Supplementary Information

Recent Global Decrease in the Inner-core Rain Rate of Tropical Cyclones

Shifei Tu¹, Jianjun Xu^{1,2*}, Johnny C L Chan³, Kian Huang¹, Feng Xu¹, Long S Chiu⁴

 South China Sea Institute of Marine Meteorology & College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China.

2. Shenzhen Institute of Guangdong Ocean University, Shenzhen, China.

3. School of Energy and Environment, City University of Hong Kong, Hong

Kong, China.

4. Department of Atmospheric, Oceanic and Earth Sciences, George Mason

University, Fairfax, Virginia, USA.

*. Corresponding author: E mail: jxu@gdou.edu.cn

Datasets	Reference	Spatial resolution	Temporal resolution	Period	Sample size of TC rainfall
IBTrACS-WMO v4	Ref. 1	_	3-hourly	1999.01-2018.12	_
TMPA 3B42 v7	Ref. 2	0.25°×0.25°	3-hourly	1999.01-2018.12	49887
GPM (IMERG Final Run)	Ref. 3	0.1°×0.1°	0.5-hourly	2000.06-2018.12	47475
ERA5	Ref. 4	0.25°×0.25°	3-hourly	1999.01-2018.12	49887
IAP Gridded temperature dataset	Ref. 5	1°×1°	Monthly	1999.01-2018.12	_
ERA-Interim	Ref. 6	1°×1°	Monthly	1999.01-2018.12	_

Supplementary Table 1 Details of all relevant datasets used in this work.

constructed by using		•						
	Classification	WNP	ENP	NA	SIO	SP	NI	SA
Doundarias of TC	TSs	525	325	400	450	525	450	125
rainfall	CAT12	475	300	400	400	525	400	150
	CAT35	500	350	400	425	525	400	-
The maximum gradient position of TC rainfall	TSs	125	125	125	125	125	125	125
	CAT12	125	100	125	125	125	100	100
	CAT35	125	100	125	125	100	100	-

Supplementary Table 2 Boundaries and the maximum gradient positions of tropical cyclone (TC) rainfall in six ocean basins with different TC intensities constructed by using TMPA dataset.

WP: Western North Pacific, EP: Eastern North Pacific, NA: North Atlantic, SI: South Indian Ocean, SP: South Pacific, NI: North Indian Ocean. Unit: km. Note: there just has one TC generated over the SA (South Atlantic), with 21 effective instantaneous observations of rainfall during the period of 1999-2018.

	Classification	Globe	NH	SH	WP	EP	NA	SI	SP	NI
	TSs	12±4	10±3	18±6	14±5	9±9	16±8	22±7	11±9	6±14
All TC minfall	CAT12	5±4	7±5	4±7	8±5	11±11	8±9	-5 ± 8	-6 ± 9	-21 ± 28
All IC faintail	CAT35	-2 ± 5	-1 ± 6	-9 ± 9	12±9	7±17	13±10	-1 ± 10	-17 ± 19	25±18
	All	8±4	8±4	8±6	14±5	8±9	12±8	10±6	4 ± 8	9±13
	TSs	-19±3	-19±4	-18±4	-21±5	-13±6	-11 ± 6	-20±4	-14 ± 9	-14 ± 17
Innon cono	CAT12	-28±5	-27±6	-33±8	-29±7	-13 ± 8	-26±8	-35±9	-36±8	-23 ± 23
Inner-core	CAT35	-29±5	-29±6	-29±10	-27±13	-23±11	-23±11	-37±9	-29 ± 25	$-8{\pm}30$
	All	-24±3	-23±4	-26±5	-21±6	-12 ± 8	-22±9	-29±4	-22±8	-11 ± 16
	TSs	20±4	18±4	26±7	24±6	23±11	23±10	33±8	13±11	7±18
Outer region	CAT12	14±5	16±5	4±9	17±6	26±15	18±12	4±9	$-3{\pm}11$	-25 ± 31
	CAT35	9±6	10±8	4±15	19±9	20±25	23±12	18±16	-18 ± 22	39±35
	All	17±4	17±4	18±7	23±5	21±11	21±9	24±7	6±10	12±17

Supplementary Table 3 Changes (%) in the rain rate over the period 1999~2018 in various regions.

Globe: Globally-average, NH: North Hemisphere, SH: South Hemisphere, WP: Western North Pacific, EP: Eastern North Pacific, NA: North Atlantic, SI: South Indian Ocean, SP: South Pacific, NI: North Indian Ocean. Percentages are obtained from the linear regression curve of rain rates. Bold is significant at the 95% confidence level ($P \le 0.05$). The rain rates are constructed by using the Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) dataset.

Supplementary Table 4 Correlation coefficients of atmospheric stability and total column water vapor with the rain rates of tropical cyclone.

Correlation	Innor core	Outer region	Stratiform	Stratiform	Stratiform	Convective	Convective	Convective
Correlation	Inner-core		(Inner-core)	(Outer region)	(All)	(Inner-core)	(Outer region)	(All)
AS	-0.49	0.57	0.41	0.69	0.70	-0.50	-0.56	-0.55
TCWV	-0.73	0.73	0.19	0.83	0.82	-0.45	-0.44	-0.48
AS (excluding the influence from TCWV)	-	-0.03	0.26	0.04	0.08	-	-	-
TCWV (excluding the influence from AS)	-0.39	_	_	_	_	-0.05	0.01	-0.05

AS: atmospheric stability, TCWV: total column water vapor. Bold is significant at the 95% confidence level ($P \le 0.05$).

Parameter	Value				
Grid points	300×300				
Horizontal resolution	12×12 km				
Vertical layer	25				
Model top	25 km				
Coriolis parameter	$5.0 \times 10^{-5} \text{ s}^{-1}$				
SST	28.0 °C				
The length of integration	360 hours				
Microphysics	WRF Single-Moment 6-class scheme				
Longwave Radiation	Rapid Radiative Transfer Model for GCMs				
Shortwave Radiation	Rapid Radiative Transfer Model for GCMs				
Surface Layer	Yonsei University scheme				
Land Surface	Noah Land Surface Model				
Planetary Boundary layer	Yonsei University scheme				
Cumulus Parameterization	Tiedtke Scheme				
	ParameterGrid pointsHorizontal resolutionVertical layerModel topCoriolis parameterSSTThe length of integrationMicrophysicsLongwave RadiationShortwave RadiationSurface LayerLand SurfacePlanetary Boundary layerCumulus Parameterization				

Supplementary Table 5 Relevant Model setting and parameterization schemes.

Supplementary Figure 1 Radial distribution of linear trends of tropical cyclone (TC) rain rate based on different datasets, unit: mm $h^{-1} y^{-1}$. a the Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA), b Global Precipitation Measurement (GPM), and c ERA5 dataset. Shaded areas indicate the standard error of linear trends of the TC rain rate. Blue: tropical storms (TSs), orange: categories 1-2 (CAT12), and red: categories 3-5 (CAT35). The vertical dotted line in each panel indicates the estimated boundary (~450 km for a global scale) of TC rainfall. All the linear trends here consider the area-average results (considering all pixels including rainy and non-rain).

Supplementary Figure 2 Schematic diagram of radial distribution of regional averaged tropical cyclone (TC) rain rate. The colors are for different TC intensity categories; tropical storms (blue), category 1 and 2 (orange), and category 3 to 5 (red).

Supplementary Figure 3 Radial distribution of rain rate (mm h⁻¹) of TC during the first and last five years. a Rainy pixels only, b All pixels (including rainy and nonrain pixels) based on the Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA). Solid lines indicated the average of first five years (1999~2003), and dotted lines indicated the average of the last five years (2014~2018). The colors are for different TC intensity categories; blue: tropical storms (TSs), orange: categories 1-2 (CAT12), and red: categories 3-5 (CAT35). c, d: Same as a, b except using Global Precipitation Measurement (GPM) data which have date between 2000.06 and 2018.12. e, f: Same as a, b except using ERA5 data.

Supplementary References

- Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J., & Neumann, C. J. The international best track archive for climate stewardship (IBTrACS). *Bull. Am. Meteor. Soc.* 91, 363-376 (2010).
- Huffman, G. J., Adler, R. F., Bolvin, D. T., & Nelkin, E. J. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. *J. Hydrometeor*, 8, 38-55 (2007).
- Huffman, G.J., E.F. Stocker, D.T. Bolvin, E.J. Nelkin, Jackson Tan (2019), GPM IMERG final precipitation L3 half hourly 0.1 degree x 0.1 degree v06, greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC), Accessed: July 2020, https://doi.org/10.5067/GPM/IMERG/3B-HH/06
- Copernicus Climate Change Service (C3S) (2017): ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS), 24 Dec 2019. <u>https://cds.climate.copernicus.eu/cdsapp#!/home</u>
- Cheng, L., & Zhu, J. Benefits of CMIP5 multimodel ensemble in reconstructing historical ocean subsurface temperature variations. *J. Clim.*, 29, 5393-5416 (2016).
- 6. Dee, D. *et al.* The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. *Q. J. R. Meteorol. Soc.* **137**, 553-597 (2011).
- 7. Chapter 5: WRF Model. Examples of namelists for various applications in User's Guide for the Advanced Research WRF (ARW) Modeling System Version 4.1. Available online: https://www2.mmm.ucar.edu/wrf/users/docs/user_guide_v4/v4.1/users_guide_cha p5.html#examples. (2019)