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Supplementary Note 1 - Polaron Formation and Associated Reorganization Energy 

Calculations were carried out and reorganization energies were calculated as described in the 
material and methods. Here we provide further analysis of the structural deformations associated 
with charging of the NC with an electron or hole. We compute the change in Pb-ligand and Pb-S 
bond lengths of the NCs upon charging with an electron or hole,  

   (1) 

where X = {Lig, S}, the sum over {i,j} runs over all nearest neighbor pairs of Pb-X, and qc,Pbi and 
qc,Xi are the vector coordinates of the Pb and Lig/S atoms in the charge state c = {n, e,h} from the 
nuclear coordinates {Qn, Qe, Qh}. The results for the PbS-I NC as a function of r are shown  
Supplementary Figure 1. We find a nearly symmetric extension/contraction of the average PbS-
I bond lengths upon charging with an electron/hole, with far smaller changes in the Pb-S bond 
lengths, so small that they are below the accuracy of the calculations. 

The high electronegativity of the ligands ensures that they will be strongly negatively charged 
relative to the Pb and S atoms, and that electrostatic interaction of the charge carrier with the 
ligands is the main mechanism driving the polaron formation. This suggests that the choice of 
ligand, and its effective electronegativity. To investigate this further, we repeated the calculations 
on a Cl terminated NC, with its results plot in Supplementary Figure 1. Although the Cl 
electronegativity (3.16) is significantly larger than I (2.66) the overall shift in Pb-Cl bond lengths 
are similar to those for the PbS-I NC, with a slight average increase in the corresponding 
reorganization energy. We can thus expect only slight variations in the polaron mediated 
reorganization energies for commonly employed ligands, e.g. thiols (effective electronegativity of 
2.45)1. We note that, while it would be preferential to directly compare to calculations on other 
classes of ligands (e.g. thiol, carboxylate), the large number of nuclear degrees of freedom of 
complex organic ligands restricts one’s ability to identify with sufficient accuracy the nuclear 
ground state of the NC, rotations of the ligands being particularly problematic. It is therefore 
unfortunately impractical to directly compute the reorganization energy with the method employed 
here. We however stress that due to the Pb-rich character of PbS-NCs and the large effective 
electronegativities of all employed ligands, that the electrostatic mechanism driving polaron 
formation will persist, and that our I-Cl comparison suggests that the scale of the associated 
reorganization energies should remain similar. 

Supplementary Note 2 - Outer-Shell Reorganization Energy 
Throughout the work in the main text, we ignore any contribution from outer-shell 

reorganization. Here we motivate that approximation, as well as comment on the common 
assumption in literature that the charging energy of the NC contributes to the energetic barrier 
associated with charge transport. 

The reorganization energy associated with charge transfer, λ, is often split into two 
components, the outer-shell-, λo, and inner-shell-, λi, reorganization energies 2, 
   (2) 

ΔPb-X =
1
Nij

qn,Pbi − qn,X j
− qc ,Pbi − qc ,X j( )

{i ,j }
∑ ,

λ=λo+λi.
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λi is associated with the reorganization of internal nuclear coordinates of the reactants/products 
themselves upon charge transfer, while λo is associated with the reorganization of the nuclear 
coordinates of the surrounding medium. Unfortunately, direct calculation of the total 
reorganization energy, λ, for charge transfer in a NC-solid is currently out of reach 
computationally, requiring full geometric relaxation of systems with ~105+ atoms. In the main 
text, we make the approximation that  
   (3) 

where here we use the notation λi
’ to indicate the inner-shell reorganization energy computed 

assuming that charge transfer occurs between the two NCs in isolation, i.e. no surrounding 
medium.  

Electrostatic interaction of the charge carriers on the individual NCs with the negatively 
charged ligands leads to an extension/contraction of the lead ligand bonds. We can therefore 
expect an analogous effect to occur on the NCs neighboring the reactants and products within the 
NC solid, namely, that the presence of a charge carrier on a NC will lead to slight shifts of the 
Pb-Ligands on its neighboring NCs. However, these interaction have a  significantly longer 
range relative to the interactions with the ligands on the charged NC, and these long ranged 
interactions are furthermore already screened by the polaron formation on the charged-NC, we 
can therefore expect the outer-shell reorganization energy to be significantly smaller than the 
inner-shell, λo < λi.  

In the case of organic ligands, reorientational motion of any dipole moments on the ligands 
can further contribute to the outer-shell reorganization energy. Indeed, capacitive measurements 
on NC-solid thin films typically show a monotonously increasing capacitive response at low 
frequencies ( < 104 Hz),3,4 followed by a flat response at higher frequencies. Given that the 
charge transfer timescales (ps – 𝜇s including release from deep traps) are significantly faster than 
these slow processes, we can safely ignore their contribution to the reorganization energy. 

Finally, we comment on the common assumption that the activation energy associated with 
charge transport corresponds to the charging energy of the NC, i.e. the energy required to 
oxidize/reduce a NC, striping a charge carrier from the NC and bringing it infinitely far away. 
There is a fundamental problem with this picture, in that it assumes an intermediated state during 
the process of a carrier hop in which the overall NC-solid is charged. However, during the 
charge-transfer process, the charge carrier is never temporarily ‘pulled out into vacuum’, but 
rather undergoes a phonon mediated tunneling between the two NCs. We nevertheless 
acknowledge the appeal of assigning the activation energy measured experimentally to the 
charging energy, indeed, as we have shown, charge transport in many NC-solid systems will be 
limited by deep-traps, whose trap depth is precisely the charging energy!  

Supplementary Note 3 - Parameterization of Electronic Coupling 

Calculations of the electronic coupling between pairs of NCs as a function of NC radii, r, and 
inter-NC facet-to-facet distances, Δff, were performed as described in the material and methods 
described above. Due to the exponential form of the gaussian basis functions used in the DFT at 
large distances, calculations were performed for facet to facet distances from ~3.6-5.4 Å, and 
then extrapolated to 6 Å. The points which are plot in Figure 2 of the main text correspond to the 
extrapolated coupling at 6 Å, determined by fitting the couplings separately for each NC size and 

λ!λi
',
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orientation with an exponential function. For the final fit presented in Supplementary Table 1, 
all points were simultaneously fit. 

Supplementary Note 4 – Transition Rates 
A general expression  for the transition rate is given by Lin et al.,5 

   (4) 

which is written in terms of the Huang-Rhys parameter 𝑆#$ , which is related to the 
reorganization energy through the relation 
   (5) 

where the sum is over all phonon modes which couple to the transition. Supplementary Equation 
4 reduces to eq. 1 in the main text provided that kBT is much higher than the energies of all phonons 
coupling to the transition, i.e. 𝑘&𝑇 ≫ 	ℏ𝜔, for all j. A simplified form of Supplementary 
Equation 4 can be derived, with the approximation that a single phonon mode couples to the 
transition, 

   (6) 

in which case, for 𝑘&𝑇 ≪ 	ℏ𝜔., 

   (7) 

In the case of isoenergetic NCs and an applied electric field, ∆𝐸 = 𝐸2⃗ ∙ 5𝑟, − 𝑟89, where 𝑟, is the 
position of NC j. The transition rate is therefore temperature independent, and depends non-
trivially on the applied field. 

Supplementary Note 5 - Further Information on Deep-Trap Calculations 
Calculations for the trap-depth as a function of r were performed as described in the 

methods section. The computed trap depths are plot in Supplementary Figure 3, and we find 
the trap depths over the range of NC radii investigated here can be fit excellently with the 
expression 
    (8) 
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with βT = 1.0 ± 0.1 nm, ET0 = 1000 ± 100 meV. Similarly, the electrostatic shift of the levels of 
the traps nearest neighbors can also be fit with this expression (see Supplementary Figure 3). 
Nearest neighbors in 111 direction have ET0([111]) = 222 ± 4 meV, and in the 100 direction 
ET0([100]) = 151 ± 2 meV. 

 
The charging energy we plot in Fig. 3e in the main text, EC. is given by 6  

   (9) 

where εR is the dialectric permittivity of the NC-Solid. We take an empirical fit to the measured 
εR of Grinolds et al. 4, with  

   (10) 

where vf is the volume fill fraction of a NC-solid. and p is the packing density (p = 0.68 for BCC). 

Supplementary Note 6 - Additional TOF Analysis 
Impact of spatial and energetic disorder We first consider the impact of energetic disorder 

of the NC band-gaps on the expected electronic coupling and activation energies extracted from 
the TOF measurements. 

In reality, energetic disorder will be present, in the form of disorder of the NC bandgaps, as 
a result of inhomogeneous sizes of the individual NCs. We can estimate an upper limit of the 
energetic disorder from the photoluminescence spectrum of the NCs (see Supplementary 
Figure 7).1 The band-gaps are normally distributed with standard deviation σg. The mean 
activation energy, <EA>, assuming a normal distribution of band-gaps is given by 

   (11) 

where x= e|h, and χx is a parameter describing the alignment of the HOMOs/LUMOs of NCs with 
different band-gaps, χx > 0, χe

-1 + χh
-1 = 1. Assuming χe

 = χh = 2, the maximum expected mean 
activation energies span a range <EA(2.21nm)>h = 21 meV → <EA(1.37nm)>h = 28 meV, 
significantly smaller than the extracted EAh. 

We next consider the expected activation energies one would observe with the assumption 
that release from deep traps is limiting transport. In this case, the observed activation energy 
would correspond to the mean activation energy required to escape the deep trap. Each NC has 8 
nearest neighbors in the [111] directions, and 6 nearest neighbors in the [100] directions, and we 
approximate that the activation energy required for release will correspond to the lowest 
activation energy between the deep trap and its neighboring NCs. We stochastically compute the 
mean activation energy, performed numerically via 

EC(r,Δ ff ) =
e2

2r ⋅εR (r,Δ ff )
,

εR (r,Δ ff ) = 1+ 60.45vf (r,Δ ff ),

vf (r,Δ ff ) ≡ p
r3

(r + Δ ff / 2)
3

⎛

⎝⎜
⎞

⎠⎟
,

EA(r) x
= λ(r)
4

+
σ g
2

2λ(r)χx
2 ,
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   (12) 

where EgT is the bandgap of the deep trap NC, and the Egn are the bandgap of its neighbors, all 
taken from a normal distribution with standard deviation σg, ET(r) is the trap depth. We compute 
this, averaging over 106 stochastic realizations, and the results are plot in Fig. 3f of the main text. 
The expected EA calculated show excellent agreement with those measured. 
 

Dispersive Charge Carrier Transport and Undefined Mobilities Scaling the transients to their 
extracted transit times, t→t/ttr and I→I·ttr, leads to a collapse onto a single curve, which is 
independent of the electric field and device thickness, d. In Supplementary Figure 9, we plot an 
example of such a collapse for devices fabricated with r = 1.58 nm NCs, for fields 10-100 keVcm-

1, devices thicknesses d = 460-600nm, and temperatures T = 235 – 305 K.  The long time portions 
of the transients, t/ttr >1, are fit with a power law with exponent α(r,T), 

   (13) 

The extracted α(r,T) for several NC sizes are plot in Supplementary Figure 9. For smaller NCs, 
α(r,T) is less than 2 for the entire temperature range, indicated by the red-shaded region in the plot. 
This indicates highly dispersive carrier transport, with undefined mean carrier transit times. The 
carrier mobility for these sizes is therefore undefined within this temperature range, one of the 
consequences being a series resistance which will increase super-linearly with material thickness.  

Supplementary Note 7 - Fitting Kinetic Monte Carlo Simulations to Experimentally 
Measured TOF Transients 
Kinetic Monte Carlo simulations are carried out as describe in the materials and methods. As 
input to the simulations, V100, V111, and λ, are calculated from Eqs. 1 and 2 in the main text. VB0 
is extracted from the experimentally fitted mobilities, eq. 6 in the main text, giving a field Ez = 
(VB + VB0)/d. The bandgaps of the NCs are assumed to be normally distributed with standard 
deviation σg, which we fix to its upper limit represented by the standard deviation of the 
photoluminescence of the NCs (Fig. SI-3). Deep traps (n+/ p- NCs for electron/holes 
respectively) are added to the NC-solid by shifting the bands of a random fraction, ρT, of the NCs 
according to the trap depth, ET, as well as the shift of their neighbors in the 111 and 100 
directions, ET100, ET111, calculated from Supplementary Equation 8. We ignore energetic 
barriers (p-/n+ NCs for electron/holes respectively) in the calculations, as the high 
dimensionality of the NC-solid mitigates their impact on the carrier dynamics. For all samples, 
we then fit the KMC transients to the experimentally measured TOF transients by seeking a 
minimum least squared residual between the simulated and measured transients over a broad 
range of temperatures, biases, and thicknesses. This fitting is accomplished by varying only the 
density of deep traps for each NC size and carrier type. The fitted density of traps between 0.1-
10% are in agreement with measured values.7 The input parameters for the samples shown in the 
main text are given in Supplementary Table 2. 

EA = Min {EA1,EA2,…EA14 }[ ] ,

EAn =
E gT −E gn

2
+E T(r )+ λ(r )⎛

⎝⎜
⎞
⎠⎟

2

/ 4λ(r ),

( , )( ) .rTI t t a-µ
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Supplementary Figure 1 – Polaron Formation and Reorganization Energies (A) Plot of the 
change in Pb-Lig and Pb-S ligands upon charging the NC with an electron (blue) and hole (red) 
as a function of r for PbS-I and PbS-Cl NCs. (B) Associated reorganization energies for electron 
and hole transfer for both the PbS-I and PbS-Cl NCs.  

 

 

Supplementary Figure 2. Electronic Coupling The computed electronic coupling for electrons 
and holes in both the [100] and [111] NC-NC configurations are shown, along with the fit of 
Supplementary Equation 2 of the main text. Here, the x-axis corresponds to the real facet to facet 
distance of the calculations, which for the [111] configuration is equal to Δff, but not for the [100] 
To the right, an example of the symmetric/antisymmetric coupled state is shown for the VBM of 
the 1.47 nm NC 
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Supplementary Figure 3. Computed trap depth as a function of r with Dff = 6 Å, along with the 
magnitude of the electrostatic shift of the levels of the traps nearest neighbors in the [100] and 
[111] directions.  

 
Supplementary Figure 4 Oxidized/Reduced n- and p-doped NCs present Deep Traps for 
Charge Transport (A) Electronic structure of intrinsic, n-doped, and p-doped NCs (r = 0.95 nm) 
in vacuum. Upon oxidation of an n-doped NC (n+) or reduction of a p-doped NC (p-), the 
electronic structure shifts. (B) Trap depth as a function of NC size for NCs in vacuum (circles) and 
for NC-solids (squares), experimentally measured trap depths on PbS NC-solids3,7 (gray circles) 
and the NC charging energies calculated for a sphere of radius r in a PbS NC-solid (dashed gray 
line).  
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Supplementary Figure 5. Trap Depths (A) Trap depth of the smallest NC (~0.9nm) with Dff = 6 
Å computed for different superlattice sizes, showing a convergence of the trap depth with a 5x5x5 
superlattice. (B) Computed trap depths for the smallest NC as a function of Dff. 

 

Supplementary Figure 6. Release Rates from Deep Traps Previously measured (Ref. 3) release 
rates from deep traps, along with calculated rates (Equation 1 of the main text) for NC-
semiconductors with varying band-gap disorders.  
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Supplementary Figure 7 – PbS Samples Absorption (dashed colored lines) and luminescence 
(solid lines) spectra of PbS NC solutions used for TOF characterization. Gaussian fits to the 
luminescence spectra are indicated by the dashed black lines. 
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Supplementary Figure 8. Extracted transit times, ttr, as a function of applied field and temperature 
for all samples investigated in this work, along with the corresponding fits for Equation 4 of the 
main text. 

 

 

Supplementary Figure 9. (A) Plot of the scaled TOF transients, t→t/ttr and I→I·ttr, for devices 
fabricated with r = 1.58 nm NCs, for fields 10-100 keVcm-1, devices thicknesses d = 460-600nm, 
and temperatures T = 235 – 305 K. (B) The extracted α(r,T) as a function of temperature for several 
NC sizes. The red region indicates α(r,T) < 2, i.e. the region of α(r,T) for which the mean transit 
time is undefined. 
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Supplementary Table 1. Functional fits to transport parameters.  

Quantity Fit Function Fit Parameters 

Reorganization 
Energy, 𝜆 

𝜆(𝑟) = 𝜆=𝑟>? λ0 = 106 ± 5 meV·nmγ   

γ = 1.9 ± 0.2 

Electronic 
Coupling, Vct 

𝑉A(𝑟, ∆CC) = 𝑉=A𝑒>E∆FF𝑟>G β = 1.2 ± 0.1 Å-1  

η = 2.4 ± 0.5 

V0,e[111] = V0,h[111] = 300 ± 220 meV·nmη  

V0,e[100] = 3100 ± 200 meV·nmη  

V0,h[100] = 1900 ± 100 meV·nmη 

Trap Depth, ET 𝐸H(𝑟) = 𝐸H=𝑒>EIJ βT = 1.0 ± 0.1 nm  

ET0 = 1000 ± 100 meV 

 
Supplementary Table 2. Input Parameters for Kinetic Monte Carlo Simulations, note for the 
electronic coupling, NP is taken to be 2 in the simulations.  

r (nm) λ (meV) V100 (meV) V111 (meV) ET (meV) ET111 (meV) ET100 (meV) VB0 (mV) σg (meV) pT (%) 

2.21 23.5 0.345 0.033 109.7 24.4 16.6 0.550 54.0±0.1 3.0±0.1 

2.21 23.5 0.212 0.033 109.7 24.4 16.6 0.550 54.0±0.1 4.0±0.1 

1.58 44.4 0.473 0.075 206.0 45.7 31.1 0.708 72.2±0.1 0.7±0.1 

1.37 58.3 0.666 0.105 254.1 56.4 38.4 0.286 77.9±0.2 0.3±0.1 
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