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Supplementary Discussion

The application of an in-plane magnetic field on the
sample leads to a reduction of the critical current of the
Josephson and a distortion of the Fraunhoffer pattern as
illustrated in Supplementary Figure 1.
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Supplementary Figure 1.(Color online) Fraunhofer
pattern of JJ 1 in the presence of an in-plane field (V 1

g = 0V ,
V 2
g = −7V ). a) Fraunhofer pattern when applying 250

mT along the x direction i.e. parallel to the current. b)
Fraunhofer pattern when applying 500 mT along the y
direction.

The change in the critical current of the junction ap-
pears to strongly depends on the direction of the applied
in-plane field. In Supplementary Figure 1, the amplitude
of the critical current is similar in both plots but the
magnitude of the applied magnetic field is twice as large
in the y direction compared to the x direction.

For both directions of the field, the Fraunhofer pattern
appears asymmetric which is not the case in the absence
of the in-plane as illustrated in the main text. The ob-
served distortions are similar for both orientations of the
field. Despite these distortions a clear central peak re-
mains at all magnetic fields below Bc. Additionally, as
stated in the main text, the period of Fraunhofer oscil-
lations is unchanged. This indicates there are not large
deviations from a uniform current distribution even in
the presence of large in-plane magnetic fields.

When comparing those data to the ones presented in
the main text, one can notice that the width of the first
node has been divided by about two. We attribute this
effect, which is also visible in the SQUID oscillations,
to the transition out of the superconducting state of the
indium layer at the back of the sample. The transition
occurs around 30 mT and does not impact our study
otherwise.

To alleviate any concern of the reader may have regard-
ing the fact that we plot most of our data as a function of
the phase of the SQUID, we plot in Supplementary Fig-
ure 2 the data of the middle panel of Fig. 3 as a function
of the out-of-plane magnetic field. We would like however
to underline here that when fitting our data a single fre-
quency is used for all the data presented together and as
a consequence the relationship between the SQUID phase
and the magnetic field is linear. Furthermore since the
data at different gates are acquired within a single mag-
netic field field there cannot be arbitrary phase offsets in
the SQUID from one gate voltage to the next.
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Supplementary Figure 2. (Color online) Resistance of the
device as a function of the out-of-plane magnetic field and
the bias current at 200 mT and three different values of V 2

g

The current phase relationship (CPR) of a Josephson
junction with a high transparency present a notable saw-
tooth like profile which leads to distortions of the typical
SQUID oscillations. In the following we discuss how this
affects our measurements.

In Supplementary Figure 3, we present calculations
performed for two junction of varying critical currents
and transparencies. For junctions with different trans-
parencies, it appears that changing the relative amplitude
of the current in each arm, a = I1

I2
of the SQUID does not

alter the position of the maximum of the oscillation even
though it can strongly alter the shape of the oscillation.
This should not be surprising since the phase difference
to be at the maximum of both CPR only depends on
the shape of the CPR. This validates our method of ex-
traction of the phase shift under the assumption that the
applied gate voltage does not affect the junction trans-
parency.

In Supplementary Figure 4 we illustrate the artificial
phase-shift that can be induced by varying the trans-
parency of one junction while the other is kept at a fixed
transparency (0.5). We consider equal current in each
arm, but as mentioned above this has no consequence on
the phase-shift. As the transparency is varied between
0 and 0.99, the oscillations are shifted by about 0.25π
which is about half of the largest phase-shift we mea-
sured. Furthermore that shift has the opposite sign on
the positive and negative branches of the SQUID critical
current, which allows us to rule out this effects as being
the dominant mechanism in our experiment as illustrated
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Supplementary Figure 3. (Color online) SQUID critical
current for highly transparent junction. The critical current
of one of the junction is fixed to 1 and its transparency is set
to 0.5. The values used for the other junction are the ones
indicated on the figure. The method of calculation of the
plotted current is the same one used to fit the experimental
data. The dashed lines indicate the position of the maximum
of the oscillation.

in Fig. 3 of the main text.
To reduce the measurement time, we have often worked

with only the positive branch of the SQUID critical cur-
rent and assumed a constant transparency of the junc-
tion as a function of the gate. This can lead to errors
in the determination of the phase-shift obviously but as
discussed above we have checked that a varying trans-
parency cannot alone explain all our results.

The application of a gate voltage on the junctions may
alter the current distribution and hence the effective area
of the SQUID. We examine here this possibility to ascer-
tain it cannot explain our results.

Let’s consider an initial situation with a out of plane
field B applied to the SQUID of surface S such that the
enclosed flux is nφ0, where φ0 is the quantum of flux.
When applying the gate let’s assume that the surface
enclosed becomes S + ∆S, such that the flux becomes
(n + x)φ0. From this simple argument we can conclude
that x/n = ∆S/S. If we consider the case of the largest
phase-shift we observed ∼ π/2, which corresponds to a
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Supplementary Figure 4. (Color online) SQUID critical
current (positive/negative) for varying transparency of one
junction. The transparency of the other junction is fixed at
0.5 and the current in both amplitudes are taken equal. The
dashed lines indicate the position of the maximum/minimum
of the oscillation.

quarter of flux and since we always work close to the
maximum of the Fraunhofer pattern let’s take n = 5.
To explain our observation, the surface of the SQUID
would have to change by 5% which given the the surface
of our SQUID (25 µm2) and the surface of our junctions
(100nm× 1µm) is not possible even taking into account
flux focusing. Flux focusing increases the effective surface
of the junction by concentrating the magnetic flux lines
inside the junction. However based on the comparison
of the expected Fraunhofer frequency to the measured
one, its impact doubles at most the effective area of the
junction.

The phase-shift of JJ2 as a function of the applied field
presented in Fig. 4 of the main text has been extracted by
fitting the SQUID oscillations of both JJ1 and JJ2 in a
constrained manner as described in the Methods section
of the main text. We present in Supplementary Figure
5, the data and fits obtained at three different values of
magnetic field. As in the main text, we mark the position
of the maximum at Vg = -4 V using a dashed line and
the position of the maximum at each field using a star.

One can observe that the phase-shift observed for JJ1
is of the same order of magnitude than the one for JJ2
but of the opposite sign as expected from the SQUID
equation.

According to most theoretical predictions, in the ab-
sence of Dresselhaus spin-orbit coupling applying a mag-
netic field along the x axis should not give rise to an
anomalous phase. In InAs, the spin-orbit interaction is
expected to be mostly of the Rashba type and we hence
expect a reduction of the phase shift by rotating the field.

We present in Supplementary Figure 6, data taken in
the presence of a 300 mT field at 45 (a) and along the
x-axis (b) along with the extracted phase-shift as the
function of the angle θ defined in Figure 1 c of the main
text.

The phase-shift appears to diminish as we rotate the
field away from the y-axis but remains finite as illustrated
in (a) and (b). The error bars on the determination of
the phase-shift are large due to fluctuations of the SQUID
period inside the dataset (up to maximum of 10%) that
forced us to treat it in two separate subsets.
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Supplementary Figure 5. (Color online) Fits performed simultaneously (see Methods) on JJ1 and JJ2 data to extract the
phase shift. When working on JJ1, Vg2 is set to 0 V, when working on JJ2, Vg1 is set to -2 V
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Supplementary Figure 6. (Color online) JJ2 data and fits performed with an in-plane field of 300 mT applied at θ =
45(a)/90(b) with respect to the y-axis. (c) Phase-shift extracted from the fits as a function of θ. Error bars indicate uncertainly
due to fluctuations of SQUID period.


