
Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The manuscript provides an interesting example of excessive scarring of eigenstates by unstable 

periodic orbits in the regime of parameters corresponding to classically chaotic dynamics. This 

subject has been extensively studied in the past notably in 80’s and 90’s of the past century but 

obtained some revival in a different context of many-body dynamics recently. The authors consider 

a ``classical’’ scenario of two degrees of freedom, a large collective spin (actually corresponding 

to large number of two level atoms but this is not relevant for a theory) driven by a strong single 

harmonic mode without the rotating wave approximation. The system is considered in the so called 

superradiant regime. 

Authors raise an interesting and timely question – whether scarring prevents ergodicity? 

They define a delocalization measure (quite complicated in fact), say L, which should be unity for 

states delocalized over the energy shell. However, they find numerically that for the system 

studied, in the chaotic regime, L saturates at 0.5. First they link it to excessive scarring revealed in 

nice pictures – but later they show that even random states do not 

cross this limit. On the other hand the delocalization may reach (Fig.2) 0.7 for states in the regular 

regime. This fact is later used to discuss ergodicity using nonstationary state dynamics. While 

initially localized wavepackets reveal traces of revivals in survival probability, the delocalized ones 

reveal a characteristic correlation hole (well known from eighties again). Since the authors have at 

their disposal L calculated for a number of states one could naturally ask what is L distribution in 

the chaotic regime? What could be said about it from some approach based on random matrices? 

There are other known measures for eigenstates – if indeed states of this system are so 

characteristic (excessive scarring) – does it show in other statistical properties of eigenstates? How 

general are these results (see below)? 

While exemplary results presented are interesting no definite conclusions are formed, the 

manuscript brings observations and questions but few definite answers. In this respect it may 

stimulate discussion. However, the model studied is quite specific and studied by the same group 

in a number of papers (say 10 or more) in the last 6 years. 

Different aspects of spectral and dynamical properties were studied including scarring, 

Lyapunov exponents etc. In particular spectral correlations and scarring were studied in an almost 

parallel paper in NJP 22 (2020) 063036 – stressing, however, different aspects than this work. 

 

In the eighties scarring was studied not only for billiards or kicked top – incidentally for the latter 

the first reference on scars, prior to [13] is M. Kus, J. Zakrzewski and K. Zyczkowski, Phys. Rev. 

A43, 4244 (1991). More importantly, pioneering works on scarring in hydrogen atom in magnetic 

field, which really introduced periodic orbit theory to experiments should be cited (in particular 

works of late D. Wintgen, see e.g. D. Wintgen and A. Hönig Phys. Rev. Lett. 63, 1467 (1989) and 

later works e.g. K. Muller and D, Wintgen J. Phys. B 91994), works with the experimental group of 

late Welge). There is also an interesting Physics Reports from 1993 of Bohigas Tomsovic and Ullmo 

on a related topic, certainly worth a citation. 

 

Looking at Fig.2 or supplementary material one hesitates whether the scarring is not enhanced by 

the relatively large effective hbar=1/j in the model studied. Understanding the technical difficulties 

of the model one wonders whether a study in other models mentioned might not be more 

conclusive. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

In the manuscript "Does scarring prevent ergodicity?", the authors study the Dicke model's 

eigenstate properties and dynamics in detail. Using a phase space approach, they find that all of 

the eigenstates never occupy the full phase-space and, more than that, exhibit patterns of 



unstable periodic orbitals in the classical Hamiltonian. As a result, they claim that <i>all</i> 

eigenstates of the Dick model are scarred, while the level statistics of the model still shows 

Wigner-Dyson distribution. They further demonstrate that the ergodicity is restored by averaging 

random state's long-time dynamics. 

 

This paper's results are counterintuitive and potentially very interesting since previous found 

scarred eigenstates only take up measure zero portion of the whole spectrum. However, so far, 

the authors just demonstrate the results without much explanation. For example, there is no 

explanation of why all the eigenstates encode the unstable periodic orbitals in the classical limit, 

which is the most striking result. Furthermore, because of the phase space method that the 

authors use, it is difficult to assess whether the results are tied to this particular method or are 

intrinsic about the eigenstate in the Dicke Model. As the authors also admit, it is not obvious how 

to identify the phenomena observed here in other quantum systems like spin 1/2 models, where 

the phase space method is not applicable. Therefore, at this stage, I cannot recommend its 

publication in nature communication before these issues are addressed. Please find more specific 

questions and comments below. 

 

1) The measure L introduced in eq (3) to quantify the localization in phase space is not enough to 

claim that all eigenstates are scarred. None of the pure states occupy the whole phase space, 

including the random states. L of many eigenstates in the high energy shell is comparable with 

that of random states ~0.5. 

 

2) The time-averaged L introduced below eq (3) is also not a good measure to claim all 

eigenstates are scarred. Quantum mechanics determines that the eigenstate does not have 

dynamics and does not explore the phase space, in contrast to a random state. This measure leads 

to that all eigenstates of all quantum systems are scarred, which is not meaningful. 

 

3) The most interesting and surprising result I find is that all eigenstates encode the pattern of the 

unstable periodic orbital, different from a random state. However, the authors did not discuss the 

mechanism behind this or provide a quantitative measure to quantify the eigenstate's closeness to 

the periodic orbital. Is there a quantitative measure to distinguish the pattern of phase space in 

Fig 2 (r4) and (s22), which have a similar L? 

 

4) Can the result found be a finite-size effect? How does the result change as \omega_o increase? 

 

5) In recent studies of quantum many-body scars related to the long-time oscillation found in the 

Rydberg atom experiments, a Hallmark of quantum scar is that order L eigenstates violate 

eigenstate thermalization hypothesis (ETH) while the level statistics of the whole spectrum remains 

Wigner-Dyson like. Do the scarred states identify here, namely all eigenstates, violate ETH? This 

can be checked by comparing the local observables measured from eigenstates and the Gibbs 

ensemble. What does the projected Husimi distribution of a Gibbs state look like? ETH violation can 

be used as a measure independent of the phase space method to strengthen the authors' claim. 

 

6) Is there any experimentally measurable consequence of these findings? 

 

 



REPLY TO REVIEWER #1

We thank the Reviewer for carefully reading our work and for finding it interesting and
timely. We appreciate the historical account that the Reviewer brought to our attention,
along with the very pertinent references, which we incorporated to our manuscript. Below,
we reply point-by-point each one of the Reviewer’s comments and explain the changes that
they motivated to our revised version.

Point-by-point reply:

• “They define a delocalization measure (quite complicated in fact), say L, which should
be unity for states delocalized over the energy shell.”

Reply. The measure L that we introduced is actually not complicated and it is a
very natural way to measure delocalization within single energy shells of the phase
space. However, the way we had presented it may indeed appear complicated. We
now changed the notation and added a discussion before equation (3) to explain that
L is a natural extension of the well-known quantum participation ratio. We thank
the Reviewer for motivating this improvement, which we are sure will be useful to the
readers.

• “Since the authors have at their disposal L calculated for a number of states one could
naturally ask what is L distribution in the chaotic regime?”

Reply. This is a very good question. To answer it, we added panel (c) to Fig. 2,
which contains the distribution of Lk for the chaotic eigenstates for different system
sizes (j = 20, 30, 40, 50, 100). The distribution is skewed to smaller values of Lk.
Furthermore, the tail at the low values of Lk seems to be independent on the system
size, while the largest values of Lk become smaller as j increases.

• “What could be said about it from some approach based on random matrices?”

Reply. The eigenstates of random matrices are random vectors. In the new panel
(b) of Fig. 2, we show the distribution of L for an ensemble of 20,000 random states
for j = 20, 30, 40, 50, 100. The random states concentrate around L = 1/2 and the
width of the distribution decreases as j increases [Fig. 2 (b)]. This contrasts with the
chaotic eigenstates, which have a wider distribution [Fig. 2 (c)] and reach Lk ≥ 1/2
for very few cases. In addition, this portion of eigenstates with Lk ≥ 1/2 decreases as
j increases. These results indicate that the behavior of the chaotic eigenstates cannot
be explained by that of random states.

Another difference between the eigenstates and the random states is that the Husimi
distributions of the former always show patterns typical of periodic orbits, even when
the eigenstate has Lk close to 1/2, while these patterns are nonexistent for the random
states. We have extended these discussions in our manuscript.
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• “There are other known measures for eigenstates – if indeed states of this system are
so characteristic (excessive scarring) – does it show in other statistical properties of
eigenstates?”

Reply. First, let us say that we do not believe that the ubiquitous scarring found in
this work is a unique feature of our model, but we expand on this on the reply to the
next point.

Excessive scarring may not be completely revealed by traditional statistical measures
associated with the Hilbert space, such as participation ratios or Peres lattices. To
uncover the ubiquitous scarring observed in our work, one needs to go to phase space,
since the definition of scarring is tied to phase space. We need to have measures of
localization with respect to the phase space (such as our L or Rényi-Wherl entropies)
and measures of scarring by periodic orbits (as the measure that we defined in [46]
(Pilatowsky 2020)).

With respect to the above-mentioned measures, let us add that:

(i) Localization Measures: The Rényi-Wherl entropies are Rényi entropies associated
with the Husimi function. Our measure L is related to the Rényi-Wherl entropy of
order 2. In the newly added reference [51] (Wang 2020), it has been shown that for
the very same model that we study, a version of the Rényi-Wherl entropy of order 2
is linearly related to that of order 1. We have added this comment to the text below
equation (3).

(ii) Scarring Measures: It is possible to quantify the degree of scarring of the eigen-
states. This was pointed out in our paper, but we have now further extended the
discussion, while avoiding too many technical details, since Nature Communications
targets a broad audience. We now added to the list of references our more technical
work [46] (Pilatowsky 2020), recently uploaded to the arXiv, where we introduced a
measure of scarring and used it for the Dicke model.

• “How general are these results (see below)?”

Reply. We have found comments suggesting that ubiquitous scarring may be quite
general. In the newly added reference [21] (Muller 1994), that the Reviewer kindly
shared with us, we found this quote for the hydrogen atom in a magnetic field

...about 90% of eigenstates may be unambig[u]ously related to fixed points
and invariant manifolds of periodic orbits, indicating that scars are the rule
rather than the exception.

and

We find scars up to the highest calculated eigenstate (~eff ≥ 0.03). Even
though not all Husimi distributions could be linked uniquely to the shortest
12 POs we practically found no wavefunction which is ergodically distributed
over the irregular part of the phase space.
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Also, in the new reference [23] (Revuelta 2020), they were able to build significant
portions of the spectrum of a simple two-degree-of-freedom chaotic model using only
periodic orbits of relatively short periods. This indicates that the structure of the
eigenstates of this model may be described almost entirely by its classical periodic
orbits, hinting that all eigenstates may be scarred.

A merit of our work is exactly to motivate the question of whether scarring in other
models is also the rule and not the exception. Our work serves as a guideline for these
future studies, it provides the tools for this search in other models.

• “While exemplary results presented are interesting no definite conclusions are formed,
the manuscript brings observations and questions but few definite answers. In this
respect it may stimulate discussion.”

Reply. Our work provides answers for the Dicke model and should indeed inspire
similar discussions in other models. But our work has an additional purpose, which is
to clarify concepts that have been misused in the recent literature on quantum scars.
We significantly improved the Discussion Section and various parts of the manuscript
to stress the differences and relationships between quantum scarring, quantum ergod-
icity and phase-space localization. We believe that in face of these explanations our
conclusions will be better grasped.

• “However, the model studied is quite specific and studied by the same group in a
number of papers”

Reply. The Dicke model is a simple interacting spin-boson model and has been the-
oretically studied in connection with various topics, from superradiance and quantum
phase transitions to chaos and nonequilibrium quantum dynamics. As we wrote in
the Introduction, it can also be studied experimentally. Furthermore, our phase-space
techniques are applicable to any model with a phase space.

• “In the eighties scarring was studied not only for billiards or kicked top –incidentally
for the latter the first reference on scars, prior to [13] is M. Kus, J. Zakrzewski and
K. Zyczkowski, Phys. Rev. A43, 4244 (1991). More importantly, pioneering works
on scarring in hydrogen atom in magnetic field, which really introduced periodic orbit
theory to experiments should be cited (in particular works of late D. Wintgen, see e.g.
D. Wintgen and A. Hönig Phys. Rev. Lett. 63, 1467 (1989) and later works e.g. K.
Muller and D, Wintgen J. Phys. B 91994), works with the experimental group of late
Welge). There is also an interesting Physics Reports from 1993 of Bohigas Tomsovic
and Ullmo on a related topic, certainly worth a citation.”

Reply. We very much thank the Reviewer for these relevant references. We have
incorporated all of them to our text.
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• “Looking at Fig. 2 or supplementary material one hesitates whether the scarring is not
enhanced by the relatively large effective ~ = 1/j in the model studied.”

Reply. This is a good point and we are glad to show that it is actually quite the op-
posite. As j increases, the orbits get better defined in the Husimi projections. We now
added figures of the Husimi projections for different system sizes in the Supplementary
Information. The patterns for j = 30 and j = 100, for example, are very similar, but
the lines marking the periodic orbits become better delineated for j = 100.

• “Understanding the technical difficulties of the model one wonders whether a study in
other models mentioned might not be more conclusive.”

Reply. We do believe our work will motivate extensions to other models, and our
work provides the tools for that. Our method is applicable to any system with a phase
space. With the analysis of various other models, one should eventually be able to
build a general framework for the results presented in our work.
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REPLY TO REVIEWER #2

We thank the Reviewer for carefully reading our manuscript and for thinking that our re-
sults are counterintuitive and potentially very interesting. The Reviewer raises important
questions, which we address in detail below. They also motivated several improvements to
the manuscript.

Point-by-point reply:

• “The authors just demonstrate the results without much explanation. For example,
there is no explanation of why all the eigenstates encode the unstable periodic orbitals
in the classical limit, which is the most striking result.”

Reply. We extended our explanations of the main concepts – quantum scarring,
phase-space localization, and quantum ergodicity – which have connections and also
differences. This is done in different parts of the text and also in the Discussion Section.

To provide a quantitative demonstration that all eigenstates encode the unstable pe-
riodic orbits, we need to use a measure of scarring. We do not give a direct measure
of scarring (phase-space concentration around classical periodic orbits) in this article,
because it is rather technical, and this Nature Communications paper targets a broad
audience. However, we have now added more discussions about the subject and in-
cluded reference [46] (Pilatowsky 2020), which we recently uploaded to the arXiv. In
this more technical work, we introduced a direct measure of scarring. We elaborate
more on this topic on the reply to the Reviewer’s point 3.

• “Furthermore, because of the phase space method that the authors use, it is difficult
to assess whether the results are tied to this particular method or are intrinsic about
the eigenstate in the Dicke Model.”

Reply. Our phase-space method is applicable to any quantum system that has a
tractable phase-space (see the reply to the bullet below). Our work provides a guideline
on how to apply the measures that we define to any of these systems.

We would also like to bring to the Reviewer’s attention that we have now found in-
dications in the literature that our results should indeed be general. For example, in
the newly added reference [23] (Revuelta 2020), they are able to reconstruct significant
portions of the spectrum of a chaotic quantum system using only periodic orbits. This
means that these eigenstates are entirely described by those periodic orbits and are
therefore scarred. In another reference – [21] (Muller 1994) – also added to our list,
the authors suggest that for the hydrogen atom in a magnetic field, at least

90% of eigenstates may be unambig[u]ously related to fixed points and in-
variant manifolds of periodic orbits, indicating that scars are the rule rather
than the exception.

In this reference we also read these surprising statements,
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We find scars up to the highest calculated eigenstate (~eff ≥ 0.03). Even
though not all Husimi distributions could be linked uniquely to the shortest
12 POs we practically found no wavefunction which is ergodically distributed
over the irregular part of the phase space.

These claims indicate that ubiquitous scarring may be present in many other models. A
great merit of our work is to provide the tools to visualize the phenomenon of scarring
and verify these claims.

• “As the authors also admit, it is not obvious how to identify the phenomena observed
here in other quantum systems like spin 1/2 models, where the phase space method is
not applicable.”

Reply. We share the Reviewer’s concern, but stress that quantum scarring is in-
trinsically a phase-space effect, since it is defined as the concentration of quantum
states around classical periodic orbits in the phase space. The recent discussions about
many-body quantum scars are very exciting, but these studies are still in need of the
phase-space analysis to be conclusive. The semiclassical analysis of many-body quan-
tum systems is extremely difficult due to the proliferation of periodic orbits. However,
works by Thomas Guhr [e.g. PRL 118, 164101 (2017)] and Klaus Richter [e.g. PRL
121, 124101 (2018)] give us good reasons to be optimistic. The preliminary studies
about the semiclassical dynamics of the PXP model may also bear fruits [see arXiv:
2011.09486]. And, as we mentioned above, if the system has a tractable phase space,
our methods are applicable.

1) “The measure L introduced in eq (3) to quantify the localization in phase space is not
enough to claim that all eigenstates are scarred. None of the pure states occupy the
whole phase space, including the random states. L of many eigenstates in the high
energy shell is comparable with that of random states ∼ 0.5.”

Reply. We are glad the Reviewer made this comment, because it motivated us to
improve our explanations in the text. Let us go by parts.

– First, L is not a measure of scarring, but of phase-space localization. The claim that
all eigenstates are scarred is based on the Husimi projections. We show that in contrast
to the random states, the Husimi projections of all eigenstates in the chaotic region
show structures that look like periodic orbits. Compare the Husimi projections of the
random states in Fig. 2 (r1)-(r4), which “do not show structures that resemble closed
periodic orbits”, with Fig 2 (s1)-(s22) and the additional plots in the Supplementary
Information. [See also our comments about how to quantify the degree of scarring of
the eigenstates in our reply to the Reviewer’s point 3.]

– It is of course true that there is a relationship between phase-space localization and
scarring. An eigenstate that is scarred by one periodic orbit of a family of periodic
orbits is also very localized, but there are eigenstates that may be scarred by more
than one periodic orbit and from different families. This is shown quantitatively in
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the technical reference [46] (Pilatowsky 2020), but we now see the importance of qual-
itatively clarifying this to the Nature Communications’ readers as well, so discussions
were added.

– The Reviewer is very much right that there are some eigenstates with Lk ∼ 1/2,
that is, with degrees of delocalization comparable to the random states, but look how
interesting this gets! We now added panels (b) and (c) to Fig. 2. They show the
distributions of L for 20,000 random states [Fig. 2 (b)] and for the eigenstates in the
chaotic region [Fig. 2 (c)] for various different system sizes j.
→ In the case of random states, the values are concentrated around 1/2 and the width
decreases as j increases.
→ In contrast, for the chaotic eigenstates:
(i) the distribution is skewed and broader,
(ii) the tail at small values of Lk does not change as j increases, showing that the
highly scarred states persist,
(iii) the portion of the states with large Lk (that is Lk = 1/2 or slightly larger)
decreases, suggesting that for sufficiently large system sizes, none of the eigenstates
would reach the level of delocalization of random states. The cases Lk ∼ 1/2 that we
now see, such as in Fig. 2 (s8), may be a finite-size effect. Although, even here, as we
said above and in the main text, the pattern of periodic orbits is clearly visible, while
this is not the case for the random states.

2) “The time-averaged L introduced below eq (3) is also not a good measure to claim all
eigenstates are scarred. Quantum mechanics determines that the eigenstate does not
have dynamics and does not explore the phase space, in contrast to a random state.
This measure leads to that all eigenstates of all quantum systems are scarred, which
is not meaningful.”

Reply. First, it is important to make it clear that L is not a measure of scarring, it is a
measure of quantum ergodicity. L “quantify[ies] how much of the energy shell is visited
on average by the evolved state.” This idea is analogous to the notion of ergodicity in
the classical limit. The fact that L is below 1/2 for all eigenstates does not tell us that
they are scarred. As we wrote below Eq.(4), this means that “all stationary states in
the chaotic region of the Dicke model are non-ergodic”.

Let us rephrase the Reviewer’s sentence,
“This measure leads to that all eigenstates of all quantum systems are scarred”
and use instead,
“Since all eigenstates of quantum systems cannot fill the whole phase-space, they are
non-ergodic”.
That Lk has to be smaller than 1 for any pure state (including eigenstates) is due to
interferences and to the fact that the Husimi functions always have zeros (nodes) [JPA
30, L677 (1997); JPA 34, 10123 (2001).]

We significantly improved the Discussion Section and various parts of the manuscript to
stress the differences and relationships between quantum scarring, quantum ergodicity
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and phase-space localization.

3) “The most interesting and surprising result I find is that all eigenstates encode the
pattern of the unstable periodic orbital, different from a random state. However, the
authors did not discuss the mechanism behind this or provide a quantitative measure
to quantify the eigenstate’s closeness to the periodic orbital. Is there a quantitative
measure to distinguish the pattern of phase space in Fig 2 (r4) and (s22), which have
a similar L?”

Reply. Just as the Reviewer, we also found this result interesting and surprising. The
answer to the question is yes, there is a measure of scarring. We introduced it in our
more technical paper [46] (Pilatowsky 2020). It is the measure P in equation (18) of
that paper.

Let us provide some explanations, which we also added to the manuscript. To measure
the degree of scarring of all the eigenstates one has to know all the classical periodic
orbits that generate the scars. Finding all orbits is extremely challenging. In the tech-
nical paper [46] (Pilatowsky 2020), we were able to find two families of periodic orbits
and thus directly measure the degree of scarring generated by them. Interestingly, we
found that there are eigenstates scarred by periodic orbits from both families. These
are also the states with smaller values of Lk. We also note that:

– The orbits from the families identified in [46] (Pilatowsky 2020) are the ones visible
in the eigenstates of Fig.1 of our paper.

– We have not identified the periodic orbits in Fig. 2, but those circular patterns in
the Husimi projections are clear evidence of periodic orbits. Their existence is clear
from the shape of the Husimi projections and by knowing the generic direction of the
classical Hamiltonian flow. The patterns display all the features of periodic orbits:
they always cross the line P = 0 perpendicularly, they display symmetry along the P
and Q axes, and they visibly form closed loops. There is no quantum effect other than
scarring that would produce such patterns.

– According to our measure P of scarring, random states have P ∼ 1, while all eigen-
states should have P > 1. We say “should have”, because to say “have”, we would
need all periodic orbits. For the eigenstates scarred by the periodic orbits that we
found, then indeed we verified that P > 1, as seen in Fig. 2 of the technical paper.

4) “Can the result found be a finite-size effect? How does the result change as ωo in-
crease?”

Reply. After reading our answer to the point 1 above, where we described the distri-
butions for the phase-space localization measure for various system sizes, the Reviewer
may already be convinced that our results are not finite-size effects. But to further
reinforce this fact, let us address this question also in terms of scars. The orbit-like
patterns visible in the Husimi function of the eigenstates are visible for all values of
j numerically accessible and the lines get better defined as the system size increases.
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We added Husimi distribution for different systems sizes to the Supplementary Infor-
mation.

Note: We believe the Reviewer meant to say j, not ω0, but just in case, we clarify our
choice of value for this parameter. We work in resonance (ω = ω0), because this is
where the chaotic regime of the model is the largest. Increasing ω0, and thus moving out
of resonance, would reduce the energy span of the chaotic regime and more eigenstates
would fall in the regular regime. In the limit of ω0 →∞ the system becomes integrable.

5) “In recent studies of quantum many-body scars related to the long-time oscillation
found in the Rydberg atom experiments, a Hallmark of quantum scar is that order L
eigenstates violate eigenstate thermalization hypothesis (ETH) while the level statistics
of the whole spectrum remains Wigner-Dyson like. Do the scarred states identify
here, namely all eigenstates, violate ETH? This can be checked by comparing the
local observables measured from eigenstates and the Gibbs ensemble. What does the
projected Husimi distribution of a Gibbs state look like? ETH violation can be used as
a measure independent of the phase space method to strengthen the authors’ claim.”

Reply. From the way this question is asked, we believe the Reviewer is familiar with
what we write below, but still, for completeness, we choose to go through this answer
in detail. The short answer could go as follows.

In the analysis of the Peres lattice, that is, the analysis of the plot of the eigenstate
expectation value (EEV) of a few-body observable Oαα = 〈α|O|α〉 vs the eigenvalues
Eα

1 that is commonly used in studies of ETH, we should expect larger fluctuations for
the eigenstates that are highly scarred, but separating these states from the eigenstates
that are not so strongly scarred is not straightforward. In addition, the comparison
with thermodynamic averages has to be followed by scaling analysis and the range of
system sizes numerically accessible is often very limited. We provide some illustrations
below, but reiterate that studies of scarring can only be conclusive if followed by the
analysis of phase space.

We added a sentence about ETH in the Discussion Section, because we recognize that
this should be of interest to the community studying “quantum many-body scars”,
but a complete discussion of this subject requires extended explanations and analysis,
which we may present in a future publication focusing specifically on scarring vs ETH
and thermalization.

Let us now move to the details.

Thermalization:

(i) ETH has two aspects: diagonal and off-diagonal ETH. To simplify the discussion,
we focus here only on the first, since this seems to be what the Reviewer has in mind.
The diagonal ETH says that when the EEV of a few-body observable Oαα obtained
with an eigenstate |α〉 does not vary much for eigenstates close in energy, then that

1This kind of plot was discussed by Peres in the 1980’s, although the ETH community is usually not
aware of this name.
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observable should thermalize 2. Quantum chaos in the sense of chaotic eigenstates 3 is
the mechanism that guarantees the validity of ETH [see e.g. Physics Reports 626, 1
(2016)].
(ii) To talk about thermalization, we should, of course, add to (i) information about
the initial state. Thermalization will happen for initial states with energies within that
window of energy, where Oαα does not vary much, that is, initial states that are large
superpositions of those chaotic states [see e.g. Physics Reports 626, 1 (2016)].

(iii) There is another scenario where thermalization will also happen: When despite
having an integrable model, where the eigenstates are not chaotic, the initial state
itself is chaotic in the energy eigenbasis, that is, it is an uncorrelated superposition of
very many eigenstates [see e.g. PRL 108, 110601 (2012)].

Peres lattice:

To verify (i), it is not enough to simply look at the Peres lattice, one needs a quantita-
tive analysis as well. In Fig. 2 of [46] (Pilatowsky 2020), the Reviewer can see the entire
Peres lattice of an observable of the Dicke model: the regular region (low energies) and
the chaotic region (large energies) are clearly distinguishable. In the figure below, we
show that Peres lattice for three different system sizes j (the observable, O = ne, is
the number of excited atoms). It is hard to say whether the fluctuations in the chaotic
region are decaying or not as j increases.

Following PRE 82, 031130 (2010), let us then look at the deviation of the EEVs with

2(provided the off-diagonal ETH is also satisfied)
3(that is, states that are close to random states, although never equal to them, because correlations are

always present in realistic systems)
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respect to the microcanonical result Omic [Eq.(12) in PRE 82, 031130 (2010)],

∆micO =

∑
α |Oαα −Omic|∑

α |Oαα|

The figure below, obtained within the chaotic region, does suggest the validity of ETH,
as expected for chaotic systems. We see that ∆micO does decrease as j increases.

●
●

●
●

●

●

●
●

●

●

●
● ●

●

●
●

●
●

●

●
●

■ ■

■

■ ■
■

■ ■
■

■ ■
■

■ ■ ■ ■
■ ■ ■ ■

■

◆
◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆ ◆ ◆ ◆ ◆

● j = 30

■ j = 50

◆ j = 100

-0.4 -0.2 0.0 0.2 0.4
0.00

0.01

0.02

0.03

0.04

E/ j

Δ
m
ic
(n
e
/
j)

However, the best quantitative analysis, specially in a scenario where highly scarred
states may be present, is to deal with the normalized extremal fluctuation [Eq.(13) in
PRE 82, 031130 (2010)],

∆mic
e O =

∣∣∣∣maxO −minO

Omic

∣∣∣∣ ,
where the maximum maxO and minimum minO values of Oαα are extracted from the
same window of energy used to obtain the microcanonical value. Now, for this quantity,
things become fuzzier, most likely due to the presence of the highly scarred states, as
seen in the figure below.
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In short, all of our eigenstates are scarred, but they have different degrees of scarring.
The highly scarred eigenstates, which are also the most localized ones, should indeed
lead to large fluctuations in the Peres lattice. The eigenstates that are more delocalized
and thus closer to random states (although they are still scarred, usually by periodic
orbits of different families) should lead to smaller fluctuations in the Peres lattice.

Initial State:

To verify whether thermalization indeed takes place at long times, then we need to also
take (ii) into account, that is, we need to investigate the structure of the initial state
with respect to the energy eigenbasis. Remember what we said in (iii), that depending
on the initial state, thermalization may happen even in an integrable model. The
opposite is also true, depending on the initial state, thermalization may not happen
even in a chaotic system.

In our case, the initial states are coherent states.
– If the coherent state is centered at an unstable periodic orbit of short period, then
it is highly scarred. This initial state is a superposition of not too many eigenstates,
which in turn are highly scarred by that periodic orbit. For this kind of initial state,
the local density of states (that is, the energy distribution of the initial state) shows
the typical comb-like structure discussed in the early works by Heller, the survival
probability (SP) leads to large oscillations, and the infinite-time average of the SP
reaches large values, in other words, thermalization will not happen.
– On the other hand, if the coherent state is far from the periodic orbits of short
period, then it becomes a large superposition of eigenstates that are scarred by different
periodic orbits and by periodic orbits belonging to different families. The comb-like
structure and the oscillations of SP are no longer seen, and the infinite-time average of
the SP reaches values close to the IPR of Gibbs states, in other words, thermalization
will happen.
– This discussion (although not mentioning thermalization explicitly) can be found in
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the Sec. IV of [46] (Pilatowsky 2020). It is, of course, straightforward to extend this
sort of analysis to few-body observables.

Husimi: Answering the question “What does the projected Husimi distribution of
a Gibbs state look like?”, a Gibbs state at infinite temperature is equivalent to an
average over random states, so its Husimi projection should be similar to what we see
in Fig. 3 (h3). Indeed, we show below the Husimi projection and L(ε, ρ̂G) for a Gibbs
state, where the weights are all equal

1-1

0.8

-0.8

6) “Is there any experimentally measurable consequence of these findings?”

Reply. This is a good question, which we had also asked ourselves. We should certainly
expect measurable effects for the dynamics of strongly scarred coherent states, like the
one in Fig. 3 (a1), for which the survival probability exhibits revivals [Fig. 3 (a2)].
But the Reviewer probably wants to know if one could experimentally detect the
“ubiquitous scarring” that we discuss in this paper. This would require both finding
a model where scarring is ubiquitous (and as we explained above, this may be very
general) and an experiment that has access to the wave functions. What is known in
the literature is that microwave cavities allow for the experimental study of billiard
wave functions [see e.g. Quantum Chaos: An Introduction by Hans-Jürgen Stöckmann].
That is how far we can go with this answer at the moment.
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