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Supplementary Note 1:
Classical and quantum chaos in the Dicke model

The Dicke model displays regular and chaotic behavior [1–8]. For the parameters selected in the main text (ω = ω0 = 1, γ =

2γc), the dynamics are regular up to ε ≈ −1.6 [7], then there is a mixed region of regularity and chaos up to ε ≈ −0.8, after
which strong chaos sets in. The onset of chaos is illustrated in Supplementary Fig. 1 for the classical limit (a)-(b) and for the
quantum domain (c)-(d).

Supplementary Fig. 1 (a) shows the percentage of chaos defined as the ratio of the number of chaotic initial conditions,
determined by the Lyapunov exponent, over the total number of initial conditions for a very large sample. The percentage is
presented as a function of the rescaled energy ε and the coupling strength γ. Following the vertical red dashed line marked at
γ = 2γc, one sees that energies ε ∼ −0.5 are already deep in the chaotic region (light color). This is confirmed in Supplementary
Fig. 1 (b), where the Poincaré section for ε = −0.5 exhibits hard chaos, that is, all chaotic trajectories cover the entire energy
shell densely and have the same positive Lyapunov exponent.

Supplementary Fig. 1 (c) displays the distribution P (s) of the spacings s between nearest-neighboring unfolded energy levels.
The eigenvalues of quantum systems whose classical counterparts are chaotic are correlated and repel each other. In this case,
P (s) follows the Wigner surmise [9], as indeed seen in Supplementary Fig. 1 (c).

In Supplementary Fig. 1 (d), we show the quantum survival probability, SP (t) = |〈Rε|e−iĤDt|Rε〉|2 for a Gaussian ensemble
of random initial states |Rε〉 =

∑
k ck |Ek〉 whose components |ck|2 were generated through a random sampling (see Methods)

and are centered at energy ε = −0.5 in the chaotic region [10, 11]. The survival probability of individual random states are shown
with gray solid lines, their ensemble average with an orange solid line, the running time average with a blue solid line, which
overlaps with a green line that represents an analytical curve derived from the Gaussian orthogonal ensemble of the random
matrix theory [10, 11]. The asymptotic value of SP (t) is shown with a horizontal red dashed line. The green and blue curves
exhibit a dip below the saturation value of the quantum survival probability known as correlation hole, which is a dynamical
manifestation of spectral correlations. It contains more information than the level spacing distribution P (s), since in addition
to short-range correlations, it captures also long-range correlations [10, 12–15]. We verified that most coherent states from the
chaotic region develops the correlation hole. Exceptions to this pattern are the states very close to unstable periodic orbits of
relatively short periods [11].

The four panels of Supplementary Fig. 1 leave no doubt that the Dicke model reaches a limit of very strong chaos. This is the
region for which our analysis of the quantum scars is developed.
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Supplementary Figure 1: Indicators of classical and quantum chaos. (a) Percentage of chaos over classical energy shells. The black
solid line follows the ground-state energy and the vertical red dashed line marks the coupling γ = 2γc chosen for our studies. The green dot
marks the separation between the normal and the superradiant phase for the ground state. The blue dot represents the energy ε = −0.5 used
in the indicators (b) and (d). (b) Poincaré section (p = 0) for the rescaled classical Hamiltonian hcl at energy ε = −0.5. (c) Level spacing
distribution of the unfolded spectrum (shaded area) for 22458 levels in the energy region ε ∈ (−1, 1.755) and Wigner surmise (red dashed
line), j = 100. (d) Survival probability for an ensemble of 500 random states (gray solid lines) centered at energy ε = −0.5, ensemble average
(orange solid line), running average (blue solid line), analytical curve from the random matrix theory (green solid line), and the asymptotic
value (horizontal red dashed line) (j = 100).

Supplementary Note 2:
All eigenstates exhibit scars

Supplementary Fig. 2 shows the Husimi distributions of 160 eigenstates projected over the (Q,P ) plane for j = 100. The
eigenstates are selected from a list of 16,000 eigenstates with energies between εGS = −2.125 and ε = 0, sampled in steps of
100 from k = 100 to k = 16000. The values of the localization measure Lk are indicated in the panels. We select γ = 2γc, so
all these eigenstates are located in the red dashed line of Supplementary Fig. 1 (a). States with k ≤ 800 (εk ≤ −1.6) are in the
regular region, those with 800 < k ≤ 5600 (−1.6 < εk ≤ −0.82) in the mixed region, and those with k > 5600 (εk > −0.82)
are in the region of strong chaos. In all projections, the Husimi distributions display ellipsoidal shapes that can be associated
with periodic orbits in the classical limit once they are identified.
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Figure continues on the next page
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Supplementary Figure 2: Scars in all eigenstates. Husimi projections Q̃k of 160 eigenstates for j = 100. The values of k are indicated in
the top left of each panel, along with the value of Lk. The energy range is indicated on the right side of each row of panels. Lighter colors
indicate higher concentrations, while black corresponds to zero.
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Supplementary Note 3:
Dependence on system size

The Husimi distributions for some representative eigenstates are shown in Supplementary Fig. 3 for j = 30 and j = 100. The
patterns marking the periodic orbits are very similar. For each column, compare the top state (j = 30) with the bottom state
(j = 100). They have very similar patterns, but the lines become better defined as j increases. As the system size increases,
more lines also appear, because more periodic orbits scar the states.
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Supplementary Figure 3: Husimi projections vs. system size. Husimi projections Q̃k of 7 eigenstates for j = 30 (first row) and j = 100

(second row). Lighter colors indicate higher concentrations, while black corresponds to zero. The lines marking the periodic orbits become
better defined as the system size increases.
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