SUPPLEMENTARY INFORMATION

Smc5/6 functions with Sgs1-Top3-Rmi1 to complete chromosome replication at natural pause sites

Sumedha Agashe, Chinnu Rose Joseph, Teresa Anne Clarisse Reyes, Demis Menolfi, Michele Giannattasio, Anja Waizenegger, Barnabas Szakal and Dana Branzei^{*}

* Corresponding Author: Dana Branzei (dana.branzei@ifom.eu)

Supplementary Figures and Figure Legends

Supplementary Figure 1

Agashe et al

Supplementary Fig. 1. Top3 recruitment to chromatin is independent of Smc5/6, Related to Fig. 1. (a) ChIP-on-chip profile of HA-Sgs1, Top3-Flag, and Rmi1-Flag from G2/Msynchronized cells. Chr I is shown as example. The indicated p-values (one-tailed Fisher's exact test) relate to the genome-wide overlap between the considered protein clusters. Evaluation of the significance of overlap between the binding clusters of different proteins was performed by confrontation against a null hypothesis model generated with a Montecarlo-like simulation where the "score" for both the randomized positions and the actual data was calculated as the total number of overlapping bases among the whole clusters. The significance of correlation was scored using a one-tailed Fisher's exact test, as described in the Method section. (b) Analysis of overlap Sgs1, Top3 and Rmi1 at tRNAs genes. The table reports the fold increase/decrease of each protein at tRNA genes, calculated versus the ones expected for random binding, and the p-values (one-tailed Fisher's exact test) of the significance (see panel a). The values for Top3 and Rmi1 are also shown in Fig. 1b. (c) Smc6, Top3 and Sgs1 are enriched at NPSs that serve as termination sites (TERs) in G2/M. Values of overlap and nonoverlap between the protein clusters are shown. (d) ChIP-on-chip profile of Top3-Flag from G2/M-synchronized WT, s-smc6, smc6-P4 and smc6-56 mutant cells. Chr V is shown as example. The indicated p-values (one-tailed Fisher's exact test) relate to the genome-wide overlap between the considered protein clusters (see legend of Fig. 1a for details). Genomewide coverage in percentage of Top3 in different backgrounds is shown. Source data are provided as a Source Data file.

Agashe et al

Supplementary Fig. 2. Smc5/6 and Top3 are recruited to natural pause sites and stalled replication forks, Related to Fig. 1. (a) ChIP-qPCR analysis of Myc-tagged Smc6 and variants versus no tag in G2/M phase at three indicated NPSs. (b, c) ChIP-qPCR analysis of Top3-Flag versus no tag (b) and Smc6-Myc versus no tag at stalled replication forks. Two early efficient

ARS regions (ARS305 and ARS1) were analyzed. (a-c) The mean of % input is derived from 3 biological replicates. Data are presented as mean values +/-SEM. p-values were calculated by unpaired two-sided t-test. Source data are provided as a Source Data file.

Agashe et al

Supplementary Fig. 3. STR and Smc5/6 prevent joint molecule accumulation at stalled replication forks, Related to Fig. 2. (a) Schematic representation of replication intermediates observed by 2D gel electrophoresis at an early replication origin. (b) Schematic representation of the ARS305 early replication origin analysed by 2D gel. (c) Flow Cytometry gating strategy and representative image. For all experiments in which cell cycle progression was followed, samples were gated on SSC-H and FSC-H as well as on FL1-H and FSC-H to exclude doublets and debris. Then a histogram of FL1-H values was generated from the remaining cells. A value of 200 in FL1-H represents the G1 population with a 1N DNA content and a value of 400 represents the G2 population with a 2N DNA content. 50.000 cells per sample were analysed. (d) Visualization of replication intermediates by 2D gel electrophoresis from cells of the indicated genotype at the ARS305 region. The cells were synchronized in G1 phase and released in media containing 200 mM HU, as well as Tetracycline (Tc) and Auxin (Aux). The experiment was repeated independently twice with similar results. Flow cytometry profiles are indicated on the right. Cells were collected at the indicated time-points. Sgs1 and Top3 tagged with HA were depleted with Auxin and Tetracycline, and depletion was confirmed by Western blotting. Pgk1 was used as loading control. Joint Molecules accumulating on the X-arc are indicated by arrows. Source data are provided as a Source Data file.

Agashe et al

Supplementary Fig. 4. STR and Smc5/6 jointly prevent recombination intermediate accumulation at natural pause sites, Related to Fig. 2. (a, b) Visualization of replication intermediates arising at TER302 by 2D gel electrophoresis from cells of the indicated genotype synchronously released from G1 in media containing 200 mM HU, as well as Auxin (Aux) and Tetracycline (Tc). The experiment was repeated independently twice with similar results. FACS profiles indicated on the right show cell cycle progression. Sgs1 and Top3 tagged with

HA were depleted with Auxin and Tetracycline as indicated by WBs. Pgk1 was used as loading control. Joint molecules accumulating on the X-arc are indicated by arrows. Source data are provided as a Source Data file.

Agashe et al

10

Supplementary Fig. 5. Validation and characterization of the *smc6-56* suppressor, Related to Fig. 4. (a) Rescue of the temperature sensitivity of *smc6-56* to WT level by suppressor mutation as observed by spot assay. (b) Validation of suppressor by checking 2:2 segregation of its temperature sensitivity when back-crossed with *smc6-56*, with separated tetrads spotted on the plates. (c) Smc6, Smc6-56 and Smc6-56-sup protein stability at 37°C as assessed by Western blot. Pgk1 stands for loading control. The experiment was repeated independently three times with similar results. (d, e) Genetic interactions between *smc6-56* or *smc6-56-sup* with *rrm3A* and *sgs1A* checked by crossing with indicated genotype, segregation and marking the genotypes of the spores. Note additional lethality in the *smc6-56* cross with *rrm3A* marked with a star. (f) 2D gel electrophoresis of replication intermediates forming at *ARS305* in WT, *smc6-56, smc6-56-sup* strains. The cells were synchronized in G1 phase and released in media containing 200 mM HU. Flow cytometry profiles on the right show cell cycle progression. Joint molecules accumulating on the X-arc are indicated by arrows. Source data are provided as a Source Data file.

Agashe et al

Supplementary Figure 6

Supplementary Fig. 6. *smc6-56-sup* genetic interactions with mutations in DNA helicases and resolvases, Related to Fig. 5. (a, b, c) Genetic interactions between *smc6-56* or *smc6-56-sup* with *srs2* Δ , *mph1* Δ , *mus81* Δ and *mms4* Δ as checked by crossing. (d) Visualization of replication intermediates forming proximal to *TER302* by 2D gel electrophoresis from cells of the indicated genotype, synchronized in G1 and released in media containing 200 mM HU and Tetracycline (Tc). The experiment was repeated independently twice with similar results. Flow cytometry profiles are shown on the right. Sgs1, tagged with HA, was depleted with Tetracycline as verified by Western blotting. Pgk1 was used as loading control. Joint molecules (JMs) accumulating on the X-arc are indicated by arrows. Source data are provided as a Source Data file.

Agashe et al

Supplementary Figure 7

Supplementary Fig. 7. Mus81-Mms4 and Srs2 mutations do not increase joint molecules at natural pause sites, Related to Fig. 7. (a, b) Visualization of replication intermediates forming proximal to *TER302* by 2D gel electrophoresis from cells of the indicated genotype, synchronized in G1 and released in media containing 200 mM HU (a) or 150 mM HU (b) and Tetracycline (Tc). The experiments were repeated independently twice with similar results. Flow cytometry profiles are shown on the right. Mms4 and Sgs1 tagged with HA, were depleted with Tetracycline as verified by Western blotting. Pgk1 was used as loading control. Source data are provided as a Source Data file.

Supplemental Items

Supplementary Table 1. Saccharomyces cerevisiae Strains Used in This Study.

Strain	genotype	Source
FY1296	Mat A ade2-1 trp1-1 leu2-3 112 his3-11 15 ura3 can1-100	Lab collection
FY1646	Rad5+ (W303) Mat alpha ade2-1 trp1-1 leu2-3 112 his3-11 15 ura3 can1-	Lab collection
EV1222	$\frac{100 \text{ Rad5} + (W303)}{W202 \text{ Min} (A min) (DA 12) (WC + WAN) (WA)}$	T -1 114'
FY1332	W 303 Mat A smco-P4-13MTC::KANMA4	Lab collection
FY1432	W 305 Mat A Smc0-30-15M1C::KANMX4	
HY1729	W 303 Mat alpha mms42::HPHMX4	Lab collection
FY1/44	W 303 Mat A sgs1-sim::KANMA	Lab collection
FY1/46	W 303 Mat A sgs1-K021K::KANMX	Lab collection
FY1060	W303 Mat A sgs12::HIS3MX0	Lab collection
HY2806	W 303 Mat A SMC6-6HIS-3FLAG::KANMX4	Lab collection
HY316/	W303 Mat A S::NAIN12-SMC6	Lab collection
HY3293	W 303 Mat A pADH1-tc3-3xHA-10p3::NA1MX4	Lab collection
HY3611	$W303 Mat A rmi1\Delta$::KANMX4	Lab collection
HY3674	W303 Mat A ura3-1::ADH1-OsTIR1-9MYC(URA3)	Lab collection
111/2 202	top3::pADH1-tc3-3xHA-Top3(HPHMX4)-AID::NATMX4	T 1 11
HY3707	W 303 MATa RAD5+, sgs1::pADH1-tc3-6xHA-Sgs1 (KrewMV4)	Lab collection
111/2721	(KanMA4)	T 1 11 4
HY3/21	W 303 Mat A ura3-1::ADH1-0S11R1-9MyC(URA3),	Lab collection
111/2007	$\frac{Sgs1pAD111-iC5-Sx11A(11F11MA4)-Sgs1-uiu(KANMA4)}{W202 Mat A TOD2 GUIS 10ELACVANMVA}$	Lab callection
HY3807	W 305 Mai A TOP 3-OHIS-TOP LAG: KANMA4	Lab collection
HY3882	W 305 Mat A sgs1::pADH1-IC3-5XHA-Sgs1 (NATMA)	Lab collection
HY40/1	$W 303 Mat A rrm 3 \Delta :: HIS3 MX0$	Lab collection
HY4898	W303 Mat A S:: NATN12-Mms21	Lab collection
HY4916	W 303 Mat A Rrm3-10FLAG::KANMX4	Lab collection
HY4921	W 303 Mat A sgs1::pADH1-tc3-3xHA-Sgs1(NATMX) mms4∆::HPHMX	Lab collection
HY6606	W303 Mat A S::NATNT2-Mms21-PK9-HIS3MX6	Lab collection
HY7390	W303 Mat A mms4::pADH1-tc3-3xHA-Mms4::HPHMX	Lab collection
HY7512	W303 Mat alpha MMS4-6HIS-3FLAG::KANMX4	Lab collection
HY7717	W303 Mat A SMC6-13myc::TRP	This study
HY7937	W303 Mat A smc6-P4-13myc::KANMX TOP3-6HIS-	This study
	10FLAG::KANMX4	
HY8031	W303 Mat A S::NATNT2-SMC6 TOP3-6HIS-	This study
113/0022	IUFLAG::KANMX4	
HY8032	w sus Mat A smco-so-15myc::KANMX 10P3-6HIS- 10FLAG··KANMX4	I his study
HV8112	W303 Mat 4 Rmil_6HIS_10FI AG···KANMYA	This study
HV8788	W303 Mat A smc6-56-FI AG··KANMYA	This study
HV8/155	W303 Mat alpha srs24HIS2MV6	I ab collection
1110433		

HY8767	$W303 Mat alpha mph1\Delta$::HPHMX4	Lab collection
HY8947	W303 Mat A pADH1-tc3-3xHA-Top3::NATMX4 S::NATNT2-	This study
	SMC6	
HY9342	W303 Mat A sgs1-K621R::KANMX TOP3-6HIS-	This study
	10FLAG::KANMX4	
HY9387	W303 Mat A Smc6-56-Sup-13MYC::KANMX4 TOP3-6HIS-	This study
	10FLAG::KANMX4	
HY9390	W303 Mat A Smc6-56-Sup-13MYC::KANMX4	This study
HY9410	W303 Mat A mms21-CH::HIS TOP3-6HIS-	This study
11110064	10FLAG::KANMX4	T 1 11 .1
HY9864	$W303$ Mat alpha mus81 Δ ::NATMX4	Lab collection
HY9883	W 303 Mat A sgs1::pADH1-tc3-3xHA-Sgs1(NATMX)	Lab collection
111/10146	$STS2\Delta$::HIS3MX0	This star las
HY10146	W 505 Mat A Sgs1::PADH1-IC5-5XHA-Sgs1(HPHMX4) Smc0-	I his study
UV10140	$\frac{50-50p-15MTCKANMA4}{W202 Mat A gag line ADH1 to 2 2xHA Sag 1(HDHMVA) gm of $	This study
11110149	$V 505 MUI A Sgs1pAD111-iC5-5X11A-SgS1(111 11MIA4) SmC0-56_13MVC \cdot\cdot KANMYA$	This study
HV10448	W_{303} Mat A sas $1.4 \cdot NATMX4$ Smc6-56-Sun-	This study
11110440	$13MYC \cdots KANMX4$	This study
HY10490	W303 Mat A mus81A···NATMX4 Smc6-56-13MYC···KANMX4	This study
HY10491	W303 Mat A mus81A::NATMX4 Smc6-56-Sup-	This study
	13MYC::KANMX4	1110 00000
HY10492	W303 Mat A mms4A::HPHMX4 Smc6-56-13MYC::KANMX4	This study
HY10493	W303 Mat A mms4A::HPHMX4 Smc6-56-Sup-	This study
	13MYC::KANMX4	2
HY10494	W303 Mat A mph1A::HPHMX4 Smc6-56-13MYC::KANMX4	This study
HY10496	W303 Mat A mph1A::HPHMX4 Smc6-56-Sup-	This study
	13MYC::KANMX4	
HY10498	W303 Mat A ura3-1::ADH1-OsTIR1-9MYC(URA3)	This study
	top3::pADH1-tc3-3xHA-Top3(HPHMX4)-AID::NATMX4	
	Smc6-56-Sup-13MYC::KANMX4	
HY10501	W303 Mat A ura3-1::ADH1-OsTIR1-9MYC(URA3)	This study
	top3::pADH1-tc3-3xHA-Top3(HPHMX4)-AID::NATMX4	
10/22	Smc6-56-13MYC::KANMX4	TT1 · / 1
HY10633	W 303 Mat A srs22::HIS3MX0 Smc0-30-Sup-	This study
UV10900	$\frac{15M1CKANMA4}{W202 Mat A mms A \cdots n A D H1 to 2 2 m H A Mms A}$	Lab collection
11110000	10FL AG(KANMX)··HPHMX	
HY10843	$W303 Mat A smc6-56-sun-13myc \cdot KANMX sos 1-$	This study
11110010	sim::KANMX	Timb beauty
HY10845	W303 Mat A smc6-56-sup-13myc::KANMX sgs1-	This study
	K621R::KANMX	5
HY10984	W303 Mat alpha smc6-56-13myc::KANMX MMS4-6HIS-	This study
	3FLAG::KANMX4	
HY10986	W303 Mat alpha smc6-56-sup-13myc::KANMX MMS4-6HIS-	This study
	3FLAG::KANMX4	
HY11551	W303 Mat A smc6-P4-FLAG::KANMX4	This study
HY11575	W303 Mat A Smc6-56-Sup-13MYC::KANMX4 (de novo	This study
	created)	

Supplementary Table 2. List of oligos used for qPCR

Oligo	purpose	Sequence
TER302CF	q-PCR primer at	5'-GGGTAGACGAAACTATA TACGCAAT-
	TER302	3'
TER302CR	q-PCR primer at	5'-TGCCCTCCTCCTTGTCAATA-3'
	TER302	
TER603AF	q-PCR primer at	5'-ATGGGGGTTGAACATTGTGT-3'
	TER603	
TER603AR	q-PCR primer at	5'-TCGCATATAAGCAAGTGGTTT-3'
	TER603	
TER1004FF	q-PCR primer at	5'-CCATCTTGTTGTCCATGTCC-3'
	TER1004	
TER1004FR	q-PCR primer at	5'-CGCATGGGATTTTGCTATC-3'
	TER1004	

Supplementary Table 3. List of oligos used for 2D gel probes

Oligo	purpose	Sequence
TER302Fw	amplification of	5'-GAAGGTTCAACATCAATTGATTG
	termination probe (2D)	ATTCTGCCGCCATGATC-3'
TER302Rv	amplification of	5'-GCTTCCCTAGAACCTTCTTATGTT
	termination probe (2D)	TTACATGCGCTGGGTA-3'
ARS305FW	amplification of	5'-GTTCCGAAACAGGACACTTAGC-3'
	ARS305 probe	
ARS305RV	amplification of	5'-ATCCAGGAGGGACTCAATGTAG-3'
	ARS305 probe	