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Supplementary Note 1. Raman and PL spectra fitting

Supplementary Figure 1a-c reports optical microscopy images of some of the studied

samples: (a) 1L-WSe2 on Au and suspended, (b) 1L-WSe2 on SiO2/Si, (c) 1L-WSe2 on

hBN. Representative PL spectra collected at T = 295 K for 514 nm excitation are shown in

Supplementary Figure 1d, showing the A-exciton resonance.

Supplementary Figure 2a plots representative data fits. The spectrum, measured at 295 K

at 532 nm, is shown with black dots. Lorentzian functions are used to fit the Raman peaks

(FWHM∼1-10cm−1) and are plotted in blue. The residual spectral weight is also fitted with

Lorentzians and results into the broader (FWHM∼50-80cm−1) peaks of the hot PL, shown

in red. A flat baseline is taken into account for the whole energy scale, since the background

in the S spectral range increases due to the higher intensity of the cascades in S compared

to AS. A fitting example is shown in Supplementary Figure 2b. The Lorentzians naturally

overlap, thus creating an asymmetric broad background (indicated by yellow dashed lines

in Supplementary Figure 2b).

∗ paradeis@insa-toulouse.fr
† acf26@eng.cam.ac.uk
‡ glazov@coherent.ioffe.ru
§ urbaszek@insa-toulouse.fr



2

Supplementary Figure 1. Optical images of (a) 1L-WSe2 on Au and suspended, (b) 1L-WSe2 on

SiO2/Si, (c) 1L-WSe2 on hBN. Representative PL spectra collected at 295K for 514 nm excitation

are shown in (d). Stronger PL intensities are observed in the suspended and hBN cases, due to

the suppression of substrate-related doping and/or disorder effects.

Supplementary Note 2. Diagrammatic calculation of Stokes scattering at 0K

For 0K, we calculate the S emission. The light scattering cross-section can be written as

(disregarding polarization dependence)[1–3]:

σ(ωi, ωf ) = s
∑
k

Sk(ωi, ωf ), (1)

where s is a prefactor non-resonantly dependent on the initial and final frequencies, Sk(ωi, ωf )

is the effective cross-section due to the participation of k phonons in the intermediate states,

shown by green arrows in Supplementary Figure 3a. We assume that photoexcitation results

in the generation of excitons due to their high (hundreds of meV) binding energies[4]. The
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Supplementary Figure 2. (a) Fitted 1L-WSe2/SiO2/Si spectrum, collected at 295K and 532nm. (b)

Lorentzian (red lines) S/AS sum fit. Yellow dashed lines indicate the asymmetric background.(c)

Normalized Raman intensity of E′,A′1 mode at different T. (d) Pos(E′,A′1) as a function of T and

linear fit.

description in the case of unbound e-h pairs is similar and outlined below.

The calculation of the partial contributions Sk(ωi, ωf ) can be performed in the framework

of the diagram technique of Refs.[1, 2, 5]. We extend this to the two-dimensional case,

with the exciton-phonon interaction described by the matrix element M0, independent of

wavevector. Phonons, as in Refs.[6, 7], are considered as dispersionless. This is reasonable

for 1L-TMDs, where Fröhlich coupling is suppressed[8, 9]. Following Ref.[9], we introduce

the coupling constant:

β =
2Sm|M0|2

h̄3Ω
, (2)

where S is the normalization area, m the exciton translational mass and Ω the phonon

frequency. We focus on one excitonic band (stemming from 1s excitons), and disregard the

multivalley structure of 1L-TMDs[4] for simplicity. The exciton damping rate in the state
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Supplementary Figure 3. (a) Scheme of multiphonon process in the resonant Raman scattering

of light by excitons/PL. The incident, h̄ωi, and outgoing, h̄ωf , photons are shown by the dotted

magenta vertical arrows. The phonons participating in the cascade are shown by the green arrows.

The e-h dispersion curve is the filled blue parabola. The light cone is shown by red dashed lines.

(b-c) Feynman diagrams corresponding to two-phonon processes. The dotted magenta lines are

the photon Green functions in the free space. Blue lines are exciton Green functions (retarded ones

at the left-hand side, before the internal photon function, and advanced at the right-hand side).

Wiggly lines are phonon Green functions D−.

with wavevector k due to emission of dispersionless phonons is given by:

γo,k =
1

2τo,k
=
π

h̄

∑
k′

|M0|2δ(Ek − Ek′ − h̄Ω) =

βΩ

4
Θ(Ek − h̄Ω),

(3)

where Ek = h̄2k2/2m is the exciton dispersion, Θ(x) is the Heaviside step function. The total

damping rate of the exciton γk > γo,k contains also the contributions due the interaction

with acoustic phonons[10, 11], disorder[12], non-radiative[12] and radiative (for states within
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the light cone) damping[13].

Correspondingly, the exciton retarded Green functions read:

G(ε,k) =
1

ε− Ek + iγk
. (4)

By labelling Γq the phonon damping, the Green functions become:

D(ω, q) =
1

h̄ω − h̄Ω + iΓq
, (5)

D−(ω, q) = D(ω, q)−D∗(ω, q) =
−2iΓq

(h̄ω − h̄Ω)2 + Γ2
q

.

Supplementary Figure 3a illustrates the relevant diagrams describing the two-phonon pro-

cess:

S
(a)
2 = −|M0|4

∑
k

∫ ∞
−∞

dω

2π
G(h̄ωi − E1,κi)G(h̄ωi − E1 − h̄ω,k)G(h̄ωf − E1,κf )

×D−(ω,κi − k)D−(ωi − ωf − ω,k − κf )

×G∗(h̄ωi − E1,κi)G
∗(h̄ωi − E1 − h̄ω,k)G∗(h̄ωf − E1,κf )

= −|M0|4 |G(h̄ωi − E1,κi)|2 |G(h̄ωf − E1,κf )|2

×
∑
k

∫ ∞
−∞

dω

2π
D−(ω,κi − k)D−(ωi − ωf − ω,k − κf ) |G(h̄ωi − E1 − h̄ω,k)|2 . (6a)

S
(b)
2 = −|M0|4 |G(h̄ωi − E1,κi)|2 |G(h̄ωf − E1,κf )|2

×
∑
k

∫ ∞
−∞

dω

2π
D−(ω,κi−k)D−(ωi−ωf−ω,k−κf )G(h̄ωi−E1−h̄ω,k)G∗(h̄ωf−E1+h̄ω,κi+κf−k).

(6b)

where E1 = Eg − Eb,1s is the 1s exciton excitation energy, Eb,1s is its binding energy.

Supplementary Figure 3a describes the process where two phonons are emitted one after

another. Supplementary Figure 3b shows the quantum interference of two-photon emission

processes[1]. When Γq � γk, the contribution in Supplementary Figure 3b, given by Eq.(6b),

is smaller by a factor γk/Γq, compared to the non-crossing contribution in Supplementary

Figure 3a.

We now focus on the more realistic case where Γq � γk. For simplicity, we disregard

the k-dependence of γk and the q-dependence of Γq and omit the corresponding subscripts.
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Thus:

S
(a)
2 =

4Γ

4Γ2 + (2Ω− ωi + ωf )2
|M0|2 |G(h̄ωi − E1,κi)|2 |G(h̄ωf − E1,κf )|2

× 1

h̄

∑
k

|M0|2

h̄2γ2 + (h̄Ω + h̄ωf − E1 − Ek)2
(7a)

S
(a)
2 =

4Γ

4Γ2 + (2Ω− ωi + ωf )2
|M0|2 |G(h̄ωi − E1,κi)|2 |G(h̄ωf − E1,κf )|2

× 1

h̄

∑
k

|M0|2

(h̄ωf + h̄Ω− E1 − Ek + iγ)(h̄ωf + h̄Ω− E1 − Ek′ − iγ)
, (7b)

with k′ = κi + κf − k. Note that

1

h̄

∑
k

|M0|2

h̄2γ2 + (h̄Ω + h̄ωf − E1 − Ek)2
=
γo
γ
, (8a)

1

h̄

∑
k

|M0|2

(h̄ωf + h̄Ω− E1 − Ek + iγ)(h̄ωf + h̄Ω− E1 − Ek′ − iγ)
=

γo/γ√
1 +

(
|κi+κf |v

2γ

)2
, (8b)

where v =
√

2(h̄ωf + h̄Ω− E1)/m. Thus

S
(a)
2 =

4Γ

4Γ2 + (2Ω− ωi + ωf )2
|M0|2

γo
γ
|G(h̄ωi − E1,κi)|2 |G(h̄ωf − E1,κf )|2 , (9a)

S
(b)
2 =

S
(a)
2√

1 +
(
|κi+κf |v

2γ

)2
. (9b)

We get:
|κi + κf |v

2γ
∼ leff

λ
,

where leff is the effective mean free path of the exciton, and λ is the characteristic wavelength

of light. In backscattering in plane, since scattered light is emitted by both 1L-WSe2 sides:

κf = −κi, (10)

the diagram with crossed phonon lines doubles the result stemming from the diagram in

Supplementary Figure 3b. This is due to coherent backscattering (or weak localization)

effect[14, 15]. Otherwise the contribution of the diagram Supplementary Figure 3b is neg-

ligible, provided that leff � λ. While the latter condition may not be strictly fulfilled in
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Supplementary Figure 4. (a) Multiphonon scattering in the non-crossing approximation. (b) Hot

PL for γo/γ = 0.9, Γ/Ω = 0.1, K = 10.

1L-TMDs[15], we disregard the contributions due to the crossed diagrams to provide an

analytical model.

Importantly, the phonon scattering is resonant, taking place via real intermediate states

and, accordingly, the scattering cross-section acquires a factor γo
γ

, which gives the probability

for an exciton to emit a phonon during its lifetime in a state with wavevector k. If inelastic

scattering is dominated by a single phonon mode, γo/γ can be close to unity.

We now consider multiphonon processes. Within the non-crossing approximation, we take

into account the diagrams where the phonon propagators do not cross, i.e., we disregard

the interference of the phonons. We can thus sum the contributions of the diagrams in

Supplementary Figure 4a with k = 2, 3, . . . phonon lines.

The maximum number of phonons involved in the process is given by:

K =

⌊
h̄ωi − E1

h̄Ω

⌋
, (11)

Performing the calculations analogous to those presented above we arrive at:

σ(ωi, ωf ) = σ0(ωi, ωf )
K∑
k=2

1

π

2Γ

4Γ2 + (kΩ− ωi + ωf )2

(
γo
γ

)k−1

, (12)
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where σ0(ωi, ωf ) is a smooth function of frequency.

for K →∞ we get:

σ(ωi, ωf ) = σ0(ωi, ωf )
x

π
×<

2F1

(
1,
−2iΓ+2Ω−ωi+ωf

Ω
,
−2iΓ+3Ω−ωi+ωf

Ω
, x
)

2Γ + i(2Ω− ωi + ωf )

 , (13)

with 2F1(a, b, c, x) the hypergeometric function, and x = γo/γ.

A typical calculated spectrum at 0K considering the S component of the emission is in

Supplementary Figure 4b. Each cascade step provides a factor γo/γ to the scattering cross-

section. If the scattering rates γo and γ are energy dependent, the S component of emission

at the jth step is given by the products:

Ij ∝
j∏

k=2

γo(k)

γ(k)
, (14)

with the argument k denoting the step of the cascade (i.e., the energy) where the corre-

sponding scattering rate is taken.

In the presence of static disorder, or quasi-elastic acoustic phonon scattering with negligi-

ble energy transfer, additional diagrams with the corresponding scattering processes should

be taken into account. To illustrate that elastic scattering processes do not suppress oscil-

lations in the Raman and hot PL, we consider exciton scattering by static impurities with

scattering rate γimp, with γ, the total exciton scattering rate. Taking into account diagrams

similar to Supplementary Figure 4a, but with impurity lines, γo/γ is renormalized by elastic

scattering as:

γo
γ
→ γo

γ

∞∑
n=0

(
γimp

γ

)n
=

γo
γ − γimp

. (15)

This means that for elastic scattering the exciton energy does not change, thus it does not

smear-out the intensity oscillations.

Supplementary Note 3. Kinetic equation

The non-crossing approximation corresponds to a kinetic equation model where the exci-

ton dynamics after optical excitation is described by the Boltzmann equation in the form[16]:

γ′f(k) =
∑
k′

Wkk′ [fk′ −Wk′kfk] + gk. (16)
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Supplementary Figure 5. Schematic band diagram and scattering pathways in e-h representation.

(a) Extended BZ with K valley shown twice for convenience. (b) Initial state Γ (K −K) exciton.

(c) After first phonon scattering K (K ′−K) exciton. (d) After second phonon scattering we have a

K ′-like (Γ−K) exciton. (e) e-h interaction brings a Γ−K exciton to the K ′-exciton (K−K ′). Open

circle denotes empty state (h state can be obtained by time-reversal). (f) Scattered I accounting

for Γ→ K → K ′ photon-assisted transitions for γ′/γo = 0.3, γ′′/γo = 0.3, at 0K

with Wk′k the transition rate between states with wavevectors k and k′, with phonon emis-

sion or absorption. For simplicity, we disregard elastic scattering. γ′ is the damping rate

unrelated to exciton-phonon interaction, gk is the exciton generation rate. The kinetic

equation also allows us to account for finite temperature, T, effects[16].

It is convenient to average fk over the in-plane directions of k, and consider just the

exciton energy distribution function f(ε). The latter can be recast as:

f(ε) =
∞∑

j=−∞

fjδ(ε0 − jh̄Ω), (17)
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with fj satisfying the set of equations:

γfj = γo [fj−1(no + 1) + fj+1no] + gj,

j = . . . ,−2,−1, 0, 1, 2, . . . ,
(18)

where

no =
1

exp
(

h̄Ω
kBT

)
− 1

,

is the phonon mode occupancy at T, γo is the rate of spontaneous phonon emission,

γ = γo(2no + 1) + γ′,

is the total exciton damping rate. gj is the exciton generation rate in the state j related

to the process of virtual formation of the exciton within the light cone, and its consequent

relaxation to the real state with the phonon emission or absorption. Thus, the non-zero

values of gj are:

g1 = g(no + 1), g−1 = gno, (19)

with g a parameter. In the main text we replaced the generation rate Eq.(19) with a

simplified model with g0 = g 6= 0. This is also valid if elastic scattering is strong and

excitons can leave the light cone via static defect scattering.

Since photon emission requires a phonon-induced transition, the intensity of the peak j

with phonon-induced energy shift jh̄Ω is given by:

Ij = fj−1γo(no + 1) + fj+1γono ∝ fj. (20)

The last proportionality is due to the kinetic Eq.(18) and is valid for j 6= 0,±1.

Supplementary Note 4. Cascades in a free carriers model

Cascades in phonon-assisted hot PL are possible for free carriers, i.e., for e-h pairs in the

continuum states. In this situation the phonon-assisted e/h relaxation is independent, and

governed by Eq.(18). Light scattering can be represented as

photon→ electron,k + hole,k

h̄Ω−→ electron,k − q + hole,k . . .

h̄Ω−→ electron,k + hole,k→ photon.

Accordingly, we expect oscillations in scattered light intensity with period h̄Ω.
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Supplementary Note 5. Intervalley scattering model

We now consider the case of exciton scattering enabled by BZ edge phonons with wavevec-

tors Q ∼ ±K. An exciton scatters between Γ valley (K−K or K ′−K ′ exciton) and K/K ′

valleys (K ′ −K and K −K ′ excitons), Supplementary Figure 5a. Photon emission occurs

only for states with small wavevectors (∼the photon ones), according to the paths:

photon→ Γ
h̄Ω−→ K

h̄Ω−→ photon;

photon→ Γ
h̄Ω−→ K

h̄Ω−→ K ′
h̄Ω−→ photon;

photon→ Γ
h̄Ω−→ K

h̄Ω−→ Γ
h̄Ω−→ K

h̄Ω−→ photon;

photon→ Γ
h̄Ω−→ K

h̄Ω−→ Γ
h̄Ω−→ K ′

h̄Ω−→ photon; . . .

Processes like “Γ
h̄Ω−→ photon” are forbidden due to momentum conservation.

The set of equations describing the processes reads:

γΓf
Γ
j = γo

[
fKj−1(no + 1) + fKj+1no

]
+ γo

[
fK

′

j−1(no + 1) + fK
′

j+1no

]
+ gδj,0, (21a)

γKf
K
j = γo

[
fΓ
j−1(no + 1) + fΓ

j+1no
]

+ γ′o

[
fK

′

j−1(no + 1) + fK
′

j+1no

]
, (21b)

γK′fK
′

j = γo
[
fΓ
j−1(no + 1) + fΓ

j+1no
]

+ γ′o
[
fKj−1(no + 1) + fKj+1no

]
. (21c)

with fΓ
j , fKj , fK

′
j the exciton occupancies in the corresponding valley. γo and γ′o are the

photon spontaneous emission rates for the scattering processes Γ ↔ K/K ′ and K ↔ K ′,

respectively, and the decay rates are:

γΓ = γo(2no + 1) + γ′, γK = γK′ = (γo + γ′o)(2no + 1) + γ′′.

The scattering processes in the e-h picture are presented in Supplementary Figure 5b-

e. These demonstrate that γo and γ′o are different, because the second process (K ↔ K ′)

needs additional Coulomb interaction, Supplementary Figure 5c-e. Thus, direct phonon-

induced K ↔ K ′ transfer is impossible, and the corresponding process takes place via an

intermediate state with e in the Γ valley. The results of the calculations in Supplementary

Figure 5f demonstrate that pronounced I oscillations should take place at low T (below the

phonon energy). These oscillations are not observed experimentally in Figure 2b of the main
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text (T=78K), ruling-out this pathway.
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