
 

 

Supplemental material 

Supplemental Methods  

Brain MRI Protocol 

MRI protocols differed between trials and individual trials acquired data under their 

pre-defined protocols. We included brain 2D or 3D T1-weighted, fluid attenuated 

inversion recovery (FLAIR), and T2-weighted MRI scans. Table 1 shows the list of 

included trials with corresponding publications that reported details of MRI protocol.  

In the CLIMB study, in which the MRI protocol had changed over time from 2D T1-

weighted MRI to 3D, we only included more recent 3D T1 weighted MRI data.  

 

Image analysis 

Brain MRI data handling 

We checked and labelled the sequence of MRI scans by visually inspecting nine slices 

of each MRI scan (three axial, three sagittal, and three coronal slices) with equal slice 

intervals from the coordinates of the “centre of gravity” of each scan. The criteria to 

define an MRI visit as eligible was the presence of T1-weighted, T2-weighted, and T2-

FLAIR MRI modalities with coverage of the brain and the cerebellum. We organised 

and uploaded MRI data to an XNAT server (version 1.7.4)1. We implemented our 

image analysis pipeline inside XNAT with Nipype version 1.1.4 to enable large-scale 

high-throughput computing2.  

Initial quality control and inclusion criteria of MRI scans 

Quality assurance data was provided by sponsors of each clinical trial, and we 

excluded MRI data where a quality issue (e.g., acquisition artefact) was flagged. AE 

also reviewed all scans to ensure coverage of the whole brain, including the 



 

 

cerebellum, and confirm that there were no additional visible image artefacts that could 

affect scan processing. 

 
  

Regional brain volume calculation 

We aimed to analyse scans to extract volumes of the grey matter regions according 

to an established brain atlas developed by Klein and Tourville (Neuromorphometrics, 

52, see above for the list)3. We chose a cross-sectional, rather than a longitudinal 

image processing pipeline, to ensure that our subtyping models can be used 

prospectively in the real-world datasets in which (future) follow up data are not yet 

acquired. We adapted our established MRI analysis pipeline, which we had previously 

validated in clinical trials and observational cohorts as explained elsewhere in detail4,5. 

Briefly, it included intensity inhomogeneity correction of the T1-weighted MRI with ITK 

version 5.0 N4-bias field correction algorithm with Advanced Normalization Tools 

(ANTs)6, automatic segmentation of hyperintense lesions of the T2-FLAIR sequence 

using the consensus (intersection) mask of two different methods (the regression 

based method in Lesion Segmentation Toolbox version 2.0.157 and a deep 

convolutional neural network based method in DeepMedic version 0.7.18 , trained and 

validated previously with manual lesion masks from MS patients), rigid registration of 

FLAIR to T1-weighted MRI with co-registration of the FLAIR lesion masks to T1-

weighted MRI using ANTs version 2.1.0, and lesion filling with NiftySeg version 1.09. 

We segmented and parcellated the brain into Neuromorphometrics atlas regions on 

lesion-filled T1-weighted scans using the Geodesic Information Flows (GIF) software 

version 3.010. We used a modified version of this pipeline for the Siena cohort, 

ARPEGGIO and lamotrigine trials which did not have FLAIR but whose investigators 

had provided manually delineated lesion masks. 



 

 

 

T1/T2 ratio calculation of the normal-appearing white matter regions 

Lesion masks or brain volumes do not provide any quantitative information on 

microstructural changes in the white matter. We therefore chose T1/T2 ratio as a 

measure of extra-lesional white matter changes, because T1 and T2-weighted MRI 

are widely available in clinical trials and clinical practice (as opposed to more 

advanced MRI sequences such as diffusion imaging or magnetisation transfer ratio). 

T1/T2 ratio is an extensively used measures of microstructural changes11,12. We 

adapted available pipelines from the Human Connectome Project to calculate T1/T2 

ratio maps for all trials13 and Ganzetti and colleagues method in T1/T2 calculation14. 

We corrected for intensity inhomogeneity in T1 and T2-weighted MRI scans with N4 

bias field correction algorithm. Next, we rigid-registered T1 and T2-weighted scans in 

a symmetric space, such that both modalities equally underwent only one interpolation 

to minimise interpolation artefacts. We normalised the intensity of each modality 

separately as explained in Ganzetti et al. Ganzetti et al. used measurements of the 

vitreous humour and temporal muscles to normalise T1/T2 ratios; however, because 

of data anonymisation, subjects’ eyes were removed from the scans in several of the 

clinical trials included in this study. Therefore, we used T1/T2 ratio of the ventricular 

CSF to normalise individual T1/T2 ratios. When we compared ventricular CSF T1/T2 

ratios between MS patients and controls, no significant differences were detected. We 

calculated the T1/T2 ratio and normalised its value against the average T1/T2 ratio in 

the ventricles with the co-registered ventricular masks obtained from the segmentation 

maps calculated from lesion-filled T1 scans (explained above). We extracted T1/T2 

ratio from bilateral normal-appearing white matter regions (see above for list of 

regions) after we removed co-registered lesions segmented in FLAIR from the white 



 

 

matter regions, which we refer to as normal-appearing T1/T2 ratio throughout this 

manuscript. Since the T1/T2 ratio in the grey matter regions were highly correlated 

with grey matter volumetric results, we did not include any T1/T2 ratio in the grey 

matter in our models.  

 

Quality control  

We developed a pipeline to check the quality of results of our pipeline by automatically 

generating 18 images from segmentation results, lesion segmentations, and 

registration results which we manually reviewed. We re-ran image analysis pipeline 

where we identified mis-registrations or faulty segmentations. We did not exclude any 

visit in clinical trials to perform an intention-to-treat analysis in individuals who met the 

minimal MRI criteria (which was availability of T1-, T2-weighted, and FLAIR).  

 

  



 

 

Supplemental Statistical Analysis 

Centre effects and 2D or 3D data acquisition effects 

From the 19 data sets in the training and validation sets, 15 were multi-centre, which 

means that their MRI data were acquired by two or more scanners. Eight data sets 

were acquired by a 3D and the remaining 11 with a 2D T1-weighted acquisition 

protocol. To compare “centre” effects with “subtype” effects, using all data from training 

and validation datasets, we fitted hierarchical mixed effects models in which MRI 

variables were outcome, “centre” and “subtype” were predictors, and “study” was the 

random effects variable. We also determined whether 2D versus 3D MRI protocols, or 

SuStaIn model subtypes explain the majority of variation in regional brain tissue 

volumes. To compare the effects of 3D vs 2D MRI data acquisition, we used a mixed 

effects model, in which data acquisition (2D or 3D) and MRI-derived subtypes were 

predictors and regional brain volumes were outcomes. We quantified the effect size 

for each variable and compared them using general linear model contrasts with the 

multcomp package in R. 

 

Comparison of MRI subtypes and established imaging measures in prediction of CDP 

 

We assessed whether the three MRI derived subtypes provide value to the known 

imaging outcomes of lesion load and whole brain volume. We divided patients based 

on these two variables in three equal groups and compared the hazard ratios with the 

MRI-derived subtypes in a Cox regression model. In this model we also included 

baseline EDSS, disease duration, and age as confounders.   

 

Reliability and stability of SuStaIn models: longitudinal subtyping  



 

 

In addition to subtyping patients at baseline, we trained our model on the baseline 

subjects and predicted the probability of subtype membership for the available patient 

visits over time (34,172 visits). We reported the number of subjects who preserved the 

subtype membership. To calculate the annual rate of change in SuStaIn stages for 

each data-driven subtype, we fitted a mixed-effects model in which the SuStaIn stage 

was an outcome variable and time was the independent variable (fixed effects). In 

these models to adjust for hierarchical repeated measures, we defined nested random 

effects in which ‘time’ variable was nested in the ‘subject’ variable. To calculate 

longitudinal cortical atrophy in each subtype we used a similar mixed effects model 

and log-transformed the cortical volumes to obtain the annual percentage volume 

change.  

  



 

 

Supplemental Results 

Demographic characteristics of the training and validation datasets 

 

When we compared the training data set with the validation data set, patients in the 

validation data set were younger (average difference of 3.1 years, p<0.001), had 

shorter disease duration (average difference of 6 months, p=0.001), and were less 

disabled (0.5 difference in Expanded Disability Status Scale (EDSS), p<0.001) than 

those in the training dataset. 

 

MRI Processing: calculating normal ageing and gender effects using datasets of 

healthy volunteers 

We obtained 18 MRI variables which were volumes of grey matter lobes and deep 

grey matter, white matter lesion load, and normal-appearing WM T1/T2 for all patients 

and healthy volunteers. To estimate and adjust for demographic variables and ageing 

effects in MRI, we used two data sets from 14,928 healthy volunteers which covered 

a wide range of age (23.5 to 70 years, 13,823 from the UK Biobank and 1,105 from 

the Human Connectome Project; 7,965 women and 6,963 men). The mean age was 

28.9 years (standard deviation=3.62) for the Human Connectome Project and 54.9 

years (standard deviation=7.49) for the UK Biobank. We used healthy controls’ 

datasets to calculate linear and non-linear effects of age, gender, and total intracranial 

volume and adjusted MRI variables in patients for these effects. Of the 18 adjusted 

MRI variables, 13 were associated with a moderate to large effect size when patients 

at baseline visits were compared with healthy controls, and, therefore, were selected 

and entered into SuStaIn (Supplementary Figure 1). Selected variables were volumes 

of the occipital, parietal, temporal, limbic and frontal grey matter, and deep grey matter; 



 

 

total white matter lesion volume; T1/T2 ratio in the corpus callosum, frontal, temporal, 

parietal, cingulate bundle and cerebellar normal-appearing white matter (NAWM) 

regions.  

 

Defining the optimal number of subtypes: model selection 

We fitted models that had one to five subtypes for 14 cross-validation folds (total of 70 

models, Supplementary Figure 3 and Supplementary Figure 4). We used Cross 

Validation Information Criteria (CVIC) to choose the most optimal number. The three-

subtype model had the optimal average CVIC (minimum value across models up to 

five subtypes) across tested models.  

 

“Dataset” and “centre” effects 

We found that the subtypes were highly consistent across datasets in the training data 

set, despite different RCTs and trial protocols. In particular, the average measure of 

agreement (or Bhattacharyya coefficient) of the posterior distribution of the estimated 

sequences for each subtype across all cross-validation folds were as follows: 0.94 

(standard deviation±0.03) for the cortex-led subtype, 0.94 (standard deviation ±0.02) 

for the NAWM-led subtype, and 0.96 (standard deviation ±0.02) for the lesion-led 

subtype, suggesting excellent agreement across trials. When we looked at the effects 

of centre inside each dataset on MRI-derived subtypes, the EDSS and MRI measures 

were significantly more strongly associated to “subtype” effect than the “centre effect” 

(see Supplemental Results).  

 

Centre vs subtype effects: Subtype was more strongly associated with clinical and 

imaging outcomes than the centre 



 

 

MRI and clinical data in training datasets were acquired at 772 different centres. EDSS 

was more strongly associated with subtype than centre (difference in standardised 𝛽= 

0.04, standard error = 0.009, p<0.001). Similarly, when looking at the 13 MRI 

measures, their standardised 𝛽 coefficients were significantly larger than centre 

coefficients, which means that they were more strongly associated with subtype than 

centre (all p values < 0.001). When we compared the effects of 2D or 3D acquisition 

of T1-weighted MRI vs MRI-derived subtypes on brain volumes, the magnitude of 

effect sizes was, 1.5 times (for the parietal lobe) and 9.9 times (for the deep grey 

matter) larger for MRI-derived subtypes than 2D or 3D MRI acquisitions. 

 

Relationship of subtype classification certainty to 24-week CDP 

In the placebo arms of the validation data set, there were significant correlations across 

classification certainties and time to 24-week CDP: A higher certainty of lesion-led and 

NAWM-led classification were correlated with a longer time to CDP (Pearson’s r = 0.15, 

p=0.02 for lesion led and r=0.23, p=0.01 for NAWM-led). There was no correlation 

between the certainty of cortex-led classification and CDP (p=0.96). 

 

Comparison across MRI subtypes and established imaging measures in predicting 

CDP 

The MRI-derived subtypes were significantly associated with the time to 24-week 

CDP while the lesion volumes or brain volumes were not (in the same model): MRI-

derived subtypes (hazard ratio (HR)=1.15, SE=0.06, p=0.04), total brain volume 

(HR=1.13, SE=0.07, p=0.1), and lesion load (HR=1.08, SE=0.07, p=0.25).  

 

Consistency of the subtype membership over time  



 

 

Presented results so far have been on subtypes detected using the baseline MRI 

scans. We looked at longitudinal stability of subtype membership, too, to examine the 

reliability of SuStaIn. We divided the participants into high and low certainty groups 

using the median classification certainty as the cut-off, which was 96.3%, at baseline. 

In the high certainty group, 11.4% of participants (542 out of 4740 patients) changed 

subtype during the study. In the low certainty group, 24% of participants (1169 out of 

4739) changed subtype. 
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International Progressive MS Alliance (PMSA) Investigators of the network 

Name Institution 

Douglas L Arnold McConnell Brain Imaging Centre, 

Montreal Neurological Institute, McGill 

University, Montreal, Quebec, Canada 

Sridar Narayanan McConnell Brain Imaging Centre, 

Montreal Neurological Institute, McGill 

University, Montreal, Quebec, Canada 

Frederik Barkhof Queen Square Multiple Sclerosis 

Centre, Department of 

Neuroinflammation, UCL Queen Square 

Institute of Neurology, Faculty of Brain 

Sciences, University College London, 

WC1B5EH, UK 

Olga Ciccarelli  Queen Square Multiple Sclerosis 

Centre, Department of 

Neuroinflammation, UCL Queen Square 

Institute of Neurology, Faculty of Brain 

Sciences, University College London, 

WC1B5EH, UK 

Declan Chard Queen Square Multiple Sclerosis 

Centre, Department of 

Neuroinflammation, UCL Queen Square 

Institute of Neurology, Faculty of Brain 



 

 

Sciences, University College London, 

WC1B5EH, UK 

Louis Collins McConnell Brain Imaging Centre, 

Montreal Neurological Institute, McGill 

University, Montreal, Quebec, Canada 

Tal Arbel McConnell Brain Imaging Centre, 

Montreal Neurological Institute, McGill 

University, Montreal, Quebec, Canada 

Charles R.G Guttman Center for Neurological Imaging, 

Brigham and Women’s Hospital, 

Harvard Medical School, 

Massachusetts, USA 

Jerry S Wolinsky McGovern Medical School, The 
University of Texas Health Science 
Center at Houston (UTHealth), Houston, 
Texas, USA 

Garry R Cutter University of Alabama at Birmingham 
School of Public Health, USA 

Nicola De Stefano University of Siena, Italy 

Maria Pia Sormani University of Genoa, Italy 

Ludwig Kappos University Hospital Basel, Switzerland 

Jack H Simon Oregon Health and Sciences University, 
Portland Veterans Affairs Medical 
Center, Oregon, USA 

Jeremy Chataway Queen Square Multiple Sclerosis 
Centre, Department of 
Neuroinflammation, UCL Queen Square 
Institute of Neurology, Faculty of Brain 
Sciences, University College London, 
WC1B5EH, UK 

Raj Kapoor Queen Square Multiple Sclerosis 
Centre, Department of 
Neuroinflammation, UCL Queen Square 
Institute of Neurology, Faculty of Brain 



 

 

Sciences, University College London, 
WC1B5EH, UK 

Howard L. Weiner (CLIMB Investigator) Brigham and Women’s Hospital, Ann 
Romney Center for Neurologic 
Diseases, Department of Neurology, 
Boston, MA, 02115 

Tanuja Chitnis (CLIMB Investigator) Brigham and Women’s Hospital, Ann 
Romney Center for Neurologic 
Diseases, Department of Neurology, 
Boston, MA, 02115 

Rohit Bakshi (CLIMB Investigator) Brigham and Women’s Hospital, Ann 
Romney Center for Neurologic 
Diseases, Department of Neurology, 
Boston, MA, 02115 

 

 
MS-SMART Investigators  
 
Jeremy Chataway, Claudia A M Gandini Wheeler-Kingshott, Floriana De Angelis, Domenico 
Plantone, Anisha Doshi, Nevin John, Thomas Williams, Jonathan Stutters, Ferran Prados 
Carrasco, David MacManus, Frederik Barkhof, Sebastien Ourselin, Marie Braisher, Tiggy 
Beyene, Vanessa Bassan, Alvin Zapata (Queen Square Multiple Sclerosis Centre, University 
College London and University College London Hospitals NHS Foundation Trust, London, 
UK); Siddharthan Chandran, Peter Connick, Dawn Lyle, James Cameron, Daisy Mollison, 
Shuna Colville, Baljean Dhillon (Anne Rowling Regenerative Neurology Clinic, The University 
of Edinburgh, Royal Infirmary of Edinburgh, NHS Lothian, Edinburgh, UK); Christopher J Weir, 
Richard A Parker, Moira Ross, Gina Cranswick, Allan Walker, Lorraine Smith (Edinburgh 
Clinical Trials Unit [ECTU], Usher Institute, University of Edinburgh, Edinburgh, UK); Gavin 
Giovannoni, Sharmilee Gnanapavan (Blizard Institute, Barts and The London School of 
Medicine and Dentistry, Queen Mary University, Barts Health NHS Trust, London, UK); 
Richard Nicholas (Imperial College Healthcare NHS Trust, London, UK); Waqar Rashid, Julia 
Aram (Brighton and Sussex University Hospitals NHS Trust, Brighton, UK); Helen Ford (Leeds 
General Infirmary, Leeds Teaching Hospitals NHS Trust, Leeds, UK); Sue H Pavitt (Dental 
Translational and Clinical Research Unit, University of Leeds, Leeds, UK); James Overell (The 
Queen Elizabeth University Hospital Glasgow, NHS Greater Glasgow and Clyde, Glasgow, 
UK); Carolyn Young, Heinke Arndt (The Walton Centre NHS Foundation Trust, Liverpool, UK); 
Martin Duddy, Joe Guadagno (Royal Victoria Infirmary, The Newcastle upon Tyne Hospital 
NHS Foundation Trust, Newcastle, UK); Nikolaos Evangelou (Queens Medical Centre, 
Nottingham University Hospital NHS Trust, Nottingham, UK); Matthew Craner, Jacqueline 
Palace (John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, 
UK); Jeremy Hobart (Derriford Hospital, University Hospitals Plymouth NHS Trust, Plymouth, 
UK); Basil Sharrack, David Paling (Royal Hallamshire Hospital, Sheffield Teaching Hospitals 
NHS Foundation Trust, Sheffield, UK); Clive Hawkins, Seema Kalra (Royal Stoke University 
Hospital, University Hospitals of North Midlands NHS Trust, Stoke-on-Trent, UK); Brendan 
McLean (Royal Cornwall Hospitals NHS Trust, Truro, UK); Nigel Stallard (Statistics and 
Epidemiology, Division of Health Sciences, Warwick Medical School, University of Warwick, 
Coventry, UK); and Roger Bastow (patient representative).  
 
  



 

 

Supplementary Figures 

Supplementary Figure 1. Variable selection.  
 

 
(a) We chose variables whose effect size was medium to large (Cohen’s d effect size 

greater than 0.5) when comparing all patients of the training data set (n=6,322) with 

healthy volunteers (n=14,928). We have overlayed selected 13 variables on a T1-

weighted MRI scan of a randomly chosen patient. We used the same colour coding to 

show selected variables on the brain MRI scan and the right plot. On the right plot, 

dots (centre measure) represent point estimates of the effect size and error bars 

represent the 95% confidence interval of the effect size.  

 

  



 

 

Supplementary Figure 2. Positional variance diagram of three data-driven subtypes 

of multiple sclerosis.  

 

The evolution of variables in each subtype is defined by a continuous z-score model, 

in which each variable follows a piecewise trajectory over a temporal order (or stage). 

Positional variance diagram for the three MRI-derived imaging subtypes. The three 

different colours represent the degree of abnormality based on Z-score (sigma or 

standard deviation) models: mild=blue, moderate=violet, and severe=red. The colour 

shades represent the uncertainty associated with each event position in the posterior 

distribution of 100,000 Markov Chain Monte Carlo samples. A transition from a stage 

to the next one is different between subtypes; for example a change from stage 4 to 5 

refers to the development of mild atrophy in the limbic cortex in the cortex-led subtype, 

the development of mild abnormality in the parietal white matter T1/T2 ratio and mild 



 

 

atrophy in the occipital cortex in the NAWM-led subtype, and appearance of atrophy 

in the deep grey matter in the lesion-led subtype. 

Acronyms: DGM, deep grey matter; T1/T2, T1-T2 ratio; WM, white matter; GM, grey 

matter; DGM, deep grey matter; NAWM, normal-appearing white matter.  

 
  



 

 

Supplementary Figure 3. Model development. 

 

 “Raw” MRI data from different data sets underwent a unique image processing 

pipeline to extract variables (or features) of lobar grey matter volume, visible white 

matter lesion from FLAIR, and T1/T2 ratio. We used healthy volunteers (UK Biobank 

and the Human Connectome Project) to adjust MRI measures nuisance variables (see 

Methods and Supplemental Results), calculate Z-scores, and select MRI variables. A 

priori we split our patient datasets into two separate datasets: 14 datasets in the 

training dataset, and five datasets for validation: CLIMB (an observational study), 

BRAVO (a phase 3 RRMS trial), ORATORIO (a phase 3 PPMS trial), MS-SMART (a 

phase 2 SPMS trial), and MAESTRO 1&2 (a phase 3 SPMS trial).  

Abbreviations: MCMC, Markov Chain Monte Carlo; RRMS, relapsing remitting multiple 

sclerosis; PPMS, primary progressive multiple sclerosis; MRI, magnetic resonance 

imaging. DCE, DEFINE/CONFIRM/ENDORSE. 

 
 



 

 

Supplementary Figure 4. Leave-one-dataset-out cross-validation and model 

selection.  

 

We used leave-one-dataset-out in the training data set of 14 studies, each time 

leaving one study out and fitting SuStaIn algorithm on the remiaing 13 datasets. We 

chose the best number of subtypes according to the cross-validation information 

critiera (CVIC) calcualted from the left-out dataset each time (x14). The vertical axis 

shows the change in CVIC with respect to the one-subtype model. The relative 

average difference between three-subytpe model and two-subtype model was 147. 

A relative difference of 6 is considered strong evidence that a model is better than 

another (Young et al, 2018). 

 
 
 
  



 

 

 
 


