
Supplementary Materials: Improving the accuracy of medical diagnosis with
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The structure of these supplementary notes is as follows. In supplementary note 1 we detail our notation. In
supplementary note 2 we outline the tools we use to derive our results – namely the frameworks of structural
causal models (SCMs), introduce noisy-or Bayesian networks, and derive their SCM representation. In supple-
mentary note 3 we outline the framework of twin-networks [1], and derive a simplified class of twin networks
that we will use for computing our counterfactual diagnostic measures (‘twin diagnostic networks’). In sup-
plementary notes 4 and 6 we introduce and derive expressions for our counterfactual diagnostic measures—the
expected sufficiency and the expected disablement—for the family of noisy-or diagnostic networks introduced
in supplementary notes 2 and 3. In supplementary notes 5 and 7 we prove that these two measures satisfy our
desiderata. In supplementary note 8 we discuss the expected disablement and sufficiency in relation to other
counterfactual measures. In supplementary note 9 we look at simple diagnostic scenarios where the posterior
leads to spurious diagnoses, and show how the expected disablement and sufficiency overcome this and why
the expected disablement and sufficiency achieve a similar accuracy on our test set. In supplementary note 10
we provide an example of our clinical vignettes. Finally, in the supplementary tables we list our experimental
results.

Supplementary Notes

Supplementary note 1: notation

Variables: For the disease models we consider, all variables X are Bernoulli, X ∈ {0, 1}. Where appropriate
we refer to X = 0 as the variable X being ‘off’, and X = 1 as the variable X being ‘on’. We denote single
variables as capital Roman letters, and sets of variables as calligraphic, e.g. X = {X1, X2, . . . , Xn}. The
union of two sets of variables X and Y is denoted X ∪ Y, the intersection is denoted X ∩ Y, and the relative
compliment of X w.r.t Y as X \ Y. The instantiation of a single variable is indicated by a lower case letter,
X = x, and for a set of variables X = x denotes some arbitrary instantiation of all variables belonging to X ,
e.g. X1 = x1, X2 = x2, . . . , Xn = xn. The probability of X = x is denoted P (X = x), and sometimes for
simplicity is denoted as P (x).

For a given variable X and a directed acyclic graph (DAG) G, we denote the set of parents of X as Pa(X),
the set of children of X as Ch(X), all ancestors of X as Anc(X), and all descendants of X as Dec(X). If we
perform a graph cut operation on G, removing a directed edge from Y to X, we denote the variable X in the
new DAG generated by this cut as X\Y .

Functions: Bernoulli variables are represented interchangeably as Boolean variables, with 1 ↔ ‘True’ and
0↔ ‘False’. For a given instantiation of a Bernoulli/Boolean variable X = x, we denote the negation of x as x̄
– for example if x = 1(0), x̄ = 0(1). We denote the Boolean AND function as ∧, and the Boolean OR function
as ∨.

Supplementary note 2: structural causal models

First we define structural causal models (SCMs), sometimes also called structural equation models or functional
causal models. These are widely applied and studied probabilistic models, and their relation to other approaches
such as Bayesian networks are well understood [2, 3]. The key characteristic of SCMs is that they represent
variables as functions of their direct causes, along with an exogenous ‘noise’ variable that is responsible for their
randomness.

Definition 1 (Structural Causal Model). A causal model specifies:

1. a set of latent, or noise, variables U = {u1, . . . , un}, distributed according to P (U).

2. a set of observed variables V = {v1, . . . , vn},

3. a directed acyclic graph G, called the causal structure of the model, whose nodes are the variables U ∪ V,

4. a collection of functions F = {f1, . . . , fn}, where fi is a mapping from U ∪ V/vi to vi. The collection F
forms a mapping from U to V. This is symbolically represented as

vi = fi(Pa(vi), ui), for i = 1, . . . , n,

where pai denotes the parent nodes of the ith observed variable in G.
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Note that the causal structure and generative functions are typically provided by expert opinion, though in
some instances the causal structure can be learned from data [4, 5]. As the collection of functions F forms
a mapping from noise variables U to observed variables V, the distribution over noise variables induces a
distribution over observed variables, given by

P (vi) :=
∑

u|vi=fi(Pa(vi),u)

P (u), for i = 1, . . . , n. (1)

We can hence assign uncertainty over observed variables despite the the underlying dynamics being deterministic.
In order to formally define a counterfactual query, we must first define the interventional primitive known

as the do-operator [3]. Consider a SCM with functions F . The effect of intervention do(X = x) in this
model corresponds to creating a new SCM with functions FX=x, formed by deleting from F all functions
fi corresponding to members of the set X and replacing them with the set of constant functions X = x.
That is, the do-operator forces variables to take certain values, regardless of the original causal mechanism.
This represents the operation whereby an agent intervenes on a variable, fixing it to take a certain value.
Probabilities involving the do-operator, such as P (Y = y|do(X = x)), correspond to evaluating ordinary
probabilities in the SCM with functions FX=x, in this case P (Y = y). Where appropriate, we use the more
compact notation of Yx to denote the variable Y following the intervention do(X = x).

Next we define noisy-OR models, a specific class of SCMs for Bernoulli variables that are widely employed
as diagnostic models [6–15]. The noisy-OR assumption states that a variable Y is the Boolean OR of its
parents X1, X2, . . . , Xn, where the inclusion or exclusion of each causal parent in the OR function is decided
by an independent probability or ‘noise’ term. The standard approach to defining noisy-OR is to present the
conditional independence constraints generated by the noisy-OR assumption [16],

P (Y = 0 |X1, . . . , Xn) =

n∏
i=1

P (Y = 0 | only(Xi = 1)) (2)

where P (Y = 0 | only(Xi = 1)) is the probability that Y = 0 conditioned on all of its (endogenous) parents
being ‘off’ (Xj = 0) except for Xi alone. We denote P (Y = 0 | only(Xi = 1)) = λXi,Y by convention.

The utility of this assumption is that it reduces the number of parameters needed to specify a noisy-OR
network to O(N) where N is the number of directed edges in the network. All that is needed to specify a
noisy-OR network are the single variable marginals P (Xi = 1) and, for each directed edge Xi → Yj , a single
λXi,Yj

. For this reason, noisy-OR has been a standard assumption in Bayesian diagnostic networks, which are
typically large and densely connected and so could not be efficiently learned and stored without additional
assumptions on the conditional probabilities. We now define the noisy-OR assumption for SCMs.

Definition 2 (noisy-OR SCM). A noisy-OR network is an SCM of Bernoulli variables, where for any variable
Y with parents Pa(Y ) = {X1, . . . , XN} the following conditions hold

1. Y is the Boolean OR of its parents, where for each parent Xi there is a Bernoulli variable Ui whose state
determines if we include that parent in the OR function or not

y =

N∨
i=1

(xi ∧ ūi) (3)

i.e. Y = 1 if any parent is on, xi = 1, and is not ignored, ui = 0 (ūi = 1 where ‘bar’ denotes the negation
of ui).

2. The exogenous latent encodes the likelihood of ignoring the state of each parent in (1), P (uY ) =
P (u1, u2, . . . , uN ). The probability of ignoring the state of a given parent variable is independent of whether
you have or have not ignored any of the other parents,

P (u1, u2, . . . , uN ) =

N∏
i=1

P (ui)

3. For every node Y there is a parent ‘leak node’ LY that is singly connected to Y and is always ‘on’, with a
probability of ignoring given by λLY

The leak node (assumption 3) represents the probability that Y = 1, even if Xi = 0 ∀ Xi ∈ Pa(Y ). This
allows Y = 1 to be caused by an exogenous factor (outside of our model). For example, the leak nodes allow us
to model the situation that a disease spontaneously occurs, even if all risk factors that we model are absent, or



3

that a symptom occurs but none of the diseases that we model have caused it. It is conventional to treat the
leak node associated with a variable Y as a parent node LY with P (LY = 1). Every variable in the noisy-OR
SCM has a single, independent leak node parent.

Given Definition 2, why is the noisy-or assuption justified for modelling diseases? First, consider the assump-
tion (1), that the generative function is a Boolean OR of the individual parent ‘activation functions’ xi∩ūi. This
is equivalent to assuming that the activations from diseases or risk-factors to their children never ‘destructively
interfere’. That is, if Di is activating symptom S, and so is Dj , then this joint activation never cancels out to
yield S = F . As a consequence, all that is required for a symptom to be present is that at least one disease
to be causing it, and likewise for diseases being caused by risk factors. This property of noisy-OR, whereby
an individual cause is also a sufficient cause, is a natural assumption for diseases modelling – where diseases
are (typically by definition) sufficient causes of their symptoms, and risk factors are defined such that they are
sufficient causes of diseases. For example, if preconditions R1 = 1 and R2 = 1 are needed to cause D = 1, then
we can represent this as a single risk factor R = R1 ∧R2. Assumption 2 states that a given disease (risk factor)
has a fixed likelihood of activating a symptom (disease), independent of the presence or absence of any other
disease (risk factor). In the noisy-or model, the likelihood that we ignore the state of a parent Xi of variable Yi
is given by

P (ui = 1) =
P (Yi = 0| do(Xi = 1))

P (Yi = 0| do(Xi = 0))
(4)

and so is directly associated with a (causal) relative risk. In the case that child Y has two parents, X1 and
X2, noisy-OR assumes that this joint relative risk factorises as

P (u1 = 1, u2 = 1) =
P (Y = 0| do(X1 = 1, X2 = 1))

P (Y = 0| do(X1 = 0, X2 = 0))
=
P (Y = 0| do(X1 = 1))

P (Y = 0| do(X1 = 0))
× P (Y = 0| do(X2 = 1))

P (Y = 0| do(X2 = 0))
(5)

= P (u1 = 1)P (u2 = 1) (6)

Whilst it is likely that interactions between causal parents will mean that these relative risks are not always
multiplicative, it is assumed to be a good approximation. For example, we assume that the likelihood that
a disease fails to activate a symptoms is independent of whether or not any other disease similarly fails to
activate that symptom.

As noisy-OR models are typically presented as Bayesian networks, the above definition of noisy-OR is non-
standard. We now show that the SCM definition yields the Bayesian network definition, (2).

Theorem 1 (noisy-OR CPT). The conditional probability distribution of a child Y given its parents
{X1, . . . , XN} and obeying Definition 2 is given by

P (Y = 0 |X1 = x1, . . . , Xn = xN ) =

N∏
i=1

λxi

Xi,Y
(7)

where

λXi,Y = P (Y = 0| only (Xi = 1)) (8)

Proof. For Y = 0, the negation of y, denoted ȳ, is given by

ȳ = ¬
(

N∨
i=1

(xi ∧ ūi)
)

=

N∧
i=1

(x̄i ∨ ui) (9)

The CPT is calculated from the structural equations by marginalizing over the latents, i.e. we sum over all
latent states that yield Y = 0. Equivalently, we can marginalize over all exogenous latent states multiplied by
the above Boolean function, which is 1 if the condition Y = 0 is met, and 0 otherwise.
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P (Y = 0 |X1 = x1, . . . , Xn = xn) =
∑
u1

. . .
∑
uN

N∧
i=1

(x̄i ∨ ui)P (uY )

=
∑
u1

. . .
∑
uN

∏
Xi

(x̄i ∨ ui)
∏
Ui

P (ui)

=
∏
Xi

∑
Ui=ui

P (ui) (x̄i ∨ ui)

=
∏
Xi

[P (ui = 1) + P (ui = 0)x̄i]

=
∏
Xi

[λXi,Y + (1− λXi,Y )x̄i]

=
∏
Xi

λxi

Xi,Y
(10)

This is identical to the noisy-OR CPT (2)

where we denote λXi,Y = P (ui). The leak node is included as a parent XL where P (XL = 1) = 1, and a
(typically large) probability of being ignored λL. This node represents the likelihood that Y will be activated
by some causal influence outside of the model, and is included to ensure that P (Y = 1| ∧ni=1 (Xi = 0)) 6= 0. As
the leak node is always on, its notation can be suppressed and it is standard notation to write the CPT as

P (Y = 0 |X1 = x1, . . . , Xn = xn) = λL
∏
Xi

λxi

Xi,Y
(11)

Supplementary note 3: Twin diagnostic networks

In this supplementary note we derive the structure of diagnostic twin networks. First we provide a brief overview
to the twin-networks approach to counterfactual inference. See [1] and [17] for more details on this formalism.
First, recalling the definition of the do operator from the previous section, we define counterfactuals as follows.

Definition 3 (Counterfactual). Let X and Y be two subsets of variables in V . The counterfactual sentence Y
would be y (in situation U), had X been x, is the solution Y = y of the set of equations Fx, succinctly denoted
Yx(U) = y.

As with observed variables in Definition 1, the latent distribution P (U) allows one to define the probabilities
of counterfactual statements in the same manner they are defined for standard probabilities (1).

P (Yx = y) =
∑

u|Yx(u)=y

P (u). (12)

Reference [3] provides an algorithmic procedure for computing arbitrary counterfactual probabilities for a given
SCM. First, the distribution over latents is updated to account for the observed evidence. Second, the do-
operator is applied, representing the counterfactual intervention. Third, the new causal model created by the
application of the do-operator in the previous step is combined with the updated latent distribution to compute
the counterfactual query. In general, denote E as the set of factual evidence. The above can be summarised as,

1. (abduction). The distribution of the exogenous latent variables P (u) is updated to obtain P (u | E)

2. (action). Apply the do-operation to the variables in set X, replacing the equations Xi = fi(Pa(xi), ui)
with Xi = xi ∀ Xi ∈ X.

3. (prediction). Use the modified model to compute the probability of Y = y.

The issue with applying this approach to our large diagnostic models is that the first step, updating the
exogenous latents, is in general intractable for models with large tree-width. The twin-networks formalism,
introduced in [1], is a method which reduces and amortises the cost of this procedure. Rather than explicitly
updating the exogenous latents, performing an intervention, and performing belief propagation on the resulting
SCM, twin networks allow us to calculate the counterfactual by performing belief propagation on a single
‘twin’ SCM – without requiring the expensive abduction step. The twin network is constructed as a composite
of two copies of the original SCM where copied variables share their corresponding latents [1]. We refer to
pairs of copied variables as ‘dual variables’. Nodes on this twin network can then be merged following simple
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Supplementary Figure 1: Construction of twin network

rules outlined in [17], further reducing the complexity of computing the counterfactual query. We now outline
the process of constructing the twin diagnostic network in the case of the two counterfactual queries we are
interested in – those with single counterfactual interventions, and those where all counterfactual variables bar
one are intervened on.

We assume the DAG structure of our diagnostic model is a three layer network [A]. The top layer nodes
represent risk factors, the second layer represent diseases, and the third layer symptoms. We assume no
directed edges between nodes belonging to the same layer. To construct the twin network, first the SCM
in [A] is copied. In [B] the network on the left will encode the factual evidence in our counterfactual query,
and we refer to this as the factual graph. The network on the right in [B] will encode our counterfactual
interventions and observations, and we refer to this as the counterfactual graph. We use an asterisk X∗ to
denote the counterfactual dual variable of X.

As detailed in [1], the twin network is constructed such that each node on the factual graph shares its
exogenous latent with its dual node, so u∗Xi

= uXi
. These shared exogenous latents are shown as dashed lines

in figures [B-E]. First, we consider the case where we perform a counterfactual intervention on a single disease.
As shown in [B], we select a disease node in the counterfactual graph to perform our intervention on (in this
instance D∗2). In Figure [C], blue circles represent observations and red circles represent interventions. The
do-operation severs any directed edges going into D∗ and fixes D∗ = 0, as shown in [D] below.

Once the counterfactual intervention has been applied, it is possible to greatly simplify the twin network graph
structure via node merging [17]. In SCM’s a variable takes a fixed deterministic value given an instantation of
all of its parents and its exogenous latent. Hence, if two nodes have identical exogenous latents and parents,
they are copies and can be merged into a single node. By convention, when we merge these identical dual nodes
we map X∗ 7→ X (dropping the asterisk). Dual nodes which share no ancestors that have been intervened upon
can therefore be merged. As we do not perform interventions on the risk factor nodes, all (Ri, R

∗
i ) are merged
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(note that for the sake of clarity we do not depict the exogenous latents for risk factors).
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Supplementary Figure 2: Simplification of twin network through node merging

Next, we merge all dual factual/counterfactual disease nodes that are not intervened on, as their latents
and parents are identical (shown in [D]). Finally, any symptoms that are not children of the disease we have
intervened on (D2) can be merged, as all of their parent variables are identical. The resulting twin network is
shown in [E]. Note that we have also removed any superfluous symptom nodes that are unevidenced, as they
are irrelevant for the query.

In the case that we intervene on all of the counterfactual diseases except one, following the node merging rule
outlined above, we arrive at a model with a single disease that is a parent of both factual and counterfactual
symptoms, as shown in Figure [F].

D1

. . .

S1 S1
⇤

RNR1

Factual graph Counterfactual graph

. . .D2 D1[F] k
. . .D1 D2

⇤⇤

Supplementary Figure 3: Final twin network for expected sufficiency

We refer to the SCMs shown in figures [E] and [F] as ‘twin diagnostic networks’. The counterfactual queries
we are interested in can be determined by applying standard inference techniques such as importance sampling
to these models [18].

Supplementary note 4: expected sufficiency

In this supplementary note we derive a simple closed form expression for our proposed diagnostic measure,
the expected sufficiency, which corresponds to the case where we perform counterfactual interventions on all
diseases bar one (Dk, model shown in Figure [F]). We derive our expressions for three layer noisy-OR SCM’s.
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Before proceeding, we motivate our choice of counterfactual query for the task of diagnosis.

An observation will often have multiple possible causes, which constitute competing explanations. For exam-
ple, the observation of a symptom S = 1 can in principle be explained by any of its parent diseases. In the case
that a symptom has multiple associated causes (diseases), rarely is a single disease necessary to explain a given
symptom, unless the symptom is uniquely generated by the disease. Equivalently, the symptoms associated
with a disease tend to be present in patient’s suffering from this diseases, without requiring a secondary disease
to be present. This can be summarised by the following assumption – any single disease is a sufficient cause of
any of its associated symptoms. Under this assumption, determining the likelihood that a diseases is causing a
symptom reduces to simple deduction – removing all other possible causes and seeing if the symptom remains.
We call this the assumption of causal sufficiency and note that it is a standard assumption in most of medicine,
and is often taken as part of the definition of the symptoms of a disease.

The question of how we can define and quantify causal explanations in general models is an area of active
research [19–22] and the approach we propose here cannot be applied to all conceivable SCMs, as counterfactual
inferences are valid only up to a set of modelling assumptions [23]. For example, if you had a symptom that can
be present only if two parents diseases D1 and D2 are both present, then neither of these parents in isolation is
a sufficient cause (individually, D1 = 1 and D2 = 1 are necessary but not sufficient to cause S = 1). This case
would violate the assumption of causal sufficiency. In supplementary note 6 we present a different counterfactual
query that does not require causal sufficiency, and captures causality in this case by reasoning about necessary
treatments.

The assumption of causal sufficiency is obey by noisy-Or models, as in these models all diseases are individually
sufficient to generate any symptom. This is ensured by the OR function, which states that a symptom S is the

Boolean OR of its parents individual activation functions, s =
∨N
i=1[di ∧ ūDi,S ] where the activation function

from parent Di is fi = di ∧ ūDi,S . Thus, any single activation is sufficient to explain S = 1 and we can quantify
the expected sufficiency of a diseases individually. An example of a model that would violate this property

is a noisy-AND model, where s =
∧N
i=1[di ∧ ūDi,S ] - e.g. all parent diseases must be present in order for the

symptom to be present.
Given these properties of noisy-OR models (as disease models in general), we propose our measure for

quantifying how well a disease explains the patient’s symptoms – the expected sufficiency. For a given disease,
this measures the number of symptoms that we would expect to remain if we intervened to nullify all other
possible causes of symptoms. This counterfactual intervention is represented by the causal model shown in
figure [F] in supplementary note A.2.

Definition 2 The expected sufficiency of disease Dk determines the number of positively evidenced symptoms
we would expect to persist if we intervene to switch off all other possible causes of the symptoms,

Esuff(Dk, E) :=
∑
S′

∣∣S ′+∣∣P (S ′|E ,do(Pa(S+) \Dk = 0)) (13)

where the expectation is calculated over all possible counterfactual symptom evidence states S ′ and S ′+ denotes
the positively evidenced symptoms in the counterfactual symptom evidence state. Pa(S ′+ \Dk) denotes the set of
all parents of the set of counterfactual positively evidenced symptoms S ′+ excluding Dk, and do(Pa(S+)\Dk = 0)
denotes the counterfactual intervention setting Pa(S ′+ \Dk)→ 0. E denotes the set of all factual evidence.

To evaluate the expected sufficiency we must first determine the dual symptom CPTs in the corresponding
twin network (figure [F]).

Lemma 1. For a given symptom S and its counterfactual dual S∗, with parent diseases D and under the
counterfactual interventions do(D \D∗k = 0) and do(U∗L = 0), the joint conditional distribution is given by

P (s, s∗| ∧Ni=1 di, do(∧i 6=kD∗i = 0), do(u∗L = 0)) =


P (s = 0| ∧Ni=1 di), s = s∗ = 0

0, s = 0, s∗ = 1

λdkDk,s
P (s\k = 1| ∧i 6=k di, Dk = 1), s = 1, s∗ = 0

(1− λDk,S)δ(dk − 1), s = 1, s∗ = 1

where δ(dk − 1) = 1 if Dk = 1 else 0, and d is an instantiation of all Di ∈ Pa(S), ∧i 6=kD∗i is the set of all
counterfactual disease nodes excluding Dk, ∧i 6=kdi is the given instantiation on all disease nodes exlcuding Dk,

and u∗L denotes the leak node for the counterfactual symptom. s\k denotes the state of the factual symptom node
S under the graph surgery removing any direct edge from Dk to S.

Proof. The CPT for the dual symptom nodes S, S∗ is given by

P (s, s∗|d,do(∧i 6=kD∗i = 0),do(u∗L = 0)) =∑
uD1,S

P (uD1,S) · · ·
∑
uDN,S

P (uDN ,S)
∑
uL

P (uL)P (s|dk,∧i6=kdi, uL)P (s∗|dk,do(∧i 6=kD∗i = 0),do(u∗L = 0)) (14)
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Where we have use the fact that the latent variables and the disease variables together form a Markov blanket
for S, S∗, and we have used the conditional independence structure of the twin network, shown in Figure [F],
which implies that S and S∗ only share a single variable, Dk, in their Markov blankets. With the full Markov
blanket specified, including the exogenous latents, the CPTs in (14) are deterministic functions, each taking the
value 1 if their conditional constraints are satisfied. Note that the product of these two functions is equivalent
to a function that is 1 if both sets of conditional constraints are satisfied and zero otherwise, and marginalizing
over all latent variable states multiplied by this function is equivalent to the definition of the CPT for SCMs
given in equation (1), where the CPT is determined by a conditional sum over the exogenous latent variables.
Given the definition of the noisy-OR SCM in (3), these functions take the form

P (s|dk,∧i6=kdi, uL) =

{
ūL
∧N
i=1[d̄i ∨ uDi,S ], s = 0

1− ūL
∧N
i=1[d̄i ∨ uDi,S ], s = 1

(15)

and

P (s∗|dk,do(∧i 6=kD∗i = 0),do(u∗L = 0)) =

{
d̄k ∨ uDk,S , s∗ = 0

1− d̄k ∨ uDk,S , s∗ = 1
(16)

Taking the product of these functions gives the function gs,s∗(u, d, uL) := P (s|dk,∧i 6=kdi, uL) ×
P (s∗|dk,do(∧i 6=kD∗i = 0),do(u∗L = 0)) where u denotes a given instantiation of the free latent variables
uD1,S , . . . , uDN ,S .

gs,s∗(u, d, uL) =



ūL
N∧
i=1

[d̄i ∨ uDi,S ], s = s∗ = 0

0, s = 0, s∗ = 1

[d̄k ∨ uDk,S ] ∧ [1−
N∧
i=1

[d̄i ∨ uDi,S ]], s = 1, s∗ = 0

1− d̄k ∨ uDk,S , s = 1, s∗ = 1

(17)

P (s, s∗|d,do(∧i 6=kD∗i = 0),do(u∗L = 0)) =
∑
uD1,S

P (uD1,S) · · ·
∑
uDN,S

P (uDN ,S)
∑
uL

P (uL)gs,s∗(u, d, uL) (18)

=



λL
N∏
i=1

λdiDi,S
, s = s∗ = 0

0, s = 0, s∗ = 1

λdkDk,s
− λL

N∏
i=1

λdiDi,S
, s = 1, s∗ = 0

(1− λDk,S)δ(dk − 1), s = 1, s∗ = 1

(19)

where we have used
∑
uDi,S

P (uDi,S)d̄i ∨ uDi,S = P (uDi,S = 1) + P (uDi,S = 0)d̄i = P (uDi,S = 1)di = λdiDi,S
,

and
∑
uDk,S

P (uDk,S)[1− d̄k ∨ uDk,S ] = (1− λDk,S)δ(dk − 1), where δ(dk − 1) is 1 iff Dk = 1 and 0 otherwise.

λL
N∏
i=1

λdiDi,S
can immediately be identified as P (s = 0|D) by (11). λdkDk,s

−λL
N∏
i=1

λdiDi,S
= λdkDk,s

(1−λL
∏
i 6=k

λdiDi,S
),

and we can identify λL
∏
i6=k

λdiDi,S
= P (s = 0| ∧i 6=k di, dk = 0). Therefore λdkDk,s

− λL
N∏
i=1

λdiDi,S
= λdkDk,s

P (s =

1|∧i 6=kdi, dk = 0). Finally, we can express this as λdkDk,s
P (s\k = 1|∧i6=kdi, Dk = 1), where s\k is the instantiation

of S\k – which is the variable generated by removing any directed edge Dk → S (or equivalently, replacing λDk,S

with 1).

Given our expression for the symptom CPT on the twin network, we now derive the expression for the expected
sufficiency.

Theorem 1 For noisy-OR networks described in supplementary note A.1-A.4, the expected sufficiency of disease
Dk is given by

Esuff(Dk, E) =
1

P (S±|R)

∑
S⊆S+

|S+ \ S|P (S− = 0,S\k = 1, Dk = 1|R)
∏

S∈S+\S

(1− λDk,S)
∏
S∈S

λDk,S

where S± denotes the positive and negative symptom evidence, R denotes the risk-factor evidence, and S\k
denotes the set of symptoms S with all directed arrows from Dk to S ∈ S removed.
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Proof. Starting from the definition of the expected sufficiency

Esuff(Dk, E) :=
∑
S′

∣∣S ′+∣∣P (S ′|E ,do(D \Dk = 0),do(UL = 0)) (20)

we must find expressions for all CPTs P (S ′|E ,do(D \ Dk = 0),do(UL = 0)) where |S ′+| 6= 0 (terms with
S ′+ = ∅ do not contribute to (20)). Let S∗A = {S∗ s.t. S ∈ S−, S∗ ∈ S ′−} (symptoms that remain off following
the counterfactual intervention), S∗B = {S∗ s.t. S ∈ S+, S

∗ ∈ S ′+} (symptoms that remain on following the
counterfactual intervention), and S∗C = {S∗ s.t. S ∈ S+, S

∗ ∈ S ′−} (symptoms that are switched off by the
counterfactual intervention). Lemma 1 implies that P (S = 0, S∗ = 1|d,do(∧i6=kD∗i = 0),do(u∗L = 0)) = 0, and
therefore these three cases are sufficient to characterise all possible counterfactual symptom states S ′. Therefore,
to evaluate (20), we need only determine expressions for the following terms

P (S∗A = 0, S∗B = 1, S∗C = 0|S±,R,do(∧i 6=kD∗i = 0),do(U∗L = 0)) (21)

where U∗L denotes the set of all counterfactual leak nodes for the symptoms S∗A,S∗B ,S∗C . Note that we only
perform counterfactual interventions, i.e. interventions on counterfactual variables. As the exogenous latents
are shared by the factual and counterfactual graphs, U∗L = UL, but we maintain the notation for clarity. First,
note that

P (S∗A = 0, S∗B = 1, S∗C = 0|S±,R,do(∧i6=kD∗i = 0),do(U∗L = 0))

=
P (S∗A = 0, S∗B = 1, S∗C = 0,S±|R,do(∧i6=kD∗i = 0),do(U∗L = 0))

P (S±|R,do(∧i 6=kD∗i = 0),do(U∗L = 0))

=
P (S∗A = 0, S∗B = 1, S∗C = 0,S±|R,do(∧i6=kD∗i = 0),do(U∗L = 0))

P (S±|R)

Which follows from the fact that the factual symptoms S± on the twin network [F] are conditionally in-
dependent from the counterfactual interventions do(∧i6=kD∗i = 0),do(U∗L = 0)). To determine Q = P (S∗A =
0, S∗B = 1, S∗C = 0,S±|R,do(∧i 6=kD∗i = 0),do(U∗L = 0)), we express Q as a marginalization over the factual dis-
eases which, together with the interventions on the counterfactual diseases and leak nodes, constitute a Markov
blanket for each dual pair of symptoms

Q =
∑

d1,...,dN

P (∧i 6=kDi = di, Dk = dk|R)
∏
S∈SA

P (S∗ = 0, S = 0| ∧i 6=k Di = di, Dk = dk,do(∧i6=kD∗i = 0),do(U∗L = 0))

×
∏
S∈SB

P (S∗ = 1, S = 1| ∧i 6=k Di = di, Dk = dk,do(∧i 6=kD∗i = 0),do(U∗L = 0))

×
∏
S∈SC

P (S∗ = 0, S = 1| ∧i 6=k Di = di, Dk = dk,do(∧i 6=kD∗i = 0),do(U∗L = 0)) (22)

Substituting in the CPT derived in Lemma 1 yields

Q =
∑

d1,...,dN

P (∧i 6=kDi = di, Dk = dk|R)
∏
S∈SA

P (s = 0| ∧Ni=1 di)
∏
S∈SB

(1− λDk,S)δ(dk − 1)

×
∏
S∈SC

λdkDk,s
P (s\k = 1| ∧i 6=k di, Dk = 1) (23)

The only terms in (20) with |S ′+| 6= 0 have SB 6= ∅, therefore the term δ(dk − 1) is present, and Q simplifies
to

Q =
∑

di∀i 6=k

P (∧i6=kDi = di, Dk = 1|R)
∏
S∈SA

P (s = 0| ∧Ni 6=k di, Dk = 1)
∏
S∈SB

(1− λDk,S)

×
∏
S∈SC

λDk,sP (s\k = 1| ∧i 6=k di, Dk = 1) (24)

= P (SA = 0, S
\k
C = 1, Dk = 1|R)

∏
S∈SB

(1− λDk,S)
∏
S∈SC

λDk,S (25)
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where in the last line we have performed the marginalization over di ∀ i 6= k. Finally, S ′+ = S∗B = S+ \ SC , and
so |S ′+| = |S+| − |SC |, and the expected expected sufficiency is

Esuff(Dk, E) =
1

P (S±|R)

∑
S⊆S+

(|S+| − |S|)P (S− = 0,S\k = 1, Dk = 1|R)
∏

S∈S+\S

(1− λDk,S)
∏
S∈S

λDk,S (26)

where we have dropped the subscript C from SC .

Given our expression for the expected sufficiency, we now derive a simplified expression that is very similar to
the posterior P (Dk = 1|R,S±).

Theorem 2 (Simplified expected sufficiency).

Esuff(Dk, E) =
1

P (S±|R)

∑
Z⊆S+

(−1)|Z|P (S− = 0,Z = 0, Dk = 1|R)× τ(k,Z) (27)

where

τ(k,Z) =
∑

S∈S+\Z

(1− λDk,S) (28)

Proof. Starting with the expected sufficiency given in Theorem 2, we can perform the change of variables
X = S+ \ S to give

Esuff(Dk, E) =
1

P (S±|R)

∑
X⊆S+

|X|
∏
S∈X

(1− λDk,S)
∏

S∈S+\X

λDk,S P (S− = 0, (S+ \ X )\k = 1, Dk = 1|R) (29)

=
1

P (S±|R)

∑
X⊆S+

|X |
∏
S∈X

(1− λDk,S)
∏

S∈S+\X

λDk,S

∑
Z⊆S+\X

(−1)|Z|P (S− = 0,Z\k = 0, Dk = 1|R)

(30)

where in the last line we apply the inclusion-exclusion principle to decompose an arbitrary joint state over
Bernoulli variables P (A = 0,B = 1) as a sum over the powerset of the variables B in terms of marginals where
all variables are instantiated to 0,

P (A = 0,B = 1) =
∑
C⊆B

(−1)|C|P (A = 0, C = 0) (31)

By the definition of noisy-or (7) we have that

P (S− = 0,Z\k = 0, Dk = 1|R)

=
∑
di,i6=k

P (S− = 0,Z\k = 0, Dk = 1,∧Ni 6=kDi = di|R)

=
∑
di,i6=k

∏
S∈S−

P (S = 0|Dk = 1,∧Ni6=kDi = di)
∏
S∈Z

P (S\k = 0|Dk = 1,∧Ni6=kDi = di)P (Dk = 1,∧Ni 6=kDi = di|R)

=
∑
di,i6=k

∏
S∈S−

P (S = 0|Dk = 1,∧Ni6=kDi = di)
∏
S∈Z

P (S = 0|Dk = 1,∧Ni 6=kDi = di)

λDk,S
P (Dk = 1,∧Ni 6=kDi = di|R)

=
P (S− = 0,Z = 0, Dk = 1|R)∏

S∈Z
λDk,S

(32)

Therefore we can replace the graph operation represented by \k by dividing the CPT by the product
∏
S∈Z

λDk,S .

This allows Esuff to be expressed as

Esuff(Dk, E) =
1

P (S±|R)

∑
X⊆S+

|X |
∏
S∈X

(1−λDk,S)
∏

S∈S+\X

λDk,S

∑
Z⊆S+\X

(−1)|Z|P (S− = 0,Z = 0, Dk = 1|R)
1∏

S∈Z
λDk,S

(33)



11

We now aggregate the terms in the power sum that yield the same marginal on the symptoms (e.g. for fixed
Z). Every X ∈ S+ \ Z yields a single marginal P (S− = 0,Z = 0, Dk = 1|R) and therefore if we express (33) as
a sum in terms of Z, where each term P (S− = 0,Z = 0, Dk = 1|R) aggregates the a coefficient KZ of the form
Esuff(Dk, E) =

∑
Z⊆S+ KZP (S− = 0,Z = 0, Dk = 1|R) where

KZ =
(−1)|Z|

P (S±|R)

1∏
S∈Z

λDk,S

∑
X⊆S+\Z

|X |
∏
S∈X

(1− λDk,S)
∏

S∈S+\X

λDk,S

=
(−1)|Z|

P (S±|R)

1∏
S∈Z

λDk,S

∑
X⊆A

|X |
∏
S∈X

(1− λDk,S)
∏

S∈A\X

λDk,S

∏
S∈Z

λDk,S

=
(−1)|Z|

P (S±|R)

∑
X⊆A

|X |
∏
S∈X

(1− λDk,S)
∏

S∈A\X

λDk,S (34)

where A = S+ \ Z. This can be further simplified using the identity

∑
A⊆B

|A|
∏
a∈A

(1− a)
∏

a′∈B\A

a′ = |B| −
∑
a∈B

a =
∑
a∈B

(1− a) (35)

which we now prove iteratively. First, consider the function S(B) :=
∑
A⊆B

∏
a∈A

(1− a)
∏

a′∈B\A
a′. Now, consider

S(B+{c}). This function can be divided into two sums, one where c ∈ A and the other where c 6∈ A. Therefore

S(B + {c}) =
∑
A⊆B

∏
a∈A

(1− a)
∏

a′∈B\A

a′c+
∑
A⊆B

∏
a∈A

(1− a)
∏

a′∈B\A

a′(1− c) = S(B) (36)

Starting with the empty set, S(∅) = 1, it follows that S(B) = 1 ∀ countable sets B. Next, consider the function
G(B) :=

∑
A⊆B
|A| ∏

a∈A
(1− a)

∏
a′∈B\A

a′, which is the form of the sum we wish to compute in (34). Proceeding as

before, we have

G(B + {c}) =
∑
A⊆B

|A|
∏
a∈A

(1− a)
∏

a′∈B\A

a′c+
∑
A⊆B

(|A|+ 1)
∏
a∈A

(1− a)
∏

a′∈B\A

a′(1− c)

= cG(B) + (1− c)G(B) + (1− c)S(B)

Using S(B) = 1 we arive at the recursive formula G(B + {c}) = G(B) + (1− c). Starting with G(∅) = 0, and
building the set B by recursively adding elements c to the set, we arrive at the identity

G(B) = |B| −
∑
a∈B

a (37)

Using (37) we can simplify the coefficient (34)

(−1)|Z|

P (S±|R)

∑
X⊆S+\Z

|X |
∏
S∈X

(1− λDk,S)
∏

S∈(S+\Z)\X

λDk,S =
(−1)|Z|

P (S±|R)

∑
S∈S+\Z

(1− λDk,S) (38)

Rearranging (33) as a summation over Z substituting in (38) gives

Esuff(Dk, E) =
1

P (S±|R)

∑
Z⊆S+

(−1)|Z|P (S− = 0,Z = 0, Dk = 1|R)

 ∑
S∈S+\Z

(1− λDk,S)

 (39)

which can be expressed as

Esuff(Dk, E) =
1

P (S±|R)

∑
Z⊆S+

(−1)|Z|P (S− = 0,Z = 0, Dk = 1|R)× τ(k,Z) (40)
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where

τ(k,Z) =
∑

S∈S+\Z

(1− λDk,S) (41)

Note that if we fix τ(k,Z) = 1 ∀Z, we recover
∑
Z⊆S+

(−1)|Z|P (S− = 0,Z = 0, Dk = 1|R)/P (S±|R) =

P (S±, Dk = 1|R)/P (S±|R) = P (Dk = 1|E), which is the standard posterior of disease Dk under evidence E =
R∩S± (this follows from the inclusion-exclusion principle, and can be easily checked by applying marginalization
to express P (S±, Dk = 1|R) in terms of marginals where all symptoms are instantiated as 0). Note that (40)
can be seen as a counterfactual correction to the quickscore algorithm in [10] (although we do not assume
independence of diseases as the authors of [10] do).

Supplementary note 5: properties of the expected sufficiency

In this supplementary note, we show that the expected sufficiency (42) obeys our four postulates, including an
additional postulate of sufficiency which is obeyed by the expected sufficiency.

Theorem 3 (Diagnostic properties of expected sufficiency). 1. consistency. Esuff(Dk, E) ∝ P (Dk = 1|E)

2. causality. If 6 ∃ S ∈ Dec(Dk) ∩ S+ =⇒ Esuff(Dk, E) = 0

3. simplicity. |Esuff(Dk, E)| ≤ |S+ ∩ Dec(Dk)|

4. sufficiency. Esuff(Di ∧Dj , E) > 0 =⇒ Esuff(Di, E) > 0 and Esuff(Dj , E) > 0

The expected sufficiency satisfies the following four properties,

Proof. Postulate 1 dictates that the measure should be proportional to the posterior probability of the diseases.
Postulate 2 states that if the disease has no causal effect on the symptoms presented then it is a poor diagnosis
and should be discarded. Postulate 3 states that the (tight) upper bound of the measure for a given disease (in
the sense that there exists some disease model that achieves this upper bound – namely deterministic models) is
the number of positive symptoms that the disease can explain. This allows us to differentiate between diseases
that are equally likely causes, but where one can explain more symptoms than another. Postulate 4 states that
if it is possible that Dk is causing at least one symptom, then the measure should be strictly greater than 0.
Starting from the definition of the expected sufficiency

Esuff(Dk, E) :=
∑
S′

∣∣S ′+∣∣P (S ′|E ,do(D \Dk = 0),do(UL = 0)) (42)

given the conditional independence structure of the twin network [F], we can express the counterfactual
symptom marginals as

P (S ′|E ,do(D \Dk = 0),do(UL = 0)) (43)

=
∑
dk

∏
S∗∈S′

P (S∗|E ,do(D∗ \Dk = 0),do(U∗L = 0), dk)P (dk|E ,do(D∗ \Dk = 0),do(U∗L = 0)) (44)

=
∑
dk

∏
S∗∈S′

P (S∗|E ,do(D∗ \Dk = 0),do(U∗L = 0), dk)P (dk|E) (45)

If Dk = 1, then do the the counterfactual interventions the counterfactual states have all parents (including
leaks) instantiated to 0, which implies that S ′+ = ∅ by (2). Hence this case never contributes to the expected
sufficiency as the expectation is over |S ′+|. For Dk = 1, we recover that P (S ′|E ,do(D \ Dk = 0),do(UL =
0)) ∝ P (Dk = 1|E) and therefore Esuff(Dk, E) ∝ P (Dk = 1|E). For postulate 2, if there are no symptoms
that are descendants of Dk, then Esuff(Dk, E) = 0. This follows immediately from the fact that if Dk is not
an ancestor of any of the symptoms, then all counterfactual symptoms have all parents instantiated as 0 and
S ′+ = ∅. For postulate 4, we can only prove this property under additional assumptions about our disease model
(see supplementary note 2 for noisy-and counter example). First, note that Esuff(Dk, E) is a convex sum with
positive semi-definite coefficients |S ′+|. If there is a single positively evidenced symptom that is a descendent of
Dk, and Dk has a positive causal influence on that child, and our disease model permits that every disease be
capable of causing its associated symptoms in isolation, i.e. P (S = 1|only)(Dk = 1)) > 0 for S ∈ Dec(Dk), then
it is simple to check that P (S∗ = 1|E ,do(D∗ \Dk = 0),do(U∗L = 0), dk = 1) > 0 and so Esuff(Dk, E) > 0.
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Supplementary note 6: expected disablement

In this supplementary note we turn our attention to our second diagnostic measure – the expected dis-
ablement. This measure is closer to typical treatment measures, such as the effect of treatment on the
treated [24]. We use our twin diagnostic network outlined in supplementary note 3 figure [E] (shown
below) to simulating counterfactual treatments. We focus on the simplest case of single disease interventions,
and propose a simple ranking measure whereby the best treatments are those that get rid of the most symptoms.

Definition 3 The expected disablement of disease Dk determines the number of positive symptoms that we
would expect to switch off if we intervened to turn off Dk,

Edis(Dk, E) :=
∑
S′

∣∣S+ \ S ′+
∣∣P (S ′|E ,do(Dk = 0)) (46)

where E is the factual evidence and S+ is the set of factual positively evidenced symptoms. The expectation is
calculated over all possible counterfactual symptom evidence states S ′ and S ′+ denotes the positively evidenced
symptoms in the counterfactual symptom evidence state. do(Dk = 0) denotes the counterfactual intervention
setting Dk → 0.

Decisions about which treatment to select for a patient generally take into account variables such as cost and
cruelty. These variables can be simply included in the treatment measure. For example, the cruelty of specific
symptoms can be included in the expectation (46) by weighting each positive symptom accordingly. The cost
of treating a specific disease is included simply by multiplying (46) by a cost weight, and likewise for including
the probability of the intervention succeeding. For now, we focus on computing the counterfactual probabilities,
which we can then use to construct arbitrarily weighted expectations.

To calculate (46), note that the only CPTs that differ from the original noisy-OR SCM are those for
unmerged dual symptom nodes (i.e. children of the intervention node Dk). The disease layer forms a Markov
blanket for the symptoms layer, d-separating dual symptom pairs from each other. Therefore we derive the
CPT for dual symptoms and their parent diseases.

. . .D1

. . .

S1

D2
⇤

S1
⇤

RNR1

D2 DM[E]

Factual graph Counterfactual graph

Supplementary Figure 4: Final twin network for expected disablement

Lemma 2. For a given symptom S and its counterfactual dual S∗, with parent diseases D and under the
counterfactual intervention do(D∗k = 0), the joint conditional distribution on the twin network is given by

P (s, s∗ | ∧iDi = di, do(D∗k = 0)) =



P (s = 0 | ∧i Di = di) if s = s∗ = 0

0 if s = 0, s∗ = 1(
1

λDk,S
− 1
)
P (s = 0 | ∧i6=k Di = di, Dk = 1)δ(dk − 1) if s = 1, s∗ = 0 and λDk,S 6= 0

P (s\k = 0 | ∧i 6=k Di = di, Dk = 1)δ(dk − 1) if s = 1, s∗ = 0 and λDk,S = 0

P (s\k = 1| ∧i 6=k Di = di, Dk = 1) if s = 1, s∗ = 1

where δ(dk − 1) = 1 if Dk = 1 else 0.

Proof. First note that for this marginal distribution the intervention do(D∗k = 0) is equivalent to setting the
evidence D∗k = 0 as we specify the full Markov blanket of (s, s∗). Let D\k denote the set of parents of (s, s∗)
not including the intervention node D∗k or its dual Dk. We wish to compute the conditional probability

P (s, s∗ | ∧i6=kDi = di, Dk = dk) =
∑
us

p(us)P (s|∧i 6=kDi = di, Dk = dk, us)P (s∗|∧i 6=kDi = di, D
∗
k = 0, us) (47)
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where p(us) is the product distribution over all exogenous noise terms for S including the leak term. We
proceed as before by expressing this as a marginalization over the CPT of the dual states, P (s = 0, s∗ = 0 | ∧i 6=k
Di = di, D

∗
k = 0, Dk), P (s = 0 | ∧i 6=k Di = di, D

∗
k = 0, Dk = dk) and P (s∗ = 0 | ∧i6=kDi = di, D

∗
k = 0, Dk = dk).

For si = 0, the generative functions are given by

P (s = 0 |Pa(S), us) = uL
∧

Di∈Pa(S)

(d̄i ∨ uDi,S) (48)

First we compute the joint state.

P (s = 0| ∧i6=k Di = di, Dk = dk, us)P (s∗ = 0|∧i 6=kDi = di, D
∗
k = d∗k, us)

= uL ∧ uL
∧

Di∈D\k

(
uDi,S ∨ d̄i

) ∧
Dj∈D\k

(
uDj ,S ∨ d̄j

)
∧
[
uDk,S ∨ d̄k

]
∧
[
uDk,S ∨ d̄∗k

]
= uL

∧
Di∈D\k

(
uDi,S ∨ d̄i

) [
uDk,S ∨

(
d̄∗k ∧ d̄k

)]
Where we have used the Boolean identities a ∧ a = a and a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c). Therefore

P (s = 0, s∗ = 0| ∧i 6=k Di = di, Dk = dk, D
∗
k = d∗k) =

∑
us

p(us)P (s = 0|D\k, Dk, us)P (s∗ = 0|D\k, D∗k, us)

= λLs

[
λDk,S (dk ∨ d∗k) + d̄k ∧ d̄∗k

] ∏
Di∈D\k

[
λDi,Sdi + d̄i

]
Next, we calculate the single-symptom conditionals

P (s = 0 | ∧i 6=k Di = di, Dk = dk) =
∑
us

p(us)P (s = 0|D\k, Dk, us)

=
∑
uLS

P (uLs)uLs

∏
Di∈D

∑
uDi,S

P (uDi,S)uDi,S ∨ d̄i

= P (uLs
= 1)

∏
Di∈D

∑
uDi,S

[
P (uDi,S = 1) + P (uDi,S = 0)d̄i

]
= λLs

∏
Di∈D

[
λDi,Sdi + d̄i

]
(49)

and similar for P (s∗ = 0 | ∧i 6=kDi = di, D
∗
k = d∗k). Note that λx + x̄ = λx. We can now express the joint

cpd over dual symptom pairs, using the identities P (s = 0, s∗ = 1 |X) = P (s = 0 |X) − P (s = 0, s∗ = 0 |X),
P (s = 1, s∗ = 0 |X) = P (s∗ = 0 |X)−P (s = 0, s∗ = 0 |X) and P (s = 1, s∗ = 1 |X) = 1−P (s = 0 |X)−P (s∗ =
0 |X) + P (s = 0, s∗ = 0 |X) for arbitrary conditional X.

P (s, s∗| ∧i 6=k Di = di, Dk = dk, D
∗
k = d∗k) =



λLs
λ
dk∨d∗k
Dk,S

∏
Di∈D\k

λdiDi,S
if s = s∗ = 0

λLs

[
λdkDk,S

− λdk∨d
∗
k

Dk,S

] ∏
Di∈D\k

λdiDi,S
if s = 0, s∗ = 1

λLs

[
λ
d∗k
Dk,S

− λdk∨d
∗
k

Dk,S

] ∏
Di∈D\k

λdiDi,S
if s = 1, s∗ = 0

1− λLs

[
λdkDk,S

+ λ
d∗k
Dk,S

− λdk∨d
∗
k

Dk,S

] ∏
Di∈D\k

λdiDi,S
if s = s∗ = 1

As we are always intervening to switch off diseases, D∗k = 0, then dk ∨ d∗k = dk and

λdkDk,S
− λdk∨d

∗
k

Dk,S
= 0 (50)

and therefore P (s = 0, s∗ = 1|∧i 6=kDi = di, Dk = dk, D
∗
k = 0) = 0 as expected (switching off a disease will

never switch on a symptom). This simplifies our expression for the conditional distribution to
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P (s, s∗| ∧i 6=k Di = di, Dk = dk, D
∗
k = 0) =



λLs
λdkDk,S

∏
Di∈D\k

λdiDi,S
if s = s∗ = 0

0 if s = 0, s∗ = 1

λLs

[
1− λdkDk,S

] ∏
Di∈D\k

λdiDi,S
if s = 1, s∗ = 0

1− λLs

∏
Di∈D\k

λdiDi,S
if s = s∗ = 1

(51)

This then simplifies using (49) to

P (s, s∗|∧i 6=kDi = di, Dk = dk, D
∗
k = 0) =


P (s = 0| ∧i Di = di) if s = s∗ = 0

0 if s = 0, s∗ = 1

P (s = 0| ∧i 6=k Di = di, Dk = 0)− P (s = 0| ∧i6=k Di = di, Dk = dk) if s = 1, s∗ = 0

P (s = 1| ∧i 6=k Di = di, Dk = 0) if s = s∗ = 1

(52)
We have arrived at expressions for the CPT’s over dual symptoms in terms of CPT’s on the factual graph,

and hence our conterfactual query can be computed on the factual graph alone. The third term in (52),
P (s = 0| ∧i 6=k Di = di, Dk = 0) − P (s = 0| ∧i 6=k Di = d,Dk = dk), equals zero unless Dk = 1. Using the
definition of noisy-OR (7) to give

P (s = 0| ∧i 6=k Di = di, Dk = 0) =
1

λDk,S
P (s = 0| ∧i 6=k Di = di, Dk = 1) (53)

in the case that λDk,S > 0, we recover

P (s = 0|∧i 6=kDi = di, Dk = 0)−P (s = 0|∧i 6=kDi = di, Dk = dk) =

(
1

λDk,S
− 1

)
P (s = 0 | ∧i 6=kDi = di, Dk = 1)δ(dk−1)

(54)
where dk is the instantiation of Dk on the factual graph. The term δ(dk − 1) is equivalent to fixing the

observation Dk = 1 on the factual graph. If λDk,S = 0 then

λLs

[
1− λdkDk,S

] ∏
Di∈D\k

λdiDi,S
= λLs

∏
Di∈D\k

λdiDi,S
δ(dk − 1) (55)

which is equivalent to P (s\k = 0| ∧i6=k Di = di, Dk = 1)δ(dk − 1)
Finally, from the definition of the noisy-OR CPT (2),

P (s = 1| ∧i 6=k Di = di, Dk = 0) = P (s\k = 1| ∧i 6=k Di = di, Dk = 1) (56)

Lemma 52 allows us to express the expected disablement in terms of factual probabilities. As we have seen,
the intervention do(D∗k = 0) can never result in counterfactual symptoms that are on, when their dual factual
symptoms are off, so we need only enumerate over counterfactual symptoms states where S ′+ ⊆ S+ as these are
the only counterfactual states with non-zero weight. From this it also follows that for all s ∈ S− =⇒ s∗ ∈ S ′−.
The counterfactual CPT in (46) is represented on the twin network [F] as

P (S ′+,S ′−|E ,do(D∗k = 0)) = P (S ′+,S ′−|S+,S−,R,do(D∗k = 0)) (57)

Theorem 4 (Simplified noisy-OR expected disablement). For the noisy-OR networks described in supplemen-
tary note 2, the expected disablement of disease Dk is given by

Edis(Dk, E) =
1

P (S+,S−|R)

∑
Z⊆S+

(−1)|Z|P (S− = 0,Z = 0, Dk = 1|R)γ(Z, Dk) (58)

where
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γ(Z, Dk) =
∑
S∈Z

(
1− 1

λDk,S

)
(59)

where S± is the set of factual positive (negative) evidenced symptom nodes and R is the risk factor evidence.

Proof. From the above discussion, the non-zero contributions to the expected disablement are

E(Dk, E)dis =
∑
C⊆S+

|C|P (S∗− = 0, C∗ = 0,S+ \ C = 1|S+,S−,R,do(D∗k = 0)) (60)

Applying Bayes rule, and noting the the factual evidence states are not children of the intervention node D∗k,
gives

E(Dk, E)dis =
1

P (S+,S−|R)

∑
C⊆S+

|C|P (S∗− = 0, C∗ = 0,S+ \ C = 1,S+,S−|R,do(D∗k = 0)) (61)

Let us now consider the probabilities Q = P (S∗− = 0, C∗ = 0,S \ C∗ = 1,S+,S−|R,do(D∗k = 0)). We can
express these as marginalizations over the disease layer, which d-separate dual symptom pairs from each-other.
First, we express Q in the instance where we assume all λDk,S > 0.

Q =
∑
d,dk

P (∧i6=kDi = di, Dk = dk|R)
∏
S∈S−

P (S∗ = 0, S = 0| ∧i 6=k Di = di, Dk = dk, D
∗
k = 0)

×
∏
S∈C

P (S∗ = 0, S = 1| ∧i 6=k Di = di, Dk = dk, D
∗
k = 0)

∏
S∈S+\C

P (S∗ = 1, S = 1| ∧i6=k Di = di, Dk = dk, D
∗
k = 0)

(62)

E(Dk, E) is a sum of products of Q’s, therefore if all Q are continuous for λDk,S → 0 ∀ S we can derive
E(Dk, E) for positive λDk,S and take the limit λDk,S → 0 where appropriate. We can consider each term in
isolation, as the product of continuous functions is continuous. Each term in Q derives from one of

P (s, s∗ | ∧i 6=k Di = di, Dk = dk,do(D∗k = 0))

=



P (s = 0 | ∧i Di = di) if s = s∗ = 0

0 if s = 0, s∗ = 1(
1

λDk,S
− 1
)
P (s = 0 | ∧i 6=k Di = di, Dk = 1)δ(dk − 1) if s = 1, s∗ = 0 and λDk,S 6= 0

P (s\k = 0 | ∧i 6=k Di = di, Dk = 1)δ(dk − 1) if s = 1, s∗ = 0 and λDk,S = 0

P (s\k = 1| ∧i 6=k Di = di, Dk = 1) if s = 1, s∗ = 1

(63)

Starting with P (s = 0 | ∧i Di = di) = λLS

∏N
i=1 λ

di
Di,S

, this is a linear function of λDk,S and therefore
continuous in the limit λDk,S → 0. Secondly,

(
1

λDk,S
− 1

)
P (s = 0 | ∧i 6=k Di = di, Dk = 1)δ(dk − 1) =

(
1

λDk,S
− 1

)
λLS

N∏
i=1

λdiDi,S
δ(dk − 1) (64)

which again is a linear function fo λDk,S and so is continuous in the limit λDk,S → 0. P (s\k = 0 | ∧i6=k Di =

di, Dk = 1)δ(dk − 1) is a constant function w.r.t λDk,S , as is P (s\k = 1| ∧i 6=kDi = di, Dk = 1), so these are also
both continuous in the limit.

We therefore proceed under the assumption that λDk,S > 0 ∀ S. Applying Lemma 1 simplifies (62) to

Q =
∑
d

P (∧i 6=kDi = di, Dk = dk|R)
∏
S∈S−

P (S = 0| ∧i 6=k Di = di, Dk = dk)
∏
S∈C

P (S = 0| ∧i 6=k Di = di, Dk = 1)δ(dk − 1)

×
∏

S∈S+\C

P (S\k = 1| ∧i 6=k Di = di, Dk = 1)
∏
S∈C

(
1

λDk,S
− 1

)
(65)
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Note that the only Q that are not multiplied by a factor |C| = 0 in (61) have C 6= ∅, and so δ(dk − 1) is always
present. Marginalizing over all disease states gives

Q = P (S− = 0, C = 0, (S+ \ C)\k = 1, Dk = 1|R)
∏
S∈C

(
1

λDk,S
− 1

)
(66)

As before, we simplify this using a change of varaibles and the inclusion-exclusion principle. Change variables
C → S+ \ C, which along with (66) gives

E(Dk, E)dis =
1

P (S+,S−|R)

∑
C⊆S+

|S+ \ C|P (S− = 0, (S+ \ C) = 0, C\k = 1, Dk = 1|R)
∏

S∈(S+\C)

(
1

λDk,S
− 1

)
(67)

Next we apply the inclusion exclusion principle, giving

E(Dk, E)dis =
1

P (S+,S−|R)

∑
C⊆S+

|S+\C|
∏

S∈(S+\C)

(
1

λDk,S
− 1

)∑
Z⊆C

(−1)|Z|P (S− = 0, (S+\C) = 0,Z\k = 0, Dk = 1|R)

(68)
We can now proceed as before and remove the graph cut operation on the set Z, using the definition of

noisy-or (2),

P (S− = 0,(S+ \ C) = 0,Z\k = 0, Dk = 1|R)

=
∑
di,i6=k

P (S− = 0, (S+ \ C) = 0,Z\k = 0, Dk = 1,∧Ni6=kDi = di|R)

=
∑
di,i6=k

∏
S∈S±\C

P (S = 0|Dk = 1,∧Ni 6=kDi = di)
∏
S∈Z

P (S\k = 0|Dk = 1,∧Ni 6=kDi = di)P (Dk = 1,∧Ni 6=kDi = di|R)

=
∑
di,i6=k

∏
S∈S±\C

P (S = 0|Dk = 1,∧Ni 6=kDi = di)
∏
S∈Z

P (S = 0|Dk = 1,∧Ni6=kDi = di)

λDk,S
P (Dk = 1,∧Ni 6=kDi = di|R)

=
P (S− = 0, (S+ \ C) = 0,Z = 0, Dk = 1|R)∏

S∈Z
λDk,S

(69)

Therefore

E(Dk, E)dis =
1

P (S+,S−|R)

∑
C⊆S+

|S+ \ C|
∏

S∈S+\C

(
1

λDk,S
− 1

)
×
∑
Z⊆C

(−1)|Z|P (S− = 0,S+ \ C = 0,Z = 0, Dk = 1|R)
∏
S∈Z

1

λDk,S

Finally, we aggregate all terms that have the same symptom marginal. Perform the change of variables
X = S+ \ C

E(Dk, E)dis =
1

P (S+,S−|R)

∑
X⊆S+

|X |
∏
S∈X

(
1

λDk,S
− 1

) ∑
Z⊆S+\X

(−1)|Z|P (S− = 0,X = 0,Z = 0, Dk = 1|R)
∏
S∈Z

1

λDk,S

(70)
Clearly each term for a given X is zero unless λDk,S < 1 ∀ S ∈ X , and so we can restrict ourselves to

S ⊆ S+ ∩ Ch(Dk). Furthermore, if any λDk,S = 0 for S ∈ X , then the symptom marginal (which is linearly
dependent on λDk,S) is 0 (there is zero probability of observing this symptom to be off if Dk = 1), and this

term in the sum is zero. Therefore we can restrict the sum to X ⊆ S
(k)
+ (λ > 0), where S

(k)
+ (λ > 0) is the set

of positively evidenced factual symptoms that are children of Dk and have λDk,S > 0. Let A = X ∪ Z. Each
marginal P (S− = 0,A = 0, Dk = 1|R) aggregates a coefficient

1

P (S+,S−|R)

∑
X⊆A

|X |
∏
S∈X

(
1

λDk,S
− 1

)
(−1)|A|−|X|

∏
S∈A\X

1

λDk,S
(71)
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which simplifies to

1

P (S+,S−|R)
∏
S∈A

λDk,S

∑
X⊆A

|X |(−1)|A|−|X|
∏
S∈X

(1− λDk,S) (72)

To evaluate this term, define the function

G(A) :=
∑
X⊆A

|X |(−1)|A|−|X|
∏
S∈X

(1− λDk,S) (73)

If we append an element {S̃} to the set A, where S̃ 6∈ A, we can express G(A ∪ {S̃}) as

G(A∪{S̃}) =
∑
X⊆A

|X |(−1)|A|+1−|X|
∏
S∈X

(1− λDk,S)+
∑
X⊆A

(|X |+1)(−1)|A|+1−|X|−1
∏
S∈X

(1− λDk,S) (1−λDk,S̃
)

(74)

where we have split the sum into subsets where containing S̃ and not containing S̃, and then expressed these
in terms of the subsets X of A. This yields the recursive formula

G(A ∪ {S̃}) = −λDk,S̃
G(A) + (1− λDk,S̃

)H(A) (75)

where

H(A) =
∑
X⊆A

(−1)|A|−|X|
∏
S∈X

(1− λDk,S) (76)

We can determine H(A) by the same technique – noting that

H(A ∪ {S̃}) =
∑
X⊆A

(−1)|A|+1−|X|
∏
S∈X

(1− λDk,S) +
∑
X⊆A

(−1)|A|+1−|X|−1
∏
S∈X

(1− λDk,S) (1− λDk,S̃
)

= −H(A) + (1− λDk,S̃
)H(A)

= −λDk,S̃
H(A)

for S̃ 6∈ A. Then, noting that H(∅) = 1, we recover

H(A) = (−1)|A|
∏
S∈A

λDk,S (77)

and therefore

G(A ∪ {S̃}) = −λDk,S̃
G(A) + (1− λDk,S̃

)(−1)|A|
∏
S∈A

λDk,S

= (−1)

[
λDk,S̃

G(A) + (1− λDk,S̃
)(−1)|A∪{S̃}|

∏
S∈A

λDk,S

]

The above recursion relation states that for every new element we append to A, we multiply the previous
function by the new λDk,S̃

, add a term with the product of the previous λ’s multiplied by (1 − λDk,S̃
), and

multiply the result by (−1). Starting from G(∅) = 0 and G({S}) = 1− λDk,S , it follows that the function must
take the form

G(A) = (−1)|A|+1
∑
S∈A

(1− λDk,S)
∏

S′∈A\S

λDk,S′ (78)

Therefore
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E(Dk, E)dis =
1

P (S+,S−|R)

∑
A⊆S+

1∏
S∈A

λDk,S
(−1)|A|+1

∑
S∈A

(1− λDk,S)
∏

S′∈A\S

λDk,S′ P (S− = 0,A = 0, Dk = 1|R)

=
1

P (S+,S−|R)

∑
A⊆S+

(−1)|A|+1P (S− = 0,A = 0, Dk = 1|R)
∑
S∈A

1− λDk,S

λDk,S
(79)

Once again, we have arrived at a corrected form of the standard posterior

E(Dk, E)dis =
1

P (S+,S−|R)

∑
A⊆S+

(−1)|A|P (S− = 0,A = 0, Dk = 1|R)γ(A, Dk) (80)

where

γ(A, Dk) = |A| −
∑
S∈A

1

λDk,S
(81)

and we recover E(Dk, E)dis = P (Dk = 1|E) in the limit γ(A, Dk)→ 1.
Finally, consider that for some S ∈ A, λDk,S = 0. Note that P (S− = 0,A = 0, Dk = 1|R) = P (S− = 0,A =

0|R, Dk = 1)P (Dk = 1|R). If any λDk,S = 0 for S ∈ S−, then this term is 0 by construction.

Supplementary note 7: properties of the expected disablement

In this supplementary note we show that the expected disablement satisfies our criteria for diagnostic measures.
Although in noisy-or networks the expected disablement coincides with the expected sufficiency, which we have
already shown to obey our postulates, we show here that the expected disablement in obeys our postulates in
general models - regardless of the choice of graph topology or generative functions.

Theorem 5 (Diagnostic properties of expected disablement). The expected disablement, defined as

E(Dk, E)dis :=
∑
S′

∣∣S+ \ S ′+
∣∣P (S ′|E , do(Dk = 0))

satisfies the following three conditions

1. consistency. Edis(Dk, E) ∝ P (Dk = 1|E)

2. causality. If 6 ∃ S ∈ Dec(Dk) ∩ S+ =⇒ Edis(Dk, E) = 0

3. simplicity. |Edis(Dk, E)| ≤ |S+ ∩ Dec(Dk)|

Proof. First we prove consistency. In the following, we use the notation ∗ to denote counterfactual variables.
The term P (S ′∗|E ,do(D∗k = 0)) can be expressed as

P (S ′∗|E ,do(D∗k = 0)) =
∑

dk∈{0,1}

P (S ′∗, Dk = dk|E ,do(D∗k = 0)) (82)

=
∑

dk∈{0,1}

P (S ′∗|Dk = dk, E ,do(D∗k = 0))P (Dk = dk|E ,do(D∗k = 0)) (83)

As Dk is not a descendent of D∗k, this simplifies to

P (S ′∗|E ,do(D∗k = 0)) =
∑

dk∈{0,1}

P (S ′∗|Dk = dk, E ,do(D∗k = 0))P (Dk = dk|E) (84)

If Dk = 0 then the factual and counterfactual symptoms have identical states on their parents, and therefor
are copies of each other. As a result, S+ = S ′+ and the expected disablement is identical to 0. The only
term that is non-zero is therefore when Dk = 1, and all non-zero terms in (84) therefore have a coefficient of
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P (Dk = 1|E). To see that causality is satisfied, note that
∣∣S+ \ S ′+

∣∣ 6= 0 iff S ′+ ⊂ S+, which requires that at

least one symptom has been switched off. If Dk is not a parent of any S+, then P (S ′∗|E ,do(D∗k = 0)) = 0
unless S ′∗ = S (the symptom evidence is unchanged), which implies that

∣∣S+ \ S ′+
∣∣ = 0, satisfying causality.

Finally, note that Edis(Dk, E) is a convex combination over the values of the set difference function
∣∣S+ \ S ′+

∣∣,
and therefore is upper bounded by Edis(Dk, E) ≤ |S+|, the number of positively evidenced symptoms that are
children of Dk. Therefore, the expected disablement is upper bounded by the maximal number of positive
symptoms that can be caused by Dk.

Supplementary note 8: relation to other counterfactual measures

In this supplementary note we compare the expected disablement and expected sufficiency to three related coun-
terfactual measures; the effect of treatment on the treated [3], the probability of sufficiency and the probability
of necessity [16]. We briefly discuss these measures and their applicability to the task of diagnosis.

We are interested in quantifying the causal relations between diseases and symptoms—the degree to which a
(latent) disease causes the (observed) symptoms. In this context, the effect of treatment on the treated (ETT),
probability of necessity (PN) and probability of sufficiency (PS) for a disease-symptom pair (D,S) are defined
as,

ETT = P (S∗ = 1|D = 1,do(D∗ = 0)) (85)

PN = P (S∗ = 0|S = 1, D = 1,do(D∗ = 0)) (86)

PS = P (S∗ = 1|S = 0, D = 0,do(D∗ = 1)) (87)

The ETT measures the probability that symptom S would be present, given that the disease is present, had
the disease not been present. Unlike the expected disablement and sufficiency, this counterfactual measure can
be identified from data under causal assumptions, without requiring knowledge of the underlying structural
equations [25]. Note that this query contains no information as to the factual state of the patients symptoms
(whether or not the patient presented symptom S). In other words, the ETT measures the causal effect of
D on S ‘on average’, and provides the same value regardless of whether or not S is present. Incorporating
knowledge of the patients symptoms is vital for diagnosis, and as the ETT is not capable of incorporating
symptom evidence it is not suitable for diagnosis.

The PN quantifies the likelihood that observed event D = 1 caused S = 1. However, it includes the
observation that D = 1, whereas in diagnostic tasks the disease is (typically) unobserved. Furthermore, it
does not incorporate evidence for symptoms that are not present (S = 0). Absent symptoms are important
diagnostic determinants and should not be disregarded by a desirable diagnostic measure. Likewise, the PS
includes the observation that D = 0, and cannot incorporate positive symptom evidence.

Relating the expected disablement (sufficiency) to these measures, it can best be understood as a generaliza-
tion of the probability of necessity (probability of sufficiency) such that i) it incorporates posterior inference on
the disease state, rather than treating it as observed, and ii) it computes an expectation over symptoms states,
such that it favours diseases the explain many symptoms, and iii) it incorporates both positive and negative
symptom evidence (as well as evidence on variables that do not correspond to the cause D or the effect S, such
as risk factors).

Supplementary note 9: examples of diagnosing with the posterior, expected disablement and sufficiency

In this supplementary note we look at the expected disablement, sufficiency and the posterior for some simple
toy models. This serves to highlight cases where using associative inference (the posterior) to diagnose diseases
results in different diagnoses than if we were to use the expected disablement and expected sufficiency. It also
provides some indication as to why the expected disablement and sufficiency achieve a similar accuracy on our
test set.

First, we look at a simple PGM where the posterior can return a spurious diagnoses. Consider the following
toy model,

There is a symptom S that is generated by a set of diseases D1, . . . , DN , and these diseases share a common
risk factor R. R is also a cause of another disease DX which does not cause S. First, consider the evidence set
E = {S = 1}. Diseases are typically rare, P (Di = 1) � 1, and so it is likely that the patient has one of the
diseases D1, D2, . . . , DN (as one is needed to explain S = 1), but very unlikely that the patient has multiple
diseases (as only one disease is required to explain S = 1. This causes diseases D1, D2, . . . , DN to compete
to explain S = 1, diluting of the diseases posteriors P (Di|E) for i = 1, 2, . . . , N in a phenomena know as
‘explaining away’ [26]. As a result, the single disease posteriors can be quite small as the number of competing
diseases N increases, P (Di = 1||E) ∼ 1/N . As a consequence of p(any{Di = 1}Ni=1|E) ≈ 1, the risk factor
posterior can be large, p(R = 1|E) ≈ 1, as R is capable of explaining all D1, . . . , DN . If disease DX has a strong
enough association with R, then it can end up with the largest posterior, p(DX = 1|E) > p(Di = 1|E) for all i =
1, . . . , N , despite it being impossible that DX is causing the observed symptoms.
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D1

<latexit sha1_base64="F2XRFMWmK4h0qla0zx5uP1ttAdU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG8FPXizov2ANpTNdtIu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsYXU/91hMqzWP5aMYJ+hEdSB5yRo2VHm56Xq9ccavuDGSZeDmpQI56r/zV7ccsjVAaJqjWHc9NjJ9RZTgTOCl1U40JZSM6wI6lkkao/Wx26oScWKVPwljZkobM1N8TGY20HkeB7YyoGepFbyr+53VSE176GZdJalCy+aIwFcTEZPo36XOFzIixJZQpbm8lbEgVZcamU7IheIsvL5PmWdU7r17dn1dqd3kcRTiCYzgFDy6gBrdQhwYwGMAzvMKbI5wX5935mLcWnHzmEP7A+fwBxDKNhQ==</latexit>

D2

<latexit sha1_base64="DwnY6GciaBIlz+HFYU1Ta2rH+bc=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyGgHoL6MGbEc0DkiXMTmaTIbOzy0yvEEI+wYsHRbz6Rd78GyfJHjSxoKGo6qa7K0ikMOi6305ubX1jcyu/XdjZ3ds/KB4eNU2casYbLJaxbgfUcCkUb6BAyduJ5jQKJG8Fo+uZ33ri2ohYPeI44X5EB0qEglG00sNNr9IrltyyOwdZJV5GSpCh3it+dfsxSyOukElqTMdzE/QnVKNgkk8L3dTwhLIRHfCOpYpG3PiT+alTcmaVPgljbUshmau/JyY0MmYcBbYzojg0y95M/M/rpBhe+hOhkhS5YotFYSoJxmT2N+kLzRnKsSWUaWFvJWxINWVo0ynYELzll1dJs1L2quWr+2qpdpfFkYcTOIVz8OACanALdWgAgwE8wyu8OdJ5cd6dj0VrzslmjuEPnM8fxbaNhg==</latexit>
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Supplementary Figure 5: Example of diagnostic model with back-door paths

This is an example of confounding [27], where the presence of a latent risk factor R generates correlations
between DX and S. Note that, even if R was observed, DX can have the largest posterior out of all the
diseases, if its association with R is strong enough, i.e. P (DX = 1|S = 1, R = 1) = P (DX = 1|R = 1) (due
to d-separation of DX from S given R) can be large if P (DX = 1|R = 1) ≈ 1. In this case, the posterior still
returns a spurious diagnosis despite there being no confounding. These examples are similar to Example 1 in
the section Associative diagnosis.

Next, we consider a class of Bayesian models that allow us to compute simple expressions for the posterior,
expected disablement and expected sufficiency. These are two layer noisy-OR diagnostic networks (also know
as BN20 networks [28]), which have a single layer of independent diseases D1, . . . , DN and symptoms generated
from these diseases by noisy-OR CPTs. An depiction of these networks is shown below,
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Supplementary Figure 6: Two layer noisy-OR diagnostic network

Consider the case where the evidence is a single positive symptoms E = {S = 1}. The posterior of a single
disease P (Di = 1|S = 1) can be calculated as,

P (Dk = 1|S = 1) =
P (S = 1, Dk = 1)

P (S = 1)
(88)

=
(1− P (S = 0|Dk = 1))P (Dk = 1)

P (S = 1)
(89)

=
P (Dk = 1)

P (S = 1)

(
1− P (S = 0)λk,s

P (Dk = 1)λk,s + P (Dk = 0)

)
(90)

where in (90) we have used the Quickscore formulas [10],

P (S = 0) =

N∏
i=1

[P (Di = 1)λi,s + P (Di = 0)] (91)

P (S = 0, Dk = 1) =

N∏
i=1
i6=k

[P (Di = 1)λi,s + P (Di = 0)]P (Dk = 1)λk,s (92)

The expected disablement and sufficiency given by Theorem 2,

Edis =
P (Dk = 1)× 0− P (S = 0, Dk = 1)×

(
1− 1

λk,s

)
P (S = 1)

(93)

=

(
1

λk,s
− 1

)
P (S = 0, Dk = 1)

P (S = 1)
(94)
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Esuff =
P (Dk = 1)× (1− λk,s)− P (S = 0, Dk = 1)× 0

P (S = 1)
(95)

=
P (Dk = 1)(1− λk,s)

P (S = 1)
(96)

The expected sufficiency ranks diseases as,

Esuff(Di, E) ≥ Esuff(Dj , E) (97)

∴
P (Di = 1)(1− λi,s)

P (S = 1)
≥ P (Dj = 1)× (1− λj,s)

P (S = 1)
(98)

∴ P (Di = 1)(1− λi,s) ≥ P (Dj = 1)(1− λj,s) (99)

The expected disablement ranks diseases as,

Edis(Di, E) ≥ Edis(Dj , E) (100)

∴

(
1

λi,s
− 1

)
P (S = 0, Di = 1)

P (S = 1)
≥
(

1

λj,s
− 1

)
P (S = 0, Dj = 1)

P (S = 1)
(101)

∴

(
1

λi,s
− 1

)
P (S = 0)P (Di = 1)λi,s

(P (Di = 1)λi,s + P (Di = 0))
≥
(

1

λj,s
− 1

)
P (S = 0)P (Dj = 1)λj,s

(P (Dj = 1)λj,s + P (Dj = 0))
(102)

where in (102) we have applied equations (91) and (92). It is simple to show that this inequality simplifies
to,

P (Di = 1)(1− λi,s) ≥ P (Dj = 1)(1− λj,s) (103)

Therefore in this example, for two layer noisy-OR models, the expected disablement and expected sufficiency
return the same disease rankings (though their values for a given disease will differ). These two layer networks
are identical to our three layer networks in the limit that there are no correlations between diseases. This
suggests why we observe very similar disease rankings (and hence accuracy) for the expected disablement and
sufficiency in our experiments; because symptoms in our model follow noisy-OR statistics and diseases in our
model are only weakly correlated by latent risk factors.

Lets now compare these rankings to the posterior ranking in our example of a two layer network with
E = {S = T}, i.e.

P (Di = 1|E) ≥ P (Dj = 1|E) (104)

=⇒ P (Di = 1)

(
1− P (S = 0)λi,s

P (Di = 1)λi,s − P (Di = 0)

)
≥ P (Dj = 1)

(
1− P (S = 0)λj,s

P (Dj = 1)λj,s − P (Dj = 0)

)
(105)

compared to,

Edis/suff(Di, E) ≥ Edis/suff(Dj , E) (106)

=⇒ P (Di = 1)(1− λi,s) ≥ P (Dj = 1)(1− λj,s) (107)

First, note that if λi,s = 1, which is equivalent to Di not being a cause of S, then Edis = Esuff = 0 and this
disease can never be ranked higher than any disease where λj,s < 1. This is not the case for the posterior, where
(105) reduces to

P (Di = 1)P (S = 1) ≥ P (Dj = 1)

(
1− P (S = 0)λj,s

P (Dj = 1)λj,s − P (Dj = 0)

)
(108)

I.e. the posterior can favour Di over Dj simply because it has a larger prior, even if it cannot be a cause of
S = T . Therefore, even in 2 layer networks where there are no confounders between diseases, the posterior can
return a spurious diagnosis. Note that simply ignoring diseases that are not direct causes of any of the patients
symptoms is insufficient. In general a disease Di may have some causal relation to the symptoms λi,s 6= 1, but
this could be a weak relation, λi,s = 1 − ε where ε � 1. Such a disease can still have a large posterior—for
example, a disease with a high prevalence but which only weakly causes the patients symptoms.
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Supplementary note 10: example clinical vignette

This supplementary note presents an example of the clinical vignettes used in our experiments. Details of
the vignettes authorship have been removed. Details on the evidence that has been included comprises of the
medical concept, whether or not it is included in our disease model, and whether or not it is present in the
patient.

{
age: 60,
diseases: Carcinoid tumour
duration: Months,
gender: Male,
initial input: I am suffering from facial flushing ,
risk factors: [
{name: Dyslipidemia
in model: True
presence: present},
{name: Essential hypertension
in model: True
presence: present},
{name: Ex−smoker
in model: True
presence: present},
{name: Family history of diabetes mellitus type 2
in model: True
presence: present},
{name: Family history of bowel cancer
in model: True
presence: present}

],
symptoms: [
{name: Flushing
in model: True
presence: present},
{name: Diarrhea
in model: True
presence: present},
{name: Facial redness
in model: False
presence: present},
{name: Flushing worse with exercise and stress
in model: False
presence: present},
{name: Flushing triggered by alcohol, chocolate and bananas
in model: False
presence: present},
{name: Fresh blood PR (hematochezia)
in model: True
presence: present},
{name: Cramping Generalized Abdominal Pain
in model: True
presence: present},
{name: Palpitations
in model: True
presence: not present},
{name: Unintentional weight loss
in model: True
presence: not present},
{name: Wheezing
in model: True
presence: not present}

],
}

supplementary tables

In this supplementary note we list the results of experiments 1 and 2. Experiment 1 compares the top k
accuracy of our algorithms. In experiment 2 we compare the diagnostic accuracy of 44 doctors to our associative
(Bayesian) and counterfactual diagnostic algorithms. The table below records the scores of each doctor and
the associative and counterfactual algorithm shadowing them.
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TABLE I: Results for experiment 1: table shows the top k accuracy for the posterior, expected disablement and expected
sufficiency ranking algorithms, for N from 1 to 15.

N Posterior Disablement Sufficiency

1 0.509 ± 0.012 0.536 ± 0.012 0.534 ± 0.012

2 0.652 ± 0.012 0.702 ± 0.011 0.703 ± 0.011

3 0.735 ± 0.011 0.784 ± 0.01 0.785 ± 0.01

4 0.785 ± 0.01 0.829 ± 0.009 0.829 ± 0.009

5 0.823 ± 0.009 0.867 ± 0.008 0.87 ± 0.008

6 0.849 ± 0.009 0.894 ± 0.008 0.894 ± 0.008

7 0.868 ± 0.008 0.91 ± 0.007 0.91 ± 0.007

8 0.882 ± 0.008 0.917 ± 0.007 0.914 ± 0.007

9 0.893 ± 0.008 0.925 ± 0.006 0.924 ± 0.006

10 0.899 ± 0.007 0.93 ± 0.006 0.929 ± 0.006

11 0.908 ± 0.007 0.936 ± 0.006 0.937 ± 0.006

12 0.916 ± 0.007 0.944 ± 0.006 0.943 ± 0.006

13 0.923 ± 0.007 0.948 ± 0.005 0.947 ± 0.005

14 0.926 ± 0.006 0.951 ± 0.005 0.95 ± 0.005

15 0.928 ± 0.006 0.954 ± 0.005 0.954 ± 0.005

16 0.932 ± 0.006 0.957 ± 0.005 0.958 ± 0.005

17 0.935 ± 0.006 0.961 ± 0.005 0.962 ± 0.005

18 0.937 ± 0.006 0.963 ± 0.005 0.963 ± 0.005

19 0.941 ± 0.006 0.967 ± 0.004 0.967 ± 0.004

20 0.944 ± 0.006 0.968 ± 0.004 0.968 ± 0.004

TABLE II: Results for experiment 1: table shows the mean position of the true disease for the associative (A) and
counterfactual (C, expected sufficiency) algorithms over all 1671 cases. Results are stratified over the rareness of the
disease (given the age and gender of the patient). For each disease rareness category, the number of cases N is given. Also
the number of cases where the associative algorithm ranked the true disease higher than the counterfactual algorithm
(Wins (A)), the counterfactual algorithm ranked the true disease higher than the associative algorithm (Wins (C)), and
the number of cases where the two algorithms ranked the true disease in the same position (Draws) are given, for all
cases and for each disease rareness class.

Vignettes

All Very common Common Uncommon Rare Very rare Extremely rare

N 1671 131 413 546 353 210 18

Mean position (A) 3.81 ± 5.25 2.85 ± 4.27 2.71 ± 3.86 3.72 ± 5.05 4.35 ± 5.28 5.45 ± 6.52 4.22 ± 5.19

Mean position (C) 3.16 ± 4.40 2.5 ± 3.55 2.32 ± 3.25 3.01 ± 4.07 3.72 ± 4.74 4.38 ± 5.53 3.56 ± 3.96

Wins (A) 31 2 7 9 9 4 0

Wins (C) 412 20 80 135 103 69 5

Draws 1228 109 326 402 241 137 13
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TABLE III: Results for experiment 2: table shows the accuracy obtained by the doctor and each algorithm shadowing the
doctors, for each of the 44 single-doctor experiments. The accuracies are reported with the standard standard deviation
of the mean estimator.

Doctor number Doctor accuracy Posterior Expected sufficiency Expected disablement

0 0.725 ± 0.019 0.656 ± 0.02 0.694 ± 0.019 0.692 ± 0.019

1 0.823 ± 0.022 0.719 ± 0.026 0.771 ± 0.025 0.774 ± 0.025

2 0.89 ± 0.018 0.791 ± 0.023 0.834 ± 0.021 0.837 ± 0.021

3 0.805 ± 0.023 0.811 ± 0.023 0.834 ± 0.021 0.831 ± 0.022

4 0.776 ± 0.034 0.855 ± 0.029 0.908 ± 0.023 0.914 ± 0.023

5 0.612 ± 0.028 0.779 ± 0.024 0.827 ± 0.022 0.834 ± 0.021

6 0.799 ± 0.02 0.739 ± 0.022 0.794 ± 0.02 0.794 ± 0.02

7 0.778 ± 0.026 0.767 ± 0.026 0.825 ± 0.024 0.825 ± 0.024

8 0.69 ± 0.025 0.788 ± 0.022 0.833 ± 0.02 0.833 ± 0.02

9 0.698 ± 0.058 0.81 ± 0.049 0.873 ± 0.042 0.873 ± 0.042

10 0.905 ± 0.037 0.841 ± 0.046 0.873 ± 0.042 0.889 ± 0.04

11 0.783 ± 0.034 0.72 ± 0.038 0.797 ± 0.034 0.797 ± 0.034

12 0.684 ± 0.053 0.75 ± 0.05 0.789 ± 0.047 0.776 ± 0.048

13 0.627 ± 0.063 0.712 ± 0.059 0.78 ± 0.054 0.78 ± 0.054

14 0.788 ± 0.033 0.737 ± 0.035 0.776 ± 0.033 0.782 ± 0.033

15 0.891 ± 0.018 0.73 ± 0.025 0.776 ± 0.024 0.776 ± 0.024

16 0.791 ± 0.043 0.835 ± 0.039 0.879 ± 0.034 0.879 ± 0.034

17 0.651 ± 0.051 0.767 ± 0.046 0.802 ± 0.043 0.802 ± 0.043

18 0.722 ± 0.043 0.806 ± 0.038 0.833 ± 0.036 0.833 ± 0.036

19 0.75 ± 0.056 0.717 ± 0.058 0.767 ± 0.055 0.783 ± 0.053

20 0.566 ± 0.068 0.642 ± 0.066 0.66 ± 0.065 0.66 ± 0.065

21 0.797 ± 0.026 0.73 ± 0.029 0.776 ± 0.027 0.781 ± 0.027

22 0.671 ± 0.03 0.667 ± 0.03 0.736 ± 0.028 0.735 ± 0.028

23 0.695 ± 0.032 0.67 ± 0.033 0.709 ± 0.032 0.708 ± 0.032

24 0.735 ± 0.035 0.71 ± 0.036 0.781 ± 0.033 0.774 ± 0.034

25 0.648 ± 0.047 0.705 ± 0.045 0.752 ± 0.042 0.752 ± 0.042

26 0.7 ± 0.065 0.66 ± 0.067 0.66 ± 0.067 0.66 ± 0.067

27 0.854 ± 0.035 0.777 ± 0.041 0.835 ± 0.037 0.835 ± 0.037

28 0.787 ± 0.039 0.778 ± 0.04 0.824 ± 0.037 0.815 ± 0.037

29 0.636 ± 0.048 0.697 ± 0.046 0.747 ± 0.044 0.747 ± 0.044

30 0.604 ± 0.046 0.739 ± 0.042 0.748 ± 0.041 0.748 ± 0.041

31 0.758 ± 0.053 0.818 ± 0.047 0.909 ± 0.035 0.908 ± 0.036

32 0.825 ± 0.039 0.691 ± 0.047 0.711 ± 0.046 0.701 ± 0.046

33 0.5 ± 0.065 0.633 ± 0.062 0.683 ± 0.06 0.683 ± 0.06

34 0.607 ± 0.063 0.607 ± 0.063 0.689 ± 0.059 0.689 ± 0.059

35 0.574 ± 0.063 0.623 ± 0.062 0.689 ± 0.059 0.689 ± 0.059

36 0.55 ± 0.064 0.633 ± 0.062 0.667 ± 0.061 0.667 ± 0.061

37 0.61 ± 0.063 0.576 ± 0.064 0.661 ± 0.062 0.661 ± 0.062

38 0.592 ± 0.04 0.697 ± 0.037 0.724 ± 0.036 0.715 ± 0.037

39 0.708 ± 0.044 0.67 ± 0.046 0.717 ± 0.044 0.708 ± 0.044

40 0.702 ± 0.045 0.721 ± 0.044 0.74 ± 0.043 0.74 ± 0.043

41 0.765 ± 0.059 0.765 ± 0.059 0.824 ± 0.053 0.824 ± 0.053

42 0.639 ± 0.053 0.723 ± 0.049 0.783 ± 0.045 0.768 ± 0.047

43 0.704 ± 0.054 0.648 ± 0.057 0.704 ± 0.054 0.704 ± 0.054
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