
Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

As authors are aware, there has been quite a lot of work dedicated to both sepsis detection and 

prediction. As such, there should be a more extensive review of the work already carried out. 

The major claim of this work is that methods for sepsis diagnosis and prediction consider only 

structured data and not clinical notes. However, there are other studies that also have addressed 

this issue, most recently study in [1]. 

 

Based on the title of the paper “role of unstructured data”, I would have expected the authors to 

describe the actual role of clinical notes in diagnosis/prediction performance, in comparison to 

using structured data only. However, the results presented pertain only to processing of both 

types of data together. Thus, it is not known if clinical notes play a role in increasing predictive 

performance. 

 

I found the method of labelling sepsis prediction quite unusual and a potential source of significant 

confusion: “For each patient encounter, when a physician suspects sepsis, she will at least request 

a culture test and lactate test. Thus, when the physician orders for both tests, we classify the 

patient as one predicted to have sepsis by the physician,”. The authors do not provide any 

evidence to the validity of this crucial statement. 

 

The dataset is highly imbalanced; thus, AUC should not be the only performance metric reported. 

Authors should at least provide PPV and NPV. Furthermore, it is unclear how well calibrated the 

model is; thus, calibration curves should also be provided. 

 

When developing the model, cross-validation is much more robust method to avoid overfitting 

than the random split used by the authors. 

 

Given the above considerations and the amount of manual work required in annotation of LDA 

output, I find it difficult to see how this algorithm may enter clinical practice as outlined in the 

discussion section. 

 

 

 

[1] R. Liu, J. L. Greenstein, S. V. Sarma and R. L. Winslow, "Natural Language Processing of 

Clinical Notes for Improved Early Prediction of Septic Shock in the ICU," 2019 41st Annual 

International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, 

Germany, 2019, pp. 6103-6108. doi: 10.1109/EMBC.2019.8857819 

 

 

 

Reviewer #2: 

Remarks to the Author: 

Thank you for the opportunity to review this interesting paper. I only have some minor 

suggestions that I think would help clarify the manuscript for the reader. 

 

The background is well motivated. This reviewer whole-heartedly agrees in the use of ML for real-

time surveillance, specifically in the area of workflow augmentation for applications such as 

decreasing variability in care, as the authors have eloquently stated in their introduction. 

 

The authors might consider citing this article in the background 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5383046/ which is directly applicable to this work, 

which also shows that using unstructured data, in addition to structured data, substantially 

improves this prediction task. More importantly, this manuscript reports performance metrics 



substantially better than this comparison paper (0.86 vs. 0.92), which is considerably, and would 

make a good discussion point, and in fact these performance characteristics persist even 12 hours 

prior. 

 

In the Methods section, under Data Sample, how was random sampling performed? Was the unit 

of randomization performed at the level of the note, the patient visit, or the patient. Also, was 

there any overlap in patients between the test set and the training/validation set? 

 

 

In the methods section, it would be helpful if the ICD-10 codes for cohort selection were explicitly 

mentioned. 

 

Methods: processing of clinical notes: Please cite the implementation (software package) that was 

used, as well as for your prediction model. 

 

The paper is missing a demographics table to describe the patient population. For example, what is 

the incidence of sepsis, severe sepsis, septic shock? How many are admitted to the ICU? What is 

the age distribution? 

 

What was the class imbalance of your prediction and how did you account for it? It is unclear from 

the manuscript if a balanced dataset was created by randomly undersampling the non-sepsis 

cohort, or if the class imbalance was dealt with in some other manner during training. 

 

It would be helpful if a standard CONSORT enrollment diagram was included as a figure, 

potentially to replace Figure 1. 

 

It would also be helpful if one included a reliability diagram (calibration diagram) as well as a 

precision-recall diagram for a representative model to better understand calibration as well as the 

trade-offs between precision and recall for choosing a decision threshold. 
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Response to Reviewer 1 

Reviewer #1 (Remarks to the Author): 

As authors are aware, there has been quite a lot of work dedicated to both sepsis detection 

and prediction. As such, there should be a more extensive review of the work already 

carried out. 

The major claim of this work is that methods for sepsis diagnosis and prediction consider 

only structured data and not clinical notes. However, there are other studies that also have 

addressed this issue, most recently study in [1]. 

Thank you for pointing out these studies that examined sepsis diagnosis and prediction. In this 

revision, we have incorporated them in our literature review. Specifically, we have cited and 

acknowledged the strengths of Liu, Greenstein, Sarma, and Winslow (2019) ’s sepsis 

detection algorithm. As per Senior Editor’s request to discuss how our work compares with 

Liu et al. ’s (2019) on sepsis detection and prediction algorithm, we would like to highlight 

the following key points: 

1. Strength and robustness of our prediction algorithm 

• Our algorithm provides earlier prediction of sepsis up to 24 hours. Whereas Liu 

et al. (2019) ’s algorithm for early prediction of sepsis is given at 7 hours prior to the 

onset of sepsis (AUC: 0.92, Sensitivity: 0.84, Specificity: 0.82), our algorithm’s early 

sepsis prediction is effective up to 24 hours before the onset. Furthermore, our 

algorithm’s results at 12 hours before the onset is comparable to Liu et al. (2019) ’s 

algorithm at 7 hours (i.e., our 12 hour AUC: 0.94, sensitivity:0.87 and 

specificity:0.87). Given that studies have found that one hour delay in antimicrobial 

administration for sepsis patients is associated with a decrease in survival of 7.6% 

(Kumar et al., 2006), the ability to provide an sepsis alert five hours ahead of onset 

would substantially increase a patient’s survival. 

• Our algorithm works in natural clinical setting’s level of prevalence. The dataset 

we used to develop the model was extracted from a natural clinical environment. We 

tested the algorithm in a dataset where the prevalence of sepsis is low (only 6.15% of 

all the patients in the sample have sepsis). This level of prevalence is equivalent to 

the level typically observed in hospitals. We confirmed this with Rhee et al. (2017) 

study that examined 7.8 million patients in 409 different US hospitals from 2009 to 

2014. They found that the prevalence of sepsis is about 6% of the patient population 

in those hospitals and that the level of prevalence was relatively stable across time. 

(cf. pp. 1246 (Rhee et al., 2017)). As such, this shows the efficacy of our algorithm in 

a natural clinical environment (more details of the workflow later). When compared 

to Liu et al. 2019’s study that had a level of prevalence of approximately 41.2% 

(15,930/38,645), our algorithm was still able to achieve a high AUC despite the (low) 

level of prevalence. 

• Oversampling for comparsion. Finally, in order to compare directly with Liu et 

al. ’s (2019) study, we analyzed our model under high prevalence levels as per Liu et 

al. ’s (2019) study. Specifically, we applied SMOTE (Synthetic Minority Over-

sampling Technique) to our model (as suggested by R2). SMOTE oversampling has 

been applied in other studies – published in Nature Communications – developing 

machine learning classifiers for oral cancer detection (Carnielli et al., 2018) and cell 

identification/ classification (Rennie, Dalby, van Duin, & Andersson, 2018; Xia et al., 

2020). These studies are similar to our study in that they also face low prevalence of 

positive cases. As seen from Table 1, we were able to achieve similar diagnostic stats 
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under such conditions.  

 

Table 1: Using Voting Ensemble Algorithm (SMOTE) 

Hours Prior 

to Sepsis 
AUC Sensitivity Specificity PPV 

48 0.8686 0.7819 0.7673 0.7700 

24 0.8976 0.8089 0.7972 0.8000 

12 0.9441 0.8716 0.8741 0.8737 

6 0.9238 0.8814 0.8070 0.8202 

4 0.9239 0.8649 0.8015 0.8133 

 

2. We compared our prediction algorithm with human physicians 

 

• Comparing algorithm’s performance with human physician. In our study, we 

compared the performance of our algorithm against human physician’s early 

detection of sepsis cases. We found that our algorithm out-performs human in early 

sepsis detection up to 48 hours ahead of sepsis onset. Although the algorithm by Liu 

et al. (2019) is able to achieve high AUC at 7 hours ahead of sepsis onset, they did 

not report any attempts to compare their algorithm with human physicians.  

 

3. Our prediction algorithm uses a more stable NLP technique 

• Stability of Natural Langugage Processing (NLP) – words vs topics. Liu et al. 

(2019) employed a text modeling technique that extracts commonly used words in the 

clinical notes as predictors of sepsis. In our paper, we extend this technique by 

aggregating topics from those words extracted from clinical notes. Each topic is 

characterized by a collection of words that cluster around a common theme. We then 

employed these topics as predictors for sepsis. This NLP technique is better in the 

following ways:  

o Stability over time. Lexicographical topics are more stable compared to 

individual words (Blei, 2012; Wallach, 2006). Synonyms or phrases which 

carry similar meanings can be substituted to characterise a particular topic or 

phenemonon which falls within the same topic. Individual words on the other 

hand have narrower meanings and are unable to capture the use of 

synomyms. To show that our topics are stable over time, we tested our model 

on a test sample that included patients who were admitted at a later time. 

o More accurate and generalizable. When we compare classifiers that are built 

using topic features to those that are built using word features, the former 

classifers were found to be more accurate (Blei, 2012; Blei, Ng, & Jordan, 

2003; Wallach, 2006). This is because individual writers (e.g., clinicians) 

have idiosyncratic writing styles that may influence their choice of words. By 

using topics to extract and process notes, we can mitigate some of 

idiosyncratic writing styles and words employed by different writers. As a 

result, we believe this technique provides a NLP structure (topics) that is 

more generalizable across context and domains (e.g., different hospitals or 

specialty). We will describe below how we can operationalize this process in 

a clinical context (see our response below).  

Based on the title of the paper “role of unstructured data”, I would have expected the 

authors to describe the actual role of clinical notes in diagnosis/prediction performance, in 

comparison to using structured data only. However, the results presented pertain only to 
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processing of both types of data together. Thus, it is not known if clinical notes play a role 

in increasing predictive performance. 

Thank you for pointing out this fact. In this revision, we have provided the comparison 

between the model that used only structured variables (e.g. vitals) and the model that used 

both structured variables and clinical notes. From Table 2, we can see that the model that used 

both structured variables and clinical notes is significantly more accurate that the structured 

variable for models more than 12 hours prior to the onset of sepsis. For time periods less than 

12 hours, the structured variables provide relatively good prediction as seen in prior literature, 

but in this research we show that unstructured clinical notes play a more important role in 

predicting sepsis more than 12 hours prior to the onset of sepsis.  

Table 2A: Comparing Models with NLP (Without SMOTE) 

Model 

Structured Variables Structured + NLP 

AUC 
Sensitivity| 

Specificity 
AUC 

Sensitivity| 

Specificity 

Diagnosis 0.9282 0.8777|0.8612 0.9421 0.8854|0.8686 

Prediction (T= 4 hours prior) 0.9051 0.8649|0.8236 0.9469 0.8919|0.8698 

Prediction (T= 6 hours prior) 0.9134 0.8814|0.8309 0.9332 0.8814|0.8301 

Prediction (T= 12 hours prior) 0.8102 0.7477|0.7203 0.9402 0.8807|0.8217 

Prediction (T= 24 hours prior) 0.7765 0.7372|0.6882 0.8987 0.8089|0.7929 

Prediction (T= 48 hours prior) 0.7479 0.6601|0.6925 0.8616 0.7649|0.7604 

 

Table 2B: Comparing Models with NLP (With SMOTE)  

Model 

Structured Variables Structured + NLP 

AUC 
Sensitivity| 

Specificity 
AUC 

Sensitivity| 

Specificity 

Diagnosis 0.9278 0.8679|0.8627 0.9403 0.8853|0.8694 

Prediction (T= 4 hours prior) 0.9343 0.8649|0.8613 0.9239 0.8649|0.8015 

Prediction (T= 6 hours prior) 0.9080 0.8644|0.8167 0.9238 0.8814|0.8070 

Prediction (T= 12 hours prior) 0.7889 0.7569|0.7274 0.9441 0.8716|0.8741 

Prediction (T= 24 hours prior) 0.7755 0.7782|0.7149 0.8976 0.8089|0.7972 

Prediction (T= 48 hours prior) 0.7695 0.7139|0.6874 0.8686 0.7819|0.7673 

 

I found the method of labelling sepsis prediction quite unusual and a potential source of 

significant confusion: “For each patient encounter, when a physician suspects sepsis, she 

will at least request a culture test and lactate test. Thus, when the physician orders for both 

tests, we classify the patient as one predicted to have sepsis by the physician,”. The authors 

do not provide any evidence to the validity of this crucial statement. 

Thank you for this clarification question. We agree that our statement was unclear and thus 

may have created some confusion for the reader. We would like to clarify that: 

• First, our classification for sepsis vs. non-sepsis cases is based on the ICD-10 

classification. The ICD-10 classification is used for the training/ validation of the 

model as well as for the verification of the test results. The list of ICD-10 codes is 

now presented in the paper as requested by R2. 
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• Second, the statement quoted above refers to the way we measured the event where a 

hospital physician suspects a patient has sepsis (i.e., physician’s prediction of sepsis). 

We measured such events to compare the performance of our early prediction 

algorithm with physicians’ performance in predicting sepsis. This measure was NOT 

used to train/validate or test the model in any way. The measure was simply to 

determine human physicians’ performance of predicting sepsis. 

• Third, the two criteria described here to determine the physician’s prediction of sepsis 

(i.e., request for lactate test and a culture test) are based on international guidelines 

for sepsis management and is part of the hospital’s operating procedures (see below).  

o Based on the International Guidelines for Management of Sepsis and Septic 

Shock: 2016 (Rhodes et al., 2017), as part of the guidelines for initial 

resuscitation, physicians are required to normalize lactate in patients with 

elevated lactate levels as a marker of tissue hypoperfusion. As part of 

diagnosis, the international guidelines also “recommend that appropriate 

routine microbiologic cultures (including blood) be obtained before starting 

antimicrobial therapy in patients with suspected sepsis or septic shock if 

doing so results in no substantial delay in the start of antimicrobials (BPS).” 

pp. 312 (Rhodes et al., 2017). As such culture and lactate tests are among the 

first two tests to be conducted when a patient is suspected to have sepsis. 

o We verified with the hospital management that the standard operating 

procedure when a physician suspects a patient has sepsis is to request for at 

least one culture test together with a lactate test.  

 

The dataset is highly imbalanced; thus, ROC should not be the only performance metric 

reported. Authors should at least provide PPV and NPV. Furthermore, it is unclear how 

well calibrated the model is; thus, calibration curves should also be provided. 

Thank you for the suggestion. In this revision, we have provided PPV, NPV, and the 

calibration curves. As noted earlier, our dataset is imbalanced and as suggested by the Senior 

Editor and R2 in this revision, we used SMOTE to oversample the positive cases to develop a 

more balanced dataset while training the model. A few points to highlight in this revision. 

The unit of analysis for our prediction model is each single entry of clinical note – this is the 

same as per our initial submission. We define this as the unit of analysis because every 

instance the physician assesses the patient and inputs the clinical notes, she is making a 

clinical judgment. Hence, this unit of analysis is the most realistic in clinical setting and any 

sepsis alert should be presented at this point in time. 

In clinical settings, sepsis has naturally low occurrence of 2% incidence rate per year with 

about 6% prevalence (Rhee et al., 2017). As PPV is directly related to the prevalence of sepsis 

(see equation 1 below), we expected low PPV values given the low prevalence in our data 

sample. To create a balanced sample (i.e. higher prevalence of sepsis), some machine learning 

studies under-sample the non-sepsis cases (Liu et al., 2019). But to build predictive models 

for classification tasks in a medical context, some researchers have argued that oversampling 

(instead of undersampling) can result in more accurate models (Batista, Prati, & Monard, 

2004; Carnielli et al., 2018; Chawla, Bowyer, Hall, & Kegelmeyer, 2002). This method is 

used in studies that develop machine learning classifiers in low prevalence environment, e.g., 

oral cancer detection (Carnielli et al., 2018) and cell identification/classification (Rennie et 

al., 2018; Xia et al., 2020). As such, given these studies as well as the fact that under-

sampling is not a viable option given the naturally, low prevalence of sepsis, we chose to 

oversample the sepsis cases using SMOTE (Synthetic Minority Over-sampling Technique).  
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The tables below show the diagnostics of the models (AUC, sensitivity, specificity, PPV, 

NPV with corresponding prevalence value). To check against overfitting – which is a 

criticism of oversampling – we also report our models without SMOTE for comparison. We 

are glad to report that other than PPV, the AUC, sensitivity, and specificity are equivalent for 

both oversampled and non-oversampled models. 

Models that were run in natural environments of low prevalence without any oversampling 

are labelled as “Original data” and models with higher prevalence achieved by oversampling 

are labelled as “Smote #%” where # represents the extent of SMOTE. For example, SMOTE 

to 10% represents oversampling the sepsis cases up to the point where the sepsis cases make 

up to 10% of the overall sample. As prior literature suggest a “SMOTE to 50%” approach, as 

a robustness check, we provided five different levels of SMOTE for the early prediction 

models presented below.  

The unit of analysis for the algorithm is each clinical note entry by the physician. As such, 

the prevalence figures presented in Table 3a to 3f below are computed at the clinical note 

level and not at the patient-encounter level. The original data prevalence figures (at the 

clinical note level) vary due to differences in time windows. Although the number of sepsis 

cases remains the same for the test sample across different time windows, the number of 

sepsis notes reduces with shorter time windows. Since the number of non-sepsis cases (and 

notes) remains the same in the test sample, this eventually leads to a reduction in prevalence 

with shorter time windows.  

 

𝑃𝑃𝑉 =
𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ×  𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒

(𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ×  𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒) + [(1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦)  × (1 − 𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒)] 
 Eq. 1 

 

Table 3a: Diagnostic Model 

 Vote Algorithm GBT Dagging 

Test Data Prevalence AUC Sensitivity Specificity PPV NPV AUC AUC 

Original 

data 
17.69% 0.9421 0.8854 0.8686 0.5916 0.9724 0.9399 0.9234 

Smote to 

50% 
46.23% 0.9403 0.8853 0.8694 0.8535 0.8981 0.9359 0.9188 

 

Table 3b: Up to 4 hours (before Sepsis) 

 Vote Algorithm GBT Dagging 

Test Data Prevalence AUC Sensitivity Specificity PPV NPV AUC AUC 

Original 

data 
0.131% 0.9469 0.8919 0.8698 0.0089 0.9998 0.9387 0.9198 

Smote to 

10% 
9.998% 0.9439 0.8649 0.8351 0.3682 0.9823 0.9290 0.8766 

Smote to 

20% 
19.976% 0.9372 0.8649 0.8309 0.5608 0.9610 0.9308 0.8656 

Smote to 

30% 
30.005% 0.9287 0.8649 0.8286 0.6839 0.9347 0.9170 0.8533 

Smote to 

50% 
49.996% 0.9239 0.8649 0.8015 0.8133 0.8557 0.9165 0.8476 
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Table 3c: Up to 6 hours (before Sepsis) 

 Vote Algorithm GBT Dagging 

Test Data Prevalence AUC Sensitivity Specificity PPV NPV AUC AUC 

Original 

data 
0.208% 0.9332 0.8814 0.8301 0.0107 0.9997 0.9277 0.9015 

Smote to 

10% 
9.954% 0.9401 0.8983 0.8531 0.4034 0.9870 0.9391 0.9037 

Smote to 

20% 
20.018% 0.9360 0.8814 0.8378 0.5763 0.9658 0.9356 0.9015 

Smote to 

30% 
29.951% 0.9283 0.8814 0.8180 0.6743 0.9416 0.9349 0.8960 

Smote to 

50% 
49.976% 0.9238 0.8814 0.8070 0.8202 0.8719 0.9230 0.8912 

 

Table 3d: Up to 12 hours (before Sepsis) 

 Vote Algorithm GBT Dagging 

Test Data Prevalence AUC Sensitivity Specificity PPV NPV AUC AUC 

Original 

data 
0.77% 0.9402 0.8807 0.8217 0.0369 0.9989 0.9272 0.9159 

Smote to 

10% 
9.788% 0.9475 0.8761 0.8522 0.3914 0.9845 0.9332 0.9302 

Smote to 

20% 
19.872% 0.9476 0.8670 0.8662 0.6164 0.9633 0.9316 0.9278 

Smote to 

30% 
29.886% 0.9455 0.8670 0.8665 0.7346 0.9386 0.9258 0.9246 

Smote to 

50% 
49.994% 0.9441 0.8716 0.8741 0.8737 0.8719 0.9193 0.9220 

 

Table 3e: Up to 24 hours (before Sepsis) 

 Vote Algorithm GBT Dagging 

Test Data Prevalence AUC Sensitivity Specificity PPV NPV AUC AUC 

Original 

data 
1.0% 0.8987 0.8089 0.7929 0.0392 0.9975 0.8896 0.8814 

Smote to 

10% 
10.3% 0.9002 0.8157 0.7919 0.3105 0.9740 0.8924 0.8739 

Smote to 

20% 
20.0% 0.9002 0.8055 0.8049 0.5086 0.9429 0.8854 0.8666 

Smote to 

30% 
30.0% 0.9012 0.8089 0.8048 0.6395 0.9077 0.8805 0.8672 

Smote to 

50% 
50.1% 0.8976 0.8089 0.7972 0.8000 0.8062 0.8617 0.8642 

 

Table 3f: Up to 48 hours (before Sepsis) 

 Vote Algorithm GBT Dagging 

Test Data Prevalence AUC Sensitivity Specificity PPV NPV AUC AUC 

Original 

data 
1.2% 0.8616 0.7649 0.7604 0.0387 0.9961 0.8511 0.8232 
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Smote to 

10% 
10.2% 0.8693 0.7960 0.7720 0.2838 0.9709 0.8628 0.8280 

Smote to 

20% 
20.1% 0.8745 0.7847 0.7833 0.4773 0.9352 0.8537 0.8284 

Smote to 

30% 
30.0% 0.8661 0.7762 0.7676 0.5888 0.8889 0.8424 0.8265 

Smote to 

50% 
49.9% 0.8686 0.7819 0.7673 0.7700 0.7793 0.8292 0.8263 

 

 

Figure R1: Calibration Curves for Diagnosis and Early Prediction Models 

 

When developing the model, cross-validation is much more robust method to avoid 

overfitting than the random split used by the authors. 

 

Thank you for your suggestion. In this revision, we used 10-fold cross validation modelling to 

prevent overfitting. The results obtained were similar to our initial submission. 

 

Given the above considerations and the amount of manual work required in annotation of 

LDA output, I find it difficult to see how this algorithm may enter clinical practice as 

outlined in the discussion section. 

 

Thank you for highlighting this point. We agree with you that the practical application of this 

algorithm is critical to the usefulness of the algorithm. 

1. Before we discuss the practical use of the algorithm, we would like to first clarify the 

aspect of building and using the LDA output. Although training the topic library 

might be time intensive, this is only performed during the initial development of the 

topic library. Once the topic library is developed, it will be deployed to score new 

clinical text. As such, the topic library construction is only performed once at the 
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beginning of the project. As shown in the testing of our model, the topic library can 

effectively predict sepsis cases using clinical notes that were entered six months later. 

Subsequently, we only need to periodically update the topic library, which can be 

done using an automated workflow routine (e.g., using SAS Enterprise Miner). 

2. We propose the following steps to run the SERA algorithm in a clinical setting for a 

patient: 

a. Clinical note scoring process – scoring of a new clinical text in clinical 

setting involves three steps: 

i. Parsing: tokenization, lemmatisation, and POS tagging  

ii. Filtering: to weight terms 

iii. Topic assignment (based on existing topic library that had been 

earlier developed) 

The duration of computation to process and score the text is relatively short. 

To illustrate, we use a test-case patient with a long clinical note of 1,806 

words (the median length of clinical note in our sample is 840 words). The 

clinical note scoring process using an Intel i7 Processor 2.7 GHz, 16.0G 

RAM is about 0.17 secs in SAS Enterprise Miner 14.1 

b. SERA algorithm score process – after the clinical text is processed and 

scored, we will combine that with the structured variables from the EMR 

system and predict the likelihood of sepsis using the SERA algorithm. Here, 

the estimate processing time for all inputs using Intel i7 Processor 2.7 MHz, 

16.0G RAM is about 0.01 secs. 

 

Together, the total duration to fit a new patient’s data to the SERA algorithm 

takes about 0.18 secs from the moment the data is made available in the 

system. 

3. The SERA algorithm can work in two different modes within the clinical 

environment.  

a. Background mode: In this first mode, the algorithm is designed to run in the 

background. Specifically, it is configured to run at key events using the latest 

patient’s clinical data available, e.g., during ward shift handovers. If the risk 

score exceeds the designated cut-off level, the physician will be alerted via 

the EMR. Alternatively, if there are more computing resources available, 

hospitals can choose to run it in fixed hourly-time intervals. For a large 500-

bed hospital, assuming if the algorithm runs the cases individually, it will 

approximately take 90 secs to completely score all 500 patients. This 

approach ensures an ongoing, regular time-based sepsis risk assessment for 

patients within the hospital. (See Figure R2 on the workflow for this mode) 

b. Ad hoc mode: Second, the algorithm can be designed to immediately run 

after a physician submits her clinical notes in the EMR system. In this case, 

the SERA algorithm is run in an ad-hoc manner since the score is only 

applied after a physician has updated the patient’s status. The algorithm’s 

score then acts as a decision support to flag out suspected sepsis cases. As 

observed from study, the SERA algorithm outperforms physicians in early 

prediction of sepsis and thus may be an important early warning indicator for 

physicians to take note. (See Figure R3 for the workflow) 
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Figure R2: Workflow for Continual Time-based Sepsis Monitoring System (cSERA) 

 

Figure R3: Workflow for Ad-Hoc Sepsis Monitoring System (aSERA) 

[1] R. Liu, J. L. Greenstein, S. V. Sarma and R. L. Winslow, “Natural Language Processing 

of Clinical Notes for Improved Early Prediction of Septic Shock in the ICU,” 2019 41st 

Annual International Conference of the IEEE Engineering in Medicine and Biology Society 

(EMBC), Berlin, Germany, 2019, pp. 6103-6108. doi: 10.1109/EMBC.2019.8857819 
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Response to Reviewer 2 
 

Reviewer #2 (Remarks to the Author): 

 

Thank you for the opportunity to review this interesting paper. I only have some minor 

suggestions that I think would help clarify the manuscript for the reader. 

 

The background is well motivated. This reviewer whole-heartedly agrees in the use of ML 

for real-time surveillance, specifically in the area of workflow augmentation for 

applications such as decreasing variability in care, as the authors have eloquently stated in 

their introduction. 

 

The authors might consider citing this article in the background 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5383046/ which is directly applicable to 

this work, which also shows that using unstructured data, in addition to structured data, 

substantially improves this prediction task. More importantly, this manuscript reports 

performance metrics substantially better than this comparison paper (0.86 vs. 0.92), which 

is considerably, and would make a good discussion point, and in fact these performance 

characteristics persist even 12 hours prior.  

Thank you for taking the time to review our paper and pointing out the reference (Horng et 

al., 2017). We have cited it in this revision and incorporated the points, where relevant, in our 

revision. We hope that in this revision, we have resolved the issues you raised. 

 

In the Methods section, under Data Sample, how was random sampling performed? Was 

the unit of randomization performed at the level of the note, the patient visit, or the patient? 

Also, was there any overlap in patients between the test set and the training/validation set? 

The unit of sampling was performed at the patient visit level. The sample period is from 1st 

April 2015 to 31 Dec 2017 (first patient record 2nd April 2015). All sepsis patients (based on 

ICD-10 classification) were included in the dataset and we randomly selected non-sepsis 

patients to make up the rest of the sample. Given that the training/validation dataset is from an 

earlier set of patients and the test set is on a later set of patients, we had an overlap of 1 sepsis 

patient (out of 327 encounters) and 241 non-sepsis patients (out of 4990 encounters). It is 

important to note that while the patients are same, the notes were for different hospitalization 

encounters.  

We have included a modified STROBE/CONSORT diagram as requested in this review for 

easier representation as well. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5383046/
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In the methods section, it would be helpful if the ICD-10 codes for cohort selection were 

explicitly mentioned. 

ICD-10 codes used were:  

• SEPSIS: 'A40.0','A40.1','A40.8','A40.9','A41.2','A41.0','A41.0Z16','A41.1','A40.3', 

'A41.4','A41.50','A41.3','A41.51','A41.52','A41.53','A41.59','A41.81','A41.89', 'A41.9’ 

• SEVERE SEPSIS: 'R65.20','R65.21','R65.10','R65.11' 

 

Methods: processing of clinical notes: Please cite the implementation (software package) 

that was used, as well as for your prediction model.  
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The text mining procedure were conducted using SAS Enterprise Miner 14.1 and the 

Ensemble machine learning was conducted using KNIME Analytics Platform (version 4.1.6). 

 

The paper is missing a demographics table to describe the patient population. For example, 

what is the incidence of sepsis, severe sepsis, septic shock? How many are admitted to the 

ICU? What is the age distribution?  

 Training/validation Testing 

Number of patients 3722 1595 

Age - years old 63.71 ± 17.08 (Mean ± SD) 63.90±16.81 (Mean±SD) 

Male - % 57.3 60.67 

Length of hospital stay - days 5.52 ± 14.31 (Mean ± SD) 5.17±10.80 (Mean±SD) 

ICU Admission - % 7.52 8.61 

Mortality - %  4.5 5.01 

Septic - % 6.45% 5.45% 

Non-septic - % 93.55% 94.55% 

 

What was the class imbalance of your prediction and how did you account for it? It is 

unclear from the manuscript if a balanced dataset was created by randomly under sampling 

the non-sepsis cohort, or if the class imbalance was dealt with in some other manner 

during training. 

 

The original dataset is imbalanced as it consists of data extracted from a single hospital over a 

2.5 year period. We sampled the data so that the prevalence of the cases would be similar to 

natural prevalence in clinical settings. We selected all sepsis patient (cases) and randomly 

selected non-sepsis cases (controls) and arrived at patient-visit level prevalence of 6.15%. 

The level of prevalence is equivalent to the natural prevalence of sepsis typically observed in 

hospitals. As seen in (Rhee et al., 2017) from 2009 to 2014 the prevalence of sepsis is about 

6% of the patient population and it relatively stable over time. (cf. pp. 1246 (Rhee et al., 

2017)).  

In our initial submission, we trained/validated and tested the model without any 

oversampling procedure applied to the data. Due to the low prevalence of sepsis in our 

dataset, and given that the analysis was done using each clinical note as the unit of analysis, 

the prevalence of sepsis in the clinical was around 1% for the early prediction algorithm 

leading to a naturally low PPV, even with AUC of > 0.90 and sensitivity 0.86 and specificity 

0.80.  

Based on the review team’s suggestion to test our model under higher prevalence of sepsis, as 

seen in most machine learning studies where some form of over/under sampling is used (Liu 

et al., 2019), we oversampled the sepsis cases using SMOTE (Synthetic Minority 

Oversampling Technique) for the training and validation dataset. SMOTE is a commonly 

applied oversampling procedure where additional positive cases are imputed via a nearest 

neighbor resampling algorithm (Chawla et al., 2002). This method is used in prior studies 

published in Nature Communications that develop machine learning classifiers in low 

prevalence environment, e.g., oral cancer detection(Carnielli et al., 2018) and cell 

identification/ classification(Rennie et al., 2018; Xia et al., 2020). 

It is important to note that the AUC, sensitivity, and specficity of models developed using 

oversampling (SMOTE) and models developed without oversampling are very similar as seen 

in Tables 3a to 3f (see response to Reviewer 1). The PPV for models without oversampling 

are significantly lower as PPV is algebrically constrained by the prevalence of sepsis (see 

equation 2 below) (only exception is where specificity equals to 1). With the low prevalence 

in our sample, we expected low PPV values. 
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𝑃𝑃𝑉 =
𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ×  𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒

(𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ×  𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒) + [(1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦)  × (1 − 𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒)] 
 Eq. 2 

 

It would be helpful if a standard CONSORT enrolment diagram was included as a figure, 

potentially to replace Figure 1.  

Thank you for this useful suggestion and we agree that the current Figure 1 is less 

informative. However, your suggestion of a CONSORT diagram is applicable only to a 

randomized controlled trial but ours is a case-control study. As such, we have used a 

STROBE Enrolment diagram to replace Figure 1 as suggested in Vandenbroucke et al. 

(2007). We believe a STROBE Enrolment diagram will provide the equivalent information as 

a CONSORT diagram.  

 

It would also be helpful if one included a reliability diagram (calibration diagram) as well 

as a precision-recall diagram for a representative model to better understand calibration as 

well as the trade-offs between precision and recall for choosing a decision threshold. 

 

Thank you for raising this point. We have now included the calibration curves (Figure R1 in 

response to Reviewer 1 comments) as well as the precision-recall curves below (Figures R4). 

 

* Note that the Precision axis is truncated and starts at 0.5. 

Figure R4: Precision – Recall Curve (SERA algorithm) 
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Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

In general the authors have responded to the majority of my concerns. 

I feel my final comment on the practicability of SERA algorithm in clinical practice could have been 

addressed better. As shown in [1] traditional machine learning methods dominate clinical practice 

with respect to deep learning methods. As such, the authors could use this evidence to better 

motivate their discussion. 

 

 

 

[1] Sheikhalishahi et al.,"Natural Language Processing of Clinical Notes on Chronic Diseases: 

Systematic Review" JMIR Med Inform, DOI:10.2196/12239, 2019 



 
 

1 
 

REVIEWERS' COMMENTS 

Reviewer #1 (Remarks to the Author): 

In general, the authors have responded to the majority of my concerns. I feel my final comment on 
the practicability of SERA algorithm in clinical practice could have been addressed better. As shown 
in [1] traditional machine learning methods dominate clinical practice with respect to deep learning 
methods. As such, the authors could use this evidence to better motivate their discussion. 

[1] Sheikhalishahi et al.,"Natural Language Processing of Clinical Notes on Chronic Diseases: 
Systematic Review" JMIR Med Inform, DOI:10.2196/12239, 2019 

Thank you for your comments. In this revision, we have revised the discussion section using 
Sheikhalishsahi et al. as the basis for motivating the use of NLP for clinical applications.  


