initial and decayed enhancement values, without excessively di-
minishing the signal relative to the noise.

Let us now quantify the time savings resulting from this data
collection strategy. By removing the need to explicitly plot the
signal decay over time at every magnetic field point, the effec-
tive dimensionality of our T1(B) measurement process is reduced,
which allows determination of T1 at a large number of field points
rapidly. To develop an intuition for the accelerated in the aver-
aging time gained as a result, we assume an even sampling of
the signal decay, in time increments ∆t across n steps. To ob-
tain estimates of T1 at N field values, this would require at the
very least a total time t2D = N∆t

∑n
i i = N∆tn(n+1)

2 . While
employing the accelerated 1D measurement strategy in contrast,
signal enhancement is measured after a fixed wait time tw at each
field. These measurements are obtained at all N field points, af-
ter sampling with high accuracy the signal decay curves at Nd
overlapping fields to construct estimates of the initial enhance-
ment and stretch factor at varied fields. The experiment would
therefore expend a minimum time of t1D = Ntw +Nd∆t

n(n+1)
2 .

This measurement strategy incurs a theoretical time gain of t2D
t1D

=
N∆tn(n+1)

2Ntw+Nd∆tn(n+1) , with the simplifying assumption that zero
time is spent moving between fields as well as during signal de-
tection. To demonstrate the possible time gains of this method,
assume signal decay measurements at ∆t = 10 s increments for
a total of n = 40 points in time, across N = 100 field points.
This may then be compared to the accelerated 1D measurement
strategy, with signal enhancement measurements after a fixed hy-
perpolarization time of tw = 30 s at each field. If Nd = 4 decay
curves are used to estimate the relevant relaxation properties at
four separate fields, the time gain of the 1D strategy is t2D

t1D
≈ 23.
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C. Error estimates

Let us now outline the error estimation in the T1(B) data. The
primary sources of error come from the tightness of the decay
curve fits to estimate ε0 and p at different fields, the shot-to-shot
error in the measured enhancement, and the error in the wait time
spent relaxing at a given field. Because of the high averaging done
to generate relaxation decay curves, the error in ε0 and p, taken
from the fitting function confidence intervals, is very small ≈1%.
To account for variation in the relaxation wait time, the two meth-
ods used for placing the sample at a given field are considered. To
access high field points the sample is shuttled into the magnet and
allowed to wait a set time, and the error in this process arises from
the shuttling time. Because the field cycler can shuttle the sample
over the maximum field range in less than 1 second, the shuttling
error is approximated as 2 s. To access the low field regime, a bidi-
rectional Helmholtz coil was assembled within the hyperpolarizer
which is aligned with the field produced by the superconducting
magnet in the +z direction. This allows us to probe fields lower
than what is covered by the field cycler. At the polarization loca-
tion and with no current driven through the coil, the 7 T magnet
produces a field of 20.8 mT, but fields as low as 1 mT and even
further can be attained with use of the coil. To account for the
build-up of magnetic field due to the coil, we attribute an error of
2s to all points found by this process. In combining both shuttled
and coil-generated field points there was a constant offset of 15
mT added to all shuttled field points to make the curves consistent
with the low field relaxation rate points.

SUPPLEMENTARY NOTE 4. MODEL FOR
HYPERPOLARIZED RELAXOMETRY

We now provide more details of the model employed to capture
the relaxation mechanisms probed by our experiments. We had
identified from the experiments three relaxation channels that are
operational at different field regimes, driven respectively by (i)
couplings of the 13C nuclei to pairs (or generally the reservoir)
of P1 center, (ii) individual P1 or NV centers, and (iii) due to
spin-diffusion effects within the 13C reservoir. In this section, we
detail lattice calculations that allow the estimation of the spectral
densities in each of these cases.

Consider again the three disjoint spin reservoirs in the dia-
mond lattice, the electron spin reservoir of NV centers, electron
reservoir of substitutional-nitrogen (P1 centers), and the 13C nu-
clear spin reservoir. They are centered respectively at frequen-
cies ωNV ≈ [(∆± γeBrelax cos θNV)2 + (γeBrelax sin θNV)2]1/2,
ωe ≈ [(γeBrelax + mIA

P1
‖ cos θP1)2 + (mIA

P1
⊥ sin θP1)2]1/2 and

the nuclear Larmor frequency ωL = γnBrelax; where θNV, θP1 are
angles of the NV(P1) axes to the field, AP1

‖ ≈ 114 MHz, AP1
⊥ ≈

86 MHz are the hyperfine field of the P1 center to its host 14N nu-
clear spin, mI = {−1, 0, 1} is the 14N manifold, ∆ = 2.87 GHz
is the NV center zero field splitting, and γe = 2.8 MHz G−1 and
γn = 1.07 kHz G−1 are the electronic and nuclear gyromagnetic
ratios.

A. Lattice estimates for electron reservoir

In order to determine the relaxation in behavior Eq. (3) quanti-
tatively, let us determine typical inter-spin couplings and distances
for the electron reservoir from lattice concentrations. First, for

the electronic spins, given the relatively low concentrations, and
the fact that the lattice is populated independently and randomly,
we make a Poisson approximation following Ref. [6]. An esti-
mate for the typical inter-spin distance 〈re〉 is obtained by de-
termining the distance at which the probability of finding zero
particles is 1

2 . Given the lattice constant of diamond a = 0.35
nm, and the fact that there are four atoms per unit cell, we can
estimate the electronic concentration in inverse volume units as,
Ne = (4 × 10−6Pe)/a

3 [m−3]. Then from the Poisson ap-
proximation 〈re〉 = (3/4π ln 2)

1/3
N
−1/3
e we obtain, for instance,

〈rNV〉 = 12.12 nm and 〈rP1〉 = 2.61 nm, where we have assumed
concentrations of 1 ppm and 100 ppm respectively.

The inter-spin distances now allow us to calculate the second
moment of the electronic spectra, which are reflective of the mean
inter-spin couplings. Following Abragam [7], we have

M2e =
9

20
(gµB)2 1

〈re〉6
, (5)

where g ≈ 2 is the electron g-factor, and µB = 9.27× 10−21 erg
G−1 the Bohr magneton written in cgs units for convenience. Sub-
stituting this leads to, M2e = 43.65P 2

e [mG2], and allows us to

estimate the electronic line width, ∆fe = 〈dee〉 ≈ γe

√
8
π

√
M2e

[Hz]≈ 10.5Pe [mG], that scales approximately linearly with elec-
tron concentration Pe. Here we have assumed a Lorentzian line-
shape and quantified the linewidth from the first derivative [6].
Typical values are ∆fNV = 29.52 kHz and ∆fP1 = 2.95 MHz at 1
ppm and 100 ppm concentrations respectively.

Let us now estimate the effective hyperfine interaction from
the P1 centers to the 13C reservoir. Our estimate can be accom-
plished by sitting on a P1 spin, and evaluating the mean perpendic-
ular hyperfine coupling that contributes to the spin flipping noise,
〈Azx〉 =

[〈
A2
zx

〉]1/2
, where we setup the second moment sum,〈

A2
zx

〉
=

1

N

[µ0

4π
γeγnh̄

]2∑
j

(3 sin θj cos θj)
2

r6
j

(6)

where N is the total number of 13C spins for every P1 center and
θj is the angle between the P1-13C axis and the magnetic field.
Numerically the factor µ0

4πγeγnh̄ = 19.79 [kHz (nm)3]. For sim-
plicity, we can approximate the sum by an integral, and including
the density of 13C spins NC = 0.92η spins nm−3 (see Fig. 6B),
where η is the 13C enrichment level,

〈
A2
zx

〉
=
(µ0

4π
γeγnh̄

)2 NC(2π)

NCV

∫ 〈re〉
r0

∫ π/2

0

(9 sin3 θ cos2 θ)

r6
r2drdθ

where V = 4π
3 〈re〉

3 corresponds to the volume of spins consid-
ered. We have assumed that the “sphere of influence” of a par-
ticular P1 spin notionally extends to the mean distance between
neighboring P1 centers, for instance 〈re〉 = 5.62 nm for Pe =
10 ppm. The integral lower limit is set by the requirement that
the hyperfine shift of the 13C nuclei is within the detected NMR
linewidth ∆fdet ≈ 2 kHz. Then, r0 = [19.79/(∆fdet)]

1/3 ≈ 2.15
nm. In principle, r0 goes to quantify a “barrier” around around
each P1 center, wherein the hyperfine interactions prevent the 13C
nuclei from being directly observable in our relaxometry experi-
ments. The angle part of the integral evaluates to 6/5, and effec-
tively therefore,

〈
A2
zx

〉
=
(µ0

4π
γeγnh̄

)2 6

5

1

〈re〉3

(
1

r3
0

− 1

〈re〉3

)
(7)



5

Frequency (kHz)

N
or

m
al

iz
ed

 S
ig

na
l (

au
)

DNP

Thermal

1% 3% 10% 25% 100%

0

.5

1
0

.5

1

0 20
Increasing Enrichment

876 Hz 951 Hz 1.5 kHz 2.14 kHz

3.94 kHz

Supplementary Figure 5. Comparison of DNP and thermal 13C lineshapes. Panels indicate lineshapes under (A) hyperpolarization carried out at low
field (1-30 mT) and (B) 7 T thermal polarization. DNP is excited from the optically polarized NV centers which are ≈1 ppm in all samples. For the
100% sample, we ascribe the broad and narrow components of the lineshapes (dashed lines) as being spins close and further away from the NV centers
respectively. The scaling of the experimental linewidths matches our predictions from theory (see Fig. 6C).

For instance, for the two natural abundance single crystal sam-
ples that we considered in the Fig. ?? of the main paper with
P1 concentration 17 ppm and 48 ppm, we have 〈re〉 = 4.8 nm
and 3.39 nm respectively, giving rise to the effective P1-13C hy-
perfine interaction

〈
A2
zx

〉
≈ 0.39 [(kHz)2] and

〈
A2
zx

〉
≈ 0.45

[(kHz)2] respectively. The simple model predicts that the effec-
tive hyperfine coupling increases slowly with the electron concen-
tration Pe, that the electron spectral density width 〈dee〉 ∝ Pe.
It also shows that the electron spectral density is independent of
13C enrichment η to first order. The zero-field relaxation rates
stemming from this coupled-electron mechanism can now be cal-
culated as R1(0) =

〈
A2
zx

〉
/〈dee〉 ≈ 777 [s−1] and 317.5 [s−1].

This matches our expectation for the order of magnitude of the
zero field rate since we expect that the 13C relaxation time T1n

matches that of the electron T1e ≈ 1 ms.
In order to validate the conclusions from this simple model,

we perform an alternative numerical estimation of
〈
A2
zx

〉
=[

1
N

∑
j∈∆fdet

〈
A2
zx,j

〉]
within the detection barrier directly from

the diamond lattice (see Fig. 6F and Supplementary Note 4C). We
obtain

〈
A2
zx

〉
= 2 [(kHz)2] and 2.26 [(kHz)2] for Samples 1 and

2 respectively, in close and quantitative agreement with the val-
ues predicted from Eq. (7) (considering the approximations made
in the analysis). Numerics also confirm that the hyperfine values〈
A2
zx

〉
are independent of enrichment η (see Fig. 6F) in agreement

with the experimental data.

B. Lattice estimates for 13C reservoir

In contrast, since the 13C reservoir has a much larger spin den-
sity, especially at high enrichment levels, we will estimate the in-
terspin distances 〈rn〉 and couplings ∆fn numerically. The ex-
perimentally obtained 13C lineshapes and resulting linewidths for
all the samples considered are shown in Fig. 5. We begin by first
setting up a diamond lattice numerically and populating the 13C
spins with enrichment level set by η. The numerical calculation is
tractable since only small lattice sizes typically under `=10 nm are
sufficient to ensure convergence of the various dipolar parameters

(see Fig. 6A). To a good approximation, we determine the spin
density of the 13C nuclei to be NC = 0.92η spins nm−3 (see Fig.
6B). Next, in order to determine the nuclear dipolar linewidths,
we consider the secular dipolar interaction between two nuclear
spins j and k in lattice,

dCC
jk =

µ0

4π
h̄γ2

n(3 cos2 θjk − 1)
1

r3
jk

(8)

where θjk = cos−1

(
rjk·Bpol
rjkBpol

)
is the angle between the inter-

nuclear vector and the direction of the magnetic field. In the nu-
merical simulations we will consider, we evaluate the case of sin-
gle crystal samples placed flat, i.e. with Bpol ‖ [001] crystal axis.
As a result, for 13C spins on adjacent lattice sites, θjk = 54.7◦

is the magic angle and dCC
jk = 0. We note that Eq. (8) is a good

approximation even during the hyperpolarization process. Indeed,
although hyperpolarization is performed in the regime where the
nuclear Larmor frequency ωL is smaller than the hyperfine inter-
action A to the NV center, the hyperfine field is only transiently
on during the microwave sweep. Given the fact that the NV center
is a spin-1 electron, there is no hyperfine field applied to the nuclei
when the NV is optically pumped to thems = 0 spin state. Indeed
this constitutes the majority of time period of the DNP process.

We now evaluate the effective mean dipolar coupling 〈dCC〉 be-
tween the nuclei from the second moment,

〈dCC〉 =
1

N

∑
j

[∑
k

(µ0

4π
h̄γ2

n(3 cos2 θjk − 1)
)2 1

r6
jk

]1/2

, (9)

where N = NC`
3 refers to the number of 13C spins in the lattice,

and for the convergence, we assign for simplicity, 1/rjj = 0. This
simply allows us to sum over all the spins j in the lattice. In prac-
tice, we evaluate the parameter 〈dCC〉 in Eq. (9) over several (≈
20) realizations of the lattice and take an ensemble average (see
Fig. 6C). We report an effective error bar from the standard de-
viation of this distribution. The fidelity of the obtained results is
evaluated by testing the convergence ε(`) = ‖〈dCC〉`+1−〈dCC〉` ‖,
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Supplementary Figure 6. Calculated interspin parameters pertaining to 13C and NV reservoirs as a function of lattice enrichment η. (A)
Convergence of numerical estimates is representatively illustrated by plotting the mean 13C dipolar coupling 〈dCC〉` and the residual ε(`) as a function
of considered lattice size `. We evaluated here the case of a 1% enriched diamond single crystal. We observe good convergence beyond a lattice size
of about 10 nm. (B) Spin density of 13C nuclei shows, as expected, very close to linear dependence with η. Solid line is a linear fit, whose slope
returns the lattice spin density ≈ 0.92η spins nm−3. (C) Effective inter-nuclear dipolar coupling 〈dCC〉 evaluated from second moment (red line).
Blue points show the experimentally obtained linewidths. Green line indicates 1

ζ
〈dCC〉 with broadening factor ζ = 2.5, and shows a good numerical

agreement with experimental data. (D) Mean inter-spin distance 〈rn〉 between lattice 13C nuclei is evaluated from the RMS dipolar coupling (red
points) and from effective nearest-neighbor lattice distances (blue points). The two estimates show a good match, with the inter-spin distance falling
approximately as η1/3. (E) Diffusion constant and diffusion length numerically estimated with lattice enrichment. Here we employed experimentally
obtained values of 13C T1. Dashed line indicates the mean inter-electron distance between NV centers at 1 ppm concentration, indicating that spin
diffusion can homogeneously spread polarization in the lattice almost independent of 13C enrichment. (F) Effective hyperfine coupling

〈
Aobs
zx

〉
to P1

centers in case of single crystal samples with 17 ppm (red points) and 48 ppm (blue points) electron concentration. Results indicate that
〈
Aobs
zx

〉
is

independent of 13C enrichment η. (G) Estimates of mean RMS NV-13C hyperfine interaction 〈ANV〉 with lattice enrichment. (H) Estimation of directly
participating 13C nuclei in the DNP process, defined as those nuclei for which the hyperfine coupling to the closest NV center is greater than 200
kHz. We obtain an approximately linear increase with enrichment. Error bars in all panels are numerically estimated from standard deviation of lattice
parameter distributions over several realizations of the lattice configuration.

where the (`+ 1) superscript indicates a lattice expanded by 1nm.
As is evident in the representative example for η = 1.1% dis-
played in Fig. 6A, we find good convergence (ε → 0) for ` ≈ 14
nm, corresponding to about 2500 lattice 13C nuclei.

It is instructive to now compare the estimated values with the
experimentally determined nuclear linewidths ∆fn(η) measured
at 7 T (see Fig. 5 and blue points in Fig. 6C). The scaling (solid
line in Fig. 6C) of the experimental data ∼ η1/2 matches closely
with the estimated result through Eq. (9) (see red line in Fig.
6C). However we find that the numerical value overestimates the
linewidth by an additional broadening factor ζ ≈ 2.5. The green
points show a close match between experimental values and nu-
merically evaluated 1

ζ 〈dCC〉.
This effective coupling now allows us to estimate the mean

inter-spin distance 〈rn〉 as a function of 13C enrichment (see Fig.
6D),

〈rn〉 =

[
2 〈dCC〉
µ0

4πγ
2
nh̄

]−1/3

(10)

We find a scaling ∼ η−1/6 (red line in Fig. 6D). It is also inter-
esting to compare these values to those alternatively evaluated di-
rectly from the lattice (blue points in Fig. 6C). For this, we rely on
the fact that the 〈rn〉 distances largely reflect the nearest-neighbor

(NN) spin distances. We define the NN spin (say k) to the spin j
as the one which has the dipolar coupling djk is maximal. Now
for every spin j in the lattice, we determine the nearest neigh-
bor inter-spin distance Rj =

∣∣∣rNN
jk

∣∣∣, and construct a row matrix,

R = {Rj}, with jth element Rj . Finally, repeating and conta-
centating this row matrix for several realizations of the lattice, we
estimate 〈rn〉 = 〈R〉 for the ith realization of the lattice. The com-
parison between these two metrics is demonstrated in Fig. 6D),
and show reasonably good agreement.

These inter-spin distances and the coupling values allow us to
estimate the spin diffusion coefficientD(η) as a function of lattice
enrichment (see Fig. 6E). This quantifies the spread of polariza-
tion away from directly polarized 13C nuclei, and also serves as a
means to quantify the homogenization of polarization in the lat-
tice. Following Ref. [8], we heuristically assign a spin diffusion
coefficient D = 〈rn〉2

30T2n
where the T2n are evaluated here by only

taking the dipolar contribution to the linewidth, T2n ≈ 1/〈dCC〉.
Given a total time bounded by T1, we can calculate the rms overall
diffusion length [9] as σ =

√
2DT1 that is displayed as the blue

points in Fig. 6D. Also for reference is plotted the mean NV-NV
distance≈ 12 nm at 1 ppm concentration, indicating that to a good
approximation that the optically pumped polarization reaches to
all parts of the diamond lattice between the NV centers.
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C. Lattice estimates for hyperfine couplings to NV and P1
reservoirs

Let us finally evaluate, through similar numerical means, details
of the hyperfine interaction between 13C reservoir and the electron
reservoirs of the P1 centers and NV centers. We draw a distinc-
tion between the NV and P1 centers in the fact that the former are
spin-1, with a nonmagnetic ms = 0 state (with no hyperfine cou-
pling to first order), while the latter are spin 1/2. When hyperfine
shifts exceed the observed 7 T NMR linewidth ∆fdet ∼2 kHz, it
is safe to assume that these spins are unobservable - a case that is
operational more strongly for the spin 1/2 P1 centers.

In order to perform the estimation, in the generated lattice of
size ` = 〈re〉, we populate 13C spins with enrichment η, and in-
clude an electron at the lattice origin. The mean perpendicular
hyperfine interaction between P1-13C spins is calculated from the
second moment, from the individual hyperfine couplings Azx,j
that are smaller than the detection barrier ∆fdet

〈
Aobs
zx

〉
=

∑
j∈obs

〈
A2
zx,j

〉1/2

=

 1

Nobs

∑
j∈obs

(µ0

4π
γeγnh̄

)2 (3 sin θj cos θj)
2

r6
j

1/2

(11)

where Nobs refers to the number of spins amongst the total N =
NC`

3 spins for which
〈
A2
zx,j

〉
< (∆fdet)

2. Here rj is the dis-
tance of the jth 13C nucleus, and θj the angle of P1-13C axis to
the magnetic field, and we have ignored the effect of 14N hyper-
fine interactions intrinsic to the P1 center. This effective hyperfine
field, scaling with lattice enrichment η, is then indicated by the red
(blue) points in Fig. 6F for electron concentrations of 17 ppm (48
ppm) respectively. The error bars display the standard deviation of
the obtained distributions upon several hundred realizations of the
lattice. We observe that the effective hyperfine interaction

〈
Aobs
zx

〉

is almost independent of η, and is higher for lattices with higher
Pe electron concentration. This is consistent with the results ob-
tained through Eq. (7) and matches our experimental observations
in Fig. 5 of the main paper. For natural abundance samples we
numerically obtain

〈
Aobs
zx

〉
= 1.4 kHz, 1.55 kHz, and 1.04 kHz re-

spectively for 17 ppm, 48 ppm, and 1 ppm (representative of NV
center concentrations), in agreement with estimates from Eq. (7).

Finally, let us estimate the number of spins that are directly po-
larized by the NV centers. In Fig. 6G we evaluate the full hyper-
fine interaction to 13C spins of varying enrichment, considering
no operational detection barrier.

〈ANV〉 = −

∑
j

〈
A2
j,NV

〉1/2

=

 1

N

∑
j

(µ0

4π
γeγnh̄

)2

·
[
(3r2

jz − 1)2 + (3rjxrjz)
2 + (3rjyrjz)

2
]

r6
j

]1/2

where we employed a lattice size ` = 〈rNV〉 = 12 nm, and
N = NC`

3 refers to the number of 13C spins in the lattice with
index j running over all them. Here the angle part of the hyperfine
interaction is evaluated by assigning the direction cosines, for in-
stance as, rjz = (~rj · ẑNV)/rj , where ẑNV is the unit vector aligned
along the N-V axis, collinear with the direction of the strong zero
field splitting that forms the dominant part of the Hamiltonian at
low fields. This effective hyperfine field, scaling with lattice en-
richment η, is then indicated by the blue points in Fig. 6G. Our
DNP mechanism is a low-field one and is primarily effective when
the full hyperfine coupling 〈Aj,NV〉 is of the order of greater than
the nuclear Larmor frequency ωL = γnBpol, where Bpol is the
polarizing field. We can heuristically measure the number of di-
rectly polarized spins surrounding an NV center as being those for
which 〈Aj,NV〉 > 200 kHz. As Fig. 6H indicates, the number of
such directly polarized nuclei scales approximately linearly with
13C enrichment, with a constant ratio ≈ 4.3η in the diamond lat-
tice. Spin diffusion therefore plays an important role in the spread
of polarization away from these directly polarized nuclei.
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