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Supplementary Fig. 1. On the importance of training models on suitable data. Top: Filopodia (lifeact) test data and the                   
predictions obtained from a CARE 3D model either trained on similar lifeact dataset (green box) or on TOM20 dataset (red                    
box). Bottom: Mitochondria (TOM20) test data and the predictions obtained from a CARE 3D model trained on similar                  
TOM20 dataset (green box) or on the lifeact dataset (red box). Abbreviations used: SNR: signal-to-noise ratio, PSNR:                 
peak-signal-to-noise ratio, SSIM: structural similarity index, NRMSE: normalised root-mean-squared error). 
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Supplementary Fig. 2. ZeroCostDL4Mic notebooks common workflow.  
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Supplementary Fig. 3. Graphical user interface (GUI) of the ZeroCostDL4Mic notebooks. The layout of the notebook                
and quick access to the different sections is available on the left panel. The user has access to the files present on Google                       
Drive. 
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Supplementary Fig. 4. Using alternative cloud computing platforms to run a ZeroCostDL4Mic notebook. Screenshots              
highlighting the different steps of the DL workflow running within Deepnote (https://deepnote.com) on the Deep-STORM               
notebook (a-d) and on FloydHub (https://www.floydhub.com/) on the StarDist 2D notebook (e-h).  
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Supplementary Fig. 5. Quality Control in the ZeroCostDL4Mic notebooks. Screenshot of the two quality control steps                
performed in the StarDist notebook. These quality control sections are available in all of the notebooks that we provide. 

 

 
Supplementary Fig. 6. Model performance vs training parameters. (a) Input data: DCIS.COM cells, labelled with               
SiR-DNA (b) The graph depicts an example of how parameter adjustments (batch size, number of steps and number of                   
training epochs) can affect model performance in StarDist nuclear segmentation. (c) Hand-labelled ground-truth             
segmentation mask (Target mask) for input shown in a). The label on the bottom right indicates the number of annotated                    
nuclei. (d) Predicted masks for input image a) of three models trained for increasing numbers of epochs with intersection                   
over union (IoU) with respect to c) and detected number of nuclei depicted at the bottom right.  
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Supplementary Fig. 7. Example of data augmentation section in the ZeroCostDL4Mic fnet notebook. Screenshot              
highlighting the data augmentation section available in the fnet notebook. Here, only horizontal flip, vertical flip and                 
90-degree rotations are implemented. Data augmentation can be enabled or disabled in all the provided notebooks. 
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Supplementary Note 1: When in doubt, always retrain! A supplementary discussion. 

The primary focus of ZeroCostDL4Mic is to provide a straightforward and free platform to help               

novice users in using Deep Learning (DL) in microscopy. A vital component of this platform is the                 

capacity to simplify model training, which remains a significant difficulty. Because it can be              

challenging to train DL networks (in time, resources, and skills), several labs are taking the approach                

of providing already trained models, which can then be used to process imaging data1–4. 

Trained models can easily be re-used to analyse data that is very similar to the one used during the                   

initial training. However, pre-trained models should be used with caution on new data as they tend to                 

be very specific to the microscopes and samples used to generate the training dataset. The               

inappropriate use of pre-trained models can lead to erroneous results when applied to a different               

dataset type5,6, which, unfortunately, may lead to visually pleasing yet inaccurate results7–12. For             

example, Supplementary Fig. 1 shows how using an inappropriate model can lead to erroneous results               

in the prediction. Specifically, a CARE 3D network was trained to denoise either actin (lifeact) or                

mitochondria (TOM20) data and used to denoise both types of datasets. When using the incorrect               

model (a model trained on actin to restore mitochondria and vice-versa), the predictions present              

artefacts and significantly weaker quality control metrics (see Supplementary Note 2 for details on              

quality control metrics). 

Given this issue, it becomes critical for researchers to have the option to train models (or re-train                 

models, using transfer learning, see Supplementary Note 4 dedicated to transfer learning) using their              

specific data of interest to produce high-fidelity and reliable results.  
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Supplementary Note 2: Quality control of trained models. 

The reliable implementation of DL methods depends on a careful evaluation of the models’ output               

performance; we call this step quality control (QC). QC is crucial to avoid using models that produce                 

low-quality images and artefacts, especially when they may not be easily identifiable by simple visual               

assessment. These metrics can thus help users improve the models created in the notebooks, for               

example, by comparing models trained with different hyperparameters or exploring the applicability            

to data different from the training dataset (generalisation). All the notebooks we provide contain a               

section dedicated to QC, evaluating the performance of trained models (Supplementary Fig. 5). This              

section typically has two parts: 

- Inspection of the loss function over the number of epochs trained. 

- Evaluation of image quality metrics by comparing the model predictions against a ground             

truth equivalent. Below, we describe these metrics and our implementations in detail. 

Of note, the author of CycleGAN and pix2pix does not recommend the visual inspection of the loss                 

function curves to evaluate the training quality achieved with these networks. Therefore, these             

training curves are not displayed in the pix2pix and CycleGAN notebooks. Instead, these two              

notebooks save model checkpoints every five epochs; the QC section helps to identify the best               

checkpoint to use and retrieves the corresponding optimal model. Specifically, these QC sections             

allow the user to perform predictions using all the saved checkpoints and estimate the quality of these                 

predictions by comparing them to the provided ground truth images using the SSIM metrics. 

 

2.1 Structural Similarity Index (SSIM) 

The SSIM metric is used to evaluate whether two images contain the same structures. It is a                 

normalised metric, and an SSIM of 1 indicates a perfect similarity between two images. Therefore, for                

SSIM, the closer to 1, the better. SSIM is used in the CARE, Noise2Void, pix2pix, CycleGAN and                 

Label-free prediction (fnet) notebooks.  

First introduced by Wang et al.13 SSIM is calculated as follows: 

SIMS (X , )Y =  (2µ µ +C )(2σ +C )x y 1 xy 2

(µ +µ +C )(σ +σ +C )2
x

2
y 1

2
x

2
y 2

 

where X and Y are the images to be compared, and the mean pixel values, and the           µx    µy      σx
2   σ2

y   

variance of pixel values and the covariance between the pixel values in the images. and     σxy           C1   C2  

are constants introduced to avoid instability for small denominators and are defined as: 
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C1 = (K L)1
2  

C2 = (K L)2
2  

where L is the bit-depth of the images to be compared (for 16-bit images used for the quality                  

assessment in the notebooks L = 65,536) and = 0.01 and = 0.03, as suggested by the authors of        K1    K2         

SSIM13. 

To calculate the SSIM on a consistent dynamic range, images are normalised to values between 0 and                 

1, first by percentile normalisation on all data (source, target, and prediction). Then, both source and                

prediction are further normalised by linear regression compared to the target. 

The percentile normalisation was performed as follows: 

 I ij
norm =

I −Iij 99.9
I −I99.9 0.1

 

where represents the normalized intensity value at pixel (i,j), the intensity to be rescaled,  I ij
norm            I ij      

the value of the pixel which lies in the 99.9th percentile of pixel values in the image and the I99.9                     I0.1   

pixel value of the pixel in 0.1th percentile of pixel values in the image. This percentile-based                

normalisation (instead of using minimal and maximal pixel values) is aimed to prevent the influence               

of dead or hot pixels which are common in microscopy images and may distort the useful dynamic                 

range of the image upon normalisation. 

The linear regression normalisation is done the same way as in CARE8, based on least square                

minimisation, defined as: 

  (α , )o βo = argminα,β ∑
 

i,j
GT( ij − αI( ij + β))2

 

where GT is the ground truth image, I the predicted image, GTij and the respective pixels in the              I ij       

ground truth and prediction and α and β the parameters which rescale the prediction to the dynamic                 

range of the ground-truth. 

The normalised image is then calculated as: 

 I  Inorm = αo + βo  

After normalisation, the pixel values above 1 and below 0 are thresholded to 1 and 0, respectively. 
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Values for SSIM can vary between -1 and 1, with 1 indicating a perfect structural content agreement                 

between the two images. In practice, SSIM values rarely fall below 0, which would represent inverted                

structures in the image.  

For this reason, we truncate SSIM values to a range between 0 and 1. The SSIM map is calculated on                    

a local window around the pixel of interest. The window size is set to 11x11 pixels and a Gaussian                   

weighting function of 1.5 pixels standard deviation. The similarity map obtained displays areas with              

high and low similarity in different colours, enabling inspection of areas in the image where the model                 

performs better or worse. Therefore, a perfectly-performing model will produce an SSIM map with              

nearly uniform values close to 1 across the image. A global SSIM metric can also be estimated over                  

the whole image (mSSIM). This is simply determined by calculating the average SSIM value over the                

whole SSIM map. This value allows an overall quantitative comparison of performance between             

different images or network parameters. Local SSIM values can be accessed from the SSIM maps that                

are saved in the QC folder. 

In the notebook, the SSIM map is calculated between ground-truth against model prediction and              

between ground-truth against source image (when appropriate). This way, the metric can be used              

comparatively to judge the improvement of the prediction over the source image.  

The use of SSIM for QC is demonstrated in Fig. 8b, where we compare the prediction of a CARE                   

model trained to denoise fluorescence images of mitochondria (TOM20), with its expected denoised             

ground-truth. The almost uniform SSIM map and an mSSIM index above 0.9 signify a high level of                 

similarity between the prediction and the ground-truth. It also shows a clear improvement to the SSIM                

map and index calculated between ground truth and the noisy input image, suggesting that the               

network improved the input image. 

2.2. Root Squared Error (RSE) 

RSE is used in the CARE, Noise2Void, pix2pix, CycleGAN and Label-free prediction (fnet)             

notebooks. The RSE is obtained by calculating the absolute difference between two images on a               

pixel-per-pixel basis. By calculating the RSE between the prediction and the target image             

(ground-truth), this error map shows areas of high and low errors in different colours, providing a                

second metric for inspecting local artefacts. 

 SE  R ij = √ GT( ij − I ij
norm)2
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Similarly to SSIM, we also provide an image-wise metric as a normalised root mean squared error                

(NRMSE) between the images defined as: 

RMSE  N = √∑
 

i,j
GT( ij − I ij

norm)2
 

The RSE map and NRMSE reflect the amount of discrepancy between two images. In this case, good                 

performance is indicated by low values for these metrics. A perfect agreement with the ground truth                

image will lead to RSE = 0 across the image and NMRSE = 0.  

In the notebooks using RSE, a comparison between prediction against ground-truth and source against              

ground-truth is shown side-by-side to indicate how much the image has improved (i.e. brought closer               

to the ground-truth than the source) by the trained model. The output of the RSE metric is also shown                   

in Fig. 8b, where we compare the prediction of the trained CARE network with the expected                

ground-truth. The RSE map is almost uniformly dark, and the NRMSE score is low, suggesting a                

good match between ground truth and prediction. The comparison with the same metrics calculated              

between the noisy input and the ground truth also shows how the CARE prediction improved the                

image by reducing the errors seen in the RSE map and by lowering the value of the NRMSE                  

compared to the input image. 

2.3. Peak signal-to-noise ratio (PSNR) 

PSNR is a metric typically used to quantify the performance of image compression algorithms. It is                

based on the RSE metric and provides a measure for noise corruption based on the decibel scale. High                  

PSNR values indicate a low contribution of noise, while low PSNR values indicate the opposite. It is                 

hence well suited to interpret the performance of denoising DL approaches. In ZeroCostDL4Mic, we              

used PSNR for denoising and image-to-image translation tasks, where GT data is available (CARE              

(Fig. 4), fnet, cycleGAN and pix2pix (Fig. 6). The PSNR ratio is calculated as follows: 

SNR 0 log (L) 0 log (MSE)  P = 2 10 − 1 10  

where L represents the maximum pixel intensity of the images to be compared, generally defined as L 

= 2B-1, where B is the bit-depth of the images, and MSE represents the mean squared error between 

the GT and predicted image, defined as: 

SE  M = n
1 ∑

 

i,j
GT( ij − I  

ij)
2

 

Where n is the number of pixels in the image and i, j, GT and I are defined as above. 
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2.4. Intersection over union (IoU) 

For the U-Net and StarDist segmentation networks, we use the intersection over union (IoU) metric,               

commonly used for segmentation performance evaluation14.  

To test how well the model segments an input image the ground-truth mask is compared to the                 

predicted segmentation mask by dividing the number of pixels shared between both masks by the total                

number of pixels in the union of the two masks: 

oUI = I⋃GT
I⋂GT  

where  represents the predicted image and GT the ground-truth image. I  

The IoU metric quantifies the percentage of overlap between the target mask and the prediction               

output. Therefore, scores closer to 1 typically mean better performance of the trained model. 

How this metric is used for quality control is shown in Fig. 8c. The overlay of ground truth (target)                   

and prediction can act as a direct visual readout of the IoU score. Here, the white areas represent                  

where the signal predicted by the StarDist network overlaps with the target, therefore agreeing with               

the ground-truth. A large proportion of white areas in the overlay suggests a good agreement between                

ground truth and prediction, which is also reflected by a high IoU score of over 0.8. 

While using these metrics as QC for the models cannot prevent errors or artefacts from occurring in                 

the prediction, they can characterise the model’s performance. This can be exploited to improve              

model performance, as shown in Supplementary Fig. 6. The figure shows an example of how the IoU                 

score in StarDist can aid in identifying a set of training parameters that can accelerate how quickly the                  

model reaches its top performance. Here, we show how the number of epochs, number of steps, and                 

batch size can affect the IoU score. Additionally, the number of nuclei found in the image also                 

provides a way to assess the model performance compared to the number of nuclei identified from the                 

ground-truth (target) mask.  

 

2.5. Mean average precision (mAP) score 

In order to quantify the performance of the YOLOv2 models obtained with ZeroCostDL4Mic, we              

estimate the average precision (AP) of the model on test datasets, as is commonly done to evaluate                 

object detection networks15,16. The AP metric encapsulates both how well the model identifies objects              

in an image and how accurate its class predictions are.  
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When making predictions, an object detection model will give three outputs per object: the object’s               

bounding box coordinates (identifying the location of the object within the image), its predicted class               

(what type of object it is) and the confidence (the probability of the class being accurate as estimated                  

by the model for that particular object). The first step to calculate the AP is to rank all object                   

detections of a class by confidence (highest confidence first).  

The resulting list is then used to calculate the precision and recall parameters with an increasing                

number of detections taken into account in the ranked order. The precision and recall metrics are                

defined as follows: 

recisionP = T rue P ositives
T rue P ositives+F alse P ositives  

ecallR = T rue P ositives
T rue P ositives+F alse Negatives  

In our case, a true positive detection is defined as a detection with the correct class and where the                   

bounding boxes predicted by the model overlap sufficiently with that of the ground-truth annotation              

for that object. We defined a sufficient level of overlap when the IoU metric (defined in Section 2.3)                  

between ground-truth and predicted bounding boxes reaches a minimum threshold value. By default,             

in our notebook, this threshold value is set to 0.3. 

For each class, the precision and recall scores are then evaluated by including an increasing number of                 

detections following the ranked order, i.e. from highest to lowest confidence. Thus, the precision of a                

trained model usually begins with values near 1 and tends to drop as more false positives are                 

encountered in the list of detections (lower confidence). In contrast, the recall value measures the               

proportion of true positives in all possible positives in the dataset which means that it will tend to                  

increase as the number of true positives increases since more detections are taken into account with                

each object on the list. When these values of precision and recall estimated in ranking order are                 

plotted against each other, this results in a characteristic p-r (precision-recall) curve17 (see Fig. 8d for                

examples of p-r curves).  

This plot aims to represent the typical trade-off between precision and recall (or rather between false                

positive rate and false-negative rate), since typically, precision will drop as recall improves. One way               

to interpret the curve is the following: the higher the p-r curve as the recall increases, the better the                   

performance of the model. A perfect model will display precision of 1 all the way to a recall value of                    

1. Therefore, the area under the curve represents a good way to estimate the overall precision of                 

the model for that particular class. The AP metric essentially describes the area under the curve of                 

the p-r plot. In our notebook, the AP is calculated as outlined in the PASCAL VOC protocol18 using a                   
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simple interpolation in the precision scores, such that the precision at recall r is equal to the maximum                  

precision for any . This reduces the effect of individual detections in the data on the AP15.r′ ≥ r  

Since recall and precision are values with a range of 0 to 1, the AP value also varies from 0 to 1 where                       

values closer to 1 indicate a better performance of the model on a given object class.  

The mean average precision (mAP) of a YOLOv2 model takes into account the AP of all object                 

classes as follows: 

AP  m =  n
1 ∑

n

i
AP i  

where n is the number of classes in the dataset and APi is the average precision of a specific class i. 

The p-r curve and the AP score for each class as well as the mAP value are all calculated and                    

presented to the user as output in the YOLOv2 notebook QC section. Examples of p-r curves are                 

shown in Fig. 8d for the most common cell shape, elongated, as also shown in our example dataset                  

(see also in Fig. 3). The p-r curves offer a performance comparison between models trained without                

and with 8x data augmentation (see Supplementary Note 3 for details about data augmentation). The               

performance of the model significantly improves with 8x data augmentation, as highlighted in the p-r               

curve by the higher level of precision across the range of recall and the corresponding AP values                 

compared to the non-augmented dataset (Fig. 8d).  

For an additional visualisation of the QC, the bounding box coordinates for both ground-truth and               

predicted labels are also saved in .csv files and can be plotted after the quality control step, e.g. using                   

ImageJ.  

 

2.5. F1-score 
 
Although the AP score is widely used as a metric in object detection research and challenges19 there                 

are well-known drawbacks to this metric too1. In the context of the object detection performed in the                 

ZeroCostDL4Mic notebooks one disadvantage of using AP alone to measure the model predictions’             

quality is that it can disguise poor model performance at the threshold usually required for               

applications of the model. For instance, models with a high rate of true positive detections but poor                 

overall sensitivity, i.e. high number of false negatives (initially high precision with a steep drop on p-r                 

curve) could have the same AP score as a model which may have more false positives but much fewer                   

false negatives (lower precision with a gradual decline on p-r curve). The difference can be significant                

in practice, e.g. if the model is trained to identify a pathogen or cancer, where false negatives could be                   
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more detrimental than false positives. Hence, the AP alone can give an incomplete picture of the                

model’s performance. 

We, therefore, additionally calculate the F1 metric, which gives an indication of how balanced the               

precision and recall of a model’s predictions are21. The F1 score is calculated as the harmonic mean of                  

precision and recall: 

 
1    F = 2 P recision x Recall

(P recision+Recall)  
 
where precision and recall are defined as above. The F1 metric gives equal weight to the precision and                  

recall values. As the highest values for precision and recall are 1 the best possible score for F1, i.e.                   

when the false positive and false negative rates over the entire test dataset are zero, is also 1. 

In the YOLOv2 notebook, the F1 score is shown to the user together with the AP score at the end of                     

the QC section. For the user, it is useful to see both scores since the F1 metric takes into account only                     

the total values of precision and recall (after all predictions are evaluated) whereas the p-r curves                

which are used to calculate the AP score can give an indication of the model’s performance across                 

different levels of recall. 

2.6. Other metrics used in the StarDist notebook 

In the StarDist notebook, the IoU is both calculated over the whole image and on a per-object basis.                  

The value displayed in the notebook is the IoU value calculated over the entire image (as defined in                  

2.3). This score is then used to calculate the other metrics available in the StarDist notebook.  

“n_true” refers to the number of objects present in the ground truth image. “n_pred” refers to the                 

number of objects present in the predicted image.  

When a segmented object has an IoU value above 0.5 (compared to the corresponding ground truth), it                 

is then considered a true positive. The number of “true positives” is calculated in the StarDist                

notebook. The number of “false positive” is then defined as “false positive” = “n_pred” - “true                

positive”. The number of “false negative” is defined as “false negative” = “n_true” - “true positive”. 

Additionally, as has been recently suggested in studies on nuclear segmentation22,23 we calculate the              

F1 score which is displayed together with precision and recall of the predictions vs the ground-truth                

annotations (F1, precision and recall calculated as in 2.4 and 2.5). 

The “mean_matched_score” is the mean IoUs of matched true positives. The “mean_true_score” is             

the mean IoUs of matched true positives but normalised by the total number of GT objects. The                 

“panoptic_quality” is calculated as described by Kirillov et al.24.  
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Supplementary Note 3: Data augmentation. 

Data augmentation is a strategy used to artificially increase the size of training datasets. It commonly                

consists of applying a set of spatial transformations to both source and target data in the training                 

dataset, such as rotation or vertical/horizontal flipping. Still, more complex transformations can also             

be used, such as shearing or zooming. Simply flipping (horizontal and vertical) and rotating all the                

images in a dataset by 90 degrees will increase the size of a dataset by 8. Data augmentation may                   

improve the generalisation of a model by amplifying diversity in the dataset. This may be especially                

useful if the available dataset is small, which can occur if it is expensive or time-consuming to                 

generate. All ZeroCostDL4Mic notebooks contain the possibility to enable or disable data            

augmentation (Supplementary Fig. 7), but its implementation strategy is adapted to each notebook.             

For instance, we took advantage of the Augmentor library25 in the StarDist 2D, pix2pix and CARE 2D                 

notebook, while simpler augmentation strategies such as flipping and rotation are implemented in the              

CARE 3D and fnet notebooks. In the 3D U-Net and the 3D StarDist notebooks, we also implemented                 

the “elastic deform library” (https://pypi.org/project/elasticdeform/). A different augmentation library         

(imgaug) is used to augment images and bounding boxes in the YOLOv2 notebook             

(https://github.com/aleju/imgaug)26.  

Importantly, data augmentation can also be detrimental to the training process and lead to the               

generation of artefacts. So, we recommend that networks be trained with and without augmentation,              

and for the user to use the QC section available in our notebooks to assess if using data augmentation                   

leads to performance improvements. For instance, when training YOLOv2, with our test dataset, we              

found that the model performance considerably improved when performing data augmentation on the             

training images and bounding boxes by flipping and successive rotations by 90 degrees, as quantified               

by the mAP, shown in Fig. 9 and the respective p-r curves shown in Fig. 8d. In practice, YOLOv2                   

models trained on datasets with increasing augmentation factors become more sensitive to the cells in               

the image and improve bounding box positioning around detected objects.  
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Supplementary Note 4: Transfer learning and training from a previously saved model. 

The performance and generalisation of DL networks often scale with the size and diversity of the                

training dataset. Because of this, trained models often reach peak performance when generated using              

large training datasets. Importantly, training models with large training datasets require vast amounts             

of computational power, making them expensive to produce (which in some cases may not be possible                

within ZeroCostDL4Mic, see Supplementary Note 5 for details on the resource available with Google              

Colab). Because of this, training very general models is currently limited to computer science              

developers with access to large resources. On the other hand, individual scientists may want, instead,               

to train DL models that are high-performance but specific for their data. 

However, when publicly available, DL models trained on large amounts of data can be extremely               

valuable. On the one hand, such models can be directly used by users to perform predictions. This can                  

have several downsides, and it is not something we would generally recommend (see Supplementary              

Note 1 for discussion on the topic). On the other hand, a very efficient way to take advantage of these                    

while retaining good performance for the specific data of interest is to use these trained models as a                  

starting point for training a new DL model.  

Indeed, an already trained model, when trained on large amounts of related data, will contain useful                

features that can be reused to speed up the training of another model. Therefore, it can be beneficial to                   

use these trained models as a starting point for training a DL network instead of starting from a blank                   

model (training from scratch), where all the model weights are typically initialised to randomly              

allocated values. So, initialising the model weights to those of a trained model is a powerful approach                 

known as transfer learning27 and is now common practice in the DL field. Transfer learning can                

improve performance (necessitating fewer epochs) and generate higher-quality models than those           

trained from scratch28.  

As we believe that transfer learning is a compelling strategy to generate high-quality DL models, we                

implemented the possibility to perform transfer learning in all of our ZeroCostDL4Mic notebooks.             

Indeed, users can quickly load trained model weights and re-training these models on custom data               

(Fig. 9d-e). Already trained models of broad interest can even be directly downloaded within our               

notebooks.  

To illustrate the performance improvement that can be achieved using transfer learning, we compared              

the results obtained by training a StarDist model from scratch to the result obtained when an already                 

trained model is used as a starting point. The trained model we choose is the 2D_versatile_fluo                

StarDist model made available by the StarDist authors2,14.  
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This model was generated using data related (images of nuclei) but distinct from our own and is                 

starting to be widely used by the community, to perform prediction, via its integration to the StarDist                 

Fiji plugin8,9. Importantly, using the 2D_versatile_fluo model to perform prediction on our data led to               

nuclei segmentation but also to the generation of large artefacts rendering it unusable on its own (Fig.                 

9d-e). Typically, to obtain high-quality predictions from models trained from scratch, we needed to              

train our StarDist models for more than 200 epochs (Fig. 9d-e). However, when using the               

2D_versatile_fluo model as a starting point via transfer learning, very high-quality prediction can be              

made using a model trained for as little as 5 epochs (Fig. 9d-e). 

Transfer learning also allows the user to circumvent the Google Colab 12h training time limit (see                

Supplementary Note 5 for discussion on resources available with Google Colab). Loading a             

pre-trained model for training also enables training to occur over multiple Colab runtimes, as well as                

to do transfer learning using models trained outside of ZeroCostDL4Mic. We believe that transfer              

learning is an especially attractive feature of ZeroCostDL4Mic as it allows users to tune generalist               

models to their data and generate optimal results while requiring minimal resources and time.              

Therefore we encourage developers and users to share their trained models via the emerging online               

“model zoo” so that they can be used by others to enable faster re-training. 
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Supplementary Note 5: Capabilities and limitations of Google Colab. 

The Google Colab (https://colab.research.google.com) platform offers free and easy access to a            

Graphical Processing Unit (GPU) and Tensor Processing Unit (TPU), which enables users to train              

many networks on bespoke training datasets, as well as running predictions on unseen data. In               

practice, for each notebook session, Google Colab assembles a virtual machine with allocated RAM,              

disk space, and access to GPU/TPU. Although these resources are free, they are finite. It is important                 

to consider the available resources when exploiting Google Colab for DL training and predictions. In               

our experience, we consistently found that GPU acceleration provided faster computation than TPU             

for the networks and datasets presented here. Therefore, we focused our attention on GPU              

accessibility and performance below. In the following sections, we discuss how to handle these              

resources in order to perform efficient training. 

 

5.1. Google Drive storage 

When using a free Google Drive (https://www.google.com/drive/) account to perform training, the            

user will have access to 15 GB of data storage that can be accessed by any Google Colab notebook.                   

All training and test datasets, plus the output of the training, need to fit within this 15 GB limit. We                    

have shown, however, that this is sufficient to efficiently train all of the networks with the datasets                 

that we provide (see Supplementary Table 1 for details about the datasets). Additional storage space               

can also be purchased from Google.  

 

5.2. Remote RAM capacity  

A 12.72 GB RAM limit currently exists for the free GPU or TPU provided by Google Colab. The                  

amount of RAM required to execute the code is determined by the size of the training data, the                  

number and sizes of patches/batches. Exceeding this RAM limit can cause the notebook to crash when                

initialising the networks. For the datasets we have tested, it was always possible to train the networks                 

with the currently available RAM. It is important to note that large datasets (e.g. datasets made of                 

large 3D stacks) may reach or exceed the RAM capacity when using a large number of                

patches/batches or data augmentation. 

 

22 

https://colab.research.google.com/
https://www.google.com/drive/


5.3. Time-outs 

12-hour time-out. The time taken to train a network sufficiently is primarily determined by the size of                 

the training dataset, the number of steps/epochs/patches, and the efficiency of the underlying code.              

Google Colab currently offers 12 hours of GPU/TPU access after which remote data loaded into the                

virtual machine will be lost, a limit primarily enforced to prevent cryptocurrency-mining. For users,              

this means that if training has not completed by the 12h limit, it will be stopped. This constraint can                   

be annoying when networks need to be trained over many epochs to reach high performance, often                

necessary for large datasets. However, users can easily circumvent this issue by continuing their              

training sessions over multiple Colab runtime. Indeed, in all ZeroCostDL4Mic notebooks, model            

checkpoints are automatically saved, in Google Drive, during training which allows the users to              

continue training later from such a checkpoint (see Supplementary Note 4 for discussion on transfer               

learning). 

Log-out if idle. Google Colab may disconnect significantly earlier than after 12 hours if it detects an                 

interruption of user interaction or network training. Usually, this time-out happens after 30 to 90               

minutes of idleness in our hands, i.e. code not running or lack of user interaction with the Google                  

Colab interface. When the log-out occurs, local variables, installed packages and data stored outside              

any mounted drive are deleted. Hence, if the log-out occurs before training a model, cells setting up                 

parameters for training such as paths or hyperparameters may have to be reset before training. With                

all of our notebooks, the models are automatically saved in Google Drive upon training completion,               

meaning that long training sessions do not have to be attended. 

 

5.4. Inconsistent GPU access 

Google Colab does not guarantee access to a GPU, as the number of current users may be larger than                   

the number of available devices. It is not clear how access to a GPU is regulated, but it may be                    

determined by traffic to the Google Colab servers. If no GPUs are available, Colab will offer to run                  

the notebook using either a TPU, CPU (without acceleration), or as a local runtime (i.e. on the                 

machine of the user). It should be noted though that these alternatives can be significantly slower than                 

Google Colab GPU access. However, GPU access usually becomes available again from within a few               

hours to a day. 
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5.5. GPU type 

Google Colab uses different GPUs that currently include NVIDIA K80, T4, P4, and P100 (as of                

October 2020). The user cannot decide which GPU will be available when using the notebook.               

According to the Google Colab (https://research.google.com/colaboratory/faq.html) FAQ, this is due          

to limitations in the provision of a free service to users which makes certain types of GPU unavailable                  

at the time a notebook is used. In practice, this does not affect the performance of the models trained                   

with ZeroCostDL4Mic. However, it will affect the speed at which networks can be trained and used.                

Therefore, users might encounter variability in training times as a consequence. To find out which               

type of GPU Google Colab is using, the user can play the first cell in each notebook which will give                    

information on GPU access and type. 

 

5.6. How to best handle Google Colab resources 

Several steps can be taken by users of ZeroCostDL4Mic to optimise the usage of Google Colab’s                

resources. Regarding the 12h maximum training time, we encourage users to change the number of               

epochs and training parameters so that the training takes less than 12h. This should be possible with                 

all of the networks we provide. Nevertheless, we also provide the option to continue the training from                 

a saved training checkpoint in case of a time-out. This allows the user to start from a pre-trained                  

model and accumulate many rounds of steps (see Supplementary Note 4 about transfer learning).  

For the log-out if idle issue, Google Colab cells can be played all at once (or a subset at once). In this                      

case, the activated cells will run one after the other. This can be useful to ensure that the runtime does                    

not disconnect until the completion of all the analytical steps and the user data saved in Google Drive. 

ZeroCostDL4Mic is aimed to be an entry point to learn about DL methods where users can quickly                 

train networks with their data. While ZeroCostDL4Mic, associated with the Google Colab platform, is              

entirely free to use, the resources available can be easily extended with small financial investments.               

For instance, the free 15 GB Google Drive storage space can be increased by purchasing more Google                 

Drive storage from Google. In addition, Google is rolling out a Google Colab Pro              

(https://colab.research.google.com/signup#) version that offers faster GPUs, longer runtimes and         

access to more RAM. If these intermediate options are still not sufficient, ZeroCostDL4Mic             

notebooks can also be adapted to run on the user's own computer by connecting Google Colab to a                  

local runtime (https://research.google.com/colaboratory/local-runtimes.html). This option allows the       

user to access their local files and resources (local GPU) directly from the Google Colab notebooks.                

This, of course, requires the users to invest in a powerful workstation. 
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5.7. Data privacy and ZeroCostDL4Mic 

It is important to note that using ZeroCostDL4Mic may not always be suitable for the analysis of                 

confidential data as the images need to be uploaded to Google Drive prior to analysis. Therefore, we                 

advise users to read the general conditions of using a Google Drive account             

https://www.google.com/drive/terms-of-service/ before using our notebooks in case concerns about         

data protection exist. Importantly, Google claims no ownership rights over content stored in Google              

Drive, and the use of Google Colab is not different. In our hands, removal, editing, or organisation of                  

files have not occurred when developing and testing ZeroCostDL4Mic. According to Google Colab             

terms of use, file modifications become more likely if Google’s terms are breached             

(https://support.google.com/docs/answer/148505) or if the user has given specific permission for files           

to be edited. 

To ensure data safety, we recommend our users to upload images without their associated metadata               

(all the information that details what the images actually are). If this simple precaution is taken, we do                  

not foresee that data privacy issues would affect most microscopy image analysis needs, as images               

without their associated metadata are virtually worthless. It is important to note that users can also                

upload only the dataset required to train DL networks and perform the prediction locally to alleviate                

the issues with storing large amounts of sensitive data in the cloud. 
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Supplementary Note 6: Using ZeroCostDL4Mic in alternative cloud-computing platforms. 

Although we developed our platform around Google Colab’s online computational resources, the            

flexibility of use of the Jupyter notebooks allows us to port the analysis to any cloud solutions                 

accepting Jupyter notebooks. To demonstrate that users can migrate the notebooks to other             

environments, for example, to exploit alternative GPUs to those available in Colab, or if the free                

service of colab should be discontinued, we tested two of our notebooks in two alternative resources.                

As an example for another free service providing GPU access, we imported our Deep-STORM              

notebook into the Deepnote online platform (https://deepnote.com) (Supplementary Fig. 4a-d).          

Deepnote provides online resources: Intel Haswell 2vCPU and ~5GB RAM for free for an unlimited               

amount of time (as of October 2020) and provides additional RAM and access to GPU for a fee                  

(prices available upon request to Deepnote).  

Here, we performed installation, training, quality control and prediction on CPU using test data              

provided on Deep-STORM GitHub developer’s page (https://github.com/EliasNehme/Deep-STORM)       

without any modifications of the notebook. The only additional step required here was the              

pre-installation of 5 Python packages (TensorFlow, scikit-image, astropy, tqdm and numba) which            

could be simply done by editing the “requirements.txt” file in Deepnote (see Deepnote             

documentation: https://docs.deepnote.com/environment/custom-initialization for details).    

Supplementary Figure 4 shows a set of screenshots highlighting the interface and the different steps               

being carried out within Deepnote. 

We explored the use of another cloud-based service, this time while incurring a financial charge.               

Here, we chose FloydHub, an online platform which provides access to fast GPUs, such as Tesla K80                 

and Tesla V100 and an easy to use interface (Supplementary Fig. 4e-h). Importantly, FloydHub runs               

with significantly more powerful CPU, more runtime RAM (up to 61GB), disk space (200GB) and               

runtime limits of up to 7 days which would allow more data to be loaded during training and longer                   

training times than is possible in Google Colab. 

To use ZeroCostDL4Mic notebooks in FloydHub, we created a new project and a new workspace.               

Here, FloydHub provides the option to import a repository from GitHub. Using this option and               

importing the ZeroCostDL4Mic repository from https://github.com/HenriquesLab/ZeroCostDL4Mic,      

makes all the notebooks immediately available on the FloydHub workspace. To use a notebook, the               

user needs to select which environment the notebook should run in. Here, we demonstrated the use of                 

the StarDist 2D notebook.  

Next, we chose a machine, which can be a CPU or GPU, depending on the requirements for training.                  

FloydHub charges the user for GPU use by the hour (1.20 USD per hour). 
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Next, we downloaded the StarDist 2D network from this project’s zenodo dataset repository             

(https://zenodo.org/record/3715492#.X9tojtj7TIU). This is done by opening a terminal (bash) instance          

in FloydHub and typing the following command to download the dataset: 

wget zenodo.org/record/dataset_ID_number/files/dataset_name.zip  

where dataset_ID_number is the unique 7-digit zenodo ID number of the dataset (also in the URL)                

and dataset_name is the name of the folder containing the dataset which in this case was                

‘Stardist_v2’. The user can then unzip the folder by typing:  

unzip dataset_name.zip 

Users can also upload their own data into FloydHub by following the instructions found here               

(https://docs.floydhub.com/guides/create_and_upload_dataset/). After these steps, the GitHub      

repository and the dataset folder are available in the created workspace. The StarDist 2D notebook can                

be opened from the left-hand menu and displays the same interface as in colab, with the exception of                  

showing the code cells permanently. Three minor modifications had to be made to use the StarDist 2D                 

notebook: 

- comment out the %tensorflow_version 1.x magic command in cell 2 by prepending # 

- the from __future__ import … command was copied to the top of cell 2 

- astropy needed to be installed before import by adding !pip install astropy to cell 2 

These changes were sufficient to use the notebook for training, quality control and inference. Further               

changes to the notebook simplify the experience of use on this platform, e.g. deleting the string                

‘/content’ in pathnames or replacing it with ‘/floyd/home’ where it occurs in the notebook. This is                

necessary because the ‘content’ folder is specific to Google Colab which will result in an error when                 

using the notebook in FloydHub. Additionally, copying paths from the left-hand menu omits the root               

folder ‘/floyd/’ which we needed to add manually when pasting a dataset or model path into the                 

notebook. 

These changes were made after running each cell and using any error messages to adapt the notebook                 

to the new platform. Similar minor changes would likely be necessary to use the other notebooks.                

However, as we demonstrated, these changes could be made extremely quickly and the notebook              

could be used within minutes of creating a FloydHub account. 

 

27 

https://zenodo.org/record/3715492#.X9tojtj7TIU
https://docs.floydhub.com/guides/create_and_upload_dataset/


Supplementary Tables

Network Data Type # of files Image Dimensions Image Type Comments
CARE (2D) Training – Low SNR images 22 1024x1024 SIM fluo (MIP from 3D stack) 32-bit TIFF This paper (Filopodia dataset - Maximum projection), and here
CARE (2D) Training – High SNR images 22 1024x1024 SIM fluo (MIP from 3D stack) 32-bit TIFF This paper (Filopodia dataset - Maximum projection), and here
CARE (2D) Test – Low SNR images 2 1024x1024 SIM fluo (MIP from 3D stack) 32-bit TIFF This paper (Filopodia dataset - Maximum projection), and here
CARE (2D) Test – High SNR images 2 1024x1024 SIM fluo (MIP from 3D stack) 32-bit TIFF This paper (Filopodia dataset - Maximum projection), and here
CARE (3D) Training – Low SNR images 22 1024x1024x33 SIM fluo 32-bit TIF This paper (Filopodia dataset 3D - stack), and here
CARE (3D) Training – High SNR images 22 1024x1024x33 SIM fluo 32-bit TIF This paper (Filopodia dataset 3D - stack), and here
CARE (3D) Test – Low SNR images 2 1024x1024x33 SIM fluo 32-bit TIF This paper (Filopodia dataset 3D - stack), and here
CARE (3D) Test – High SNR images 2 1024x1024x33 SIM fluo 32-bit TIF This paper (Filopodia dataset 3D - stack), and here
U-Net (2D) Training - Images 28 512x512 EM 8-bit TIFF ISBI or here
U-Net (2D) Training - Masks 28 512x512 Binary 8-bit TIFF ISBI or here
U-Net (2D) Test - Images 2 512x512 EM 8-bit TIFF ISBI or here
U-Net (2D) Test - Masks 2 512x512 Binary 8-bit TIFF ISBI or here
U-Net (3D) Training/Test - Images 165 1024x768 EM 8-bit TIFF here
U-Net (3D) Training/Test - Masks 165 1024x768 Binary TIFF here

Label-free prediction (fnet) Training - Brightfield 92 512x512x32 Bright-field confocal 8-bit TIF This paper, and here
Label-free prediction (fnet) Training – Fluo (mitochondrial marker) 92 512x512x32 Fluo confocal 8-bit TIF This paper, and here
Label-free prediction (fnet) Test - Brightfield 8 512x512x32 Bright-field confocal 8-bit TIF This paper, and here
Label-free prediction (fnet) Test – Fluo (mitochondrial marker) 8 512x512x32 Fluo confocal 8-bit TIF This paper, and here

Stardist (2D) Training - Images 45 1024x1024 Fluo 16-bit TIF This paper, and here
Stardist (2D) Training - Masks 45 1024x1024 Object-labelled 8-bit TIF This paper, and here
Stardist (2D) Test - Images 2 1024x1024 Fluo 16-bit TIF This paper, and here
Stardist (2D) Test - Masks 2 1024x1024 Object labelled 8-bit TIF This paper, and here
Stardist (2D) Test - Stacks 4 1024x1024x86 Fluo 16-bit TIF This paper, and here
Stardist (3D) Training - Images 27 128x128x64 Fluo 16-bit TIF Martin Weigert et al , 2020 and here
Stardist (3D) Training - Masks 27 128x128x64 Fluo 16-bit TIF Martin Weigert et al, 2020 and here
Stardist (3D) Test - Images 3 128x128x64 Fluo 16-bit TIF Martin Weigert et al, 2020 and here
Stardist (3D) Test - Images 3 128x128x64 Fluo 16-bit TIF Martin Weigert et al, 2020 and here

Deep-STORM Training - Simulated SMLM data 2 64x64 16-bits/32-bits TIFF This paper and here
Deep-STORM Training - Ground truth localizations 2 n.a. .csv file This paper and here
Deep-STORM Example dataset - Experimental SMLM data 2 256x256 16-bits/32-bits TIFF This paper and here

CycleGAN Training - Spinning Disk Images 164 1280x1280 8-bit PNG This paper and here
CycleGAN Training - (unpaired) Fluctuation based super resolution Images 164 1280x1280 8-bit PNG This paper and here
CycleGAN Test - Spinning Disk Images 4 1280x1280 8-bit PNG This paper and here
CycleGAN Test - Fluctuation based super resolution Images 4 1280x1280 8-bit PNG This paper and here

pix2pix Training - LifeAct Spinning disk Images 1748 1024x1024 8-bit PNG This paper and here
pix2pix Training - SiR DNA Spinning Disk Images 1748 1024x1024 8-bit PNG This paper and here
pix2pix Test - LifeAct Spinning disk Images 5 1024x1024 8-bit PNG This paper and here
pix2pix Test - SiR DNA Spinning Disk Images 5 1024x1024 8-bit PNG This paper and here

YOLOv2 Training - Brightfield Images 30 1040x1380 8-bit PNG This paper and here
YOLOv2 Training - Hand-annotations 30 n.a. xml (Pascal VOC - format) This paper and here
YOLOv2 Test - Brightfield Images 3 1040x1380 8-bit PNG This paper and here
YOLOv2 Test - Hand-annotations 3 n.a. xml (Pascal VOC - format) This paper and here
N2V (2D) Training - Images 1 512x512 Fluo 16-bit TIFF Stubb et al 2020, and here
N2V (2D) Test - Images 22 512x512 Fluo 16-bit TIFF Stubb et al, 2020 and here
N2V (3D) Training - Images 1 (Actin) +1 (Fibronectin) 512x512x13 Fluo 16-bit TIFF Kaukonen et al, 2017 (Actin and fibronectin datasets), and here
N2V (3D) Test - Images 48 (Actin) +48 (Fibronectin) 512x512x13 Fluo 16-bit TIFF Kaukonen et al, 2017 (Actin and fibronectin datasets), and here

Supplementary Table 1: Overview of the available datasets used for training the networks. For all networks relying on supervised learning, the test datasets consist of the last two
files generated for training. These were set aside for testing and are not part of the training dataset.
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Network Name # of epochs # of steps Batch size Image dimensions Bit-depth # of images # of patches, patch size, patch height GPU type Time for training (using these settings)
CARE (2D) 50 31 64 1024x1024 32-bit 22 100, 80 Tesla P100-PCIE-16GB 3 min
CARE (3D) 50 62 64 1024x1024x33 32-bit 22 200, 80, 8 Tesla P4 90 min
U-Net (2D) 200 6 4 1024x1024 8-bit 28 4, 512x512 Tesla P100-PCIE-16GB 8 min
U-Net (3D) 75 396 1 1024x768 8-bit 165 132, 256x256, 16 Tesla P100-PCIE-16GB 575 min

Label-free prediction (fnet) n.a. 50000 4 512x512x32 8-bit 92 64, 64, 32 Tesla P4 8h20min
StarDist (2D) 200 37 2 1024x1024 16-bit 72 1, 1024x1024 . Tesla K80 170 min
StarDist (3D) 400 14 2 128x128x64 16-bit 27 1, 128x128x64 Tesla P4 400 min
Deep-STORM 100 313 16 64x64 32-bit 20 (frames) 500, 26x26 Tesla P100-PCIE-16GB 50min

cycleGAN 200 n.a. 1 1280x1280 RGB 164 512x512 Tesla P100-PCIE-16GB 8h54min
pix2pix 200 n.a. 1 1024x1024 RGB 1748 512x512 Tesla P100-PCIE-16GB 9h

YOLOv2 40 30 8 1040x1380 8-bit 30 1, 1040x1380 Tesla P100-PCIE-16GB 45min
N2V (2D) 100 61 128 512x512 16-bit 22 392, 64 Tesla T4 17 min
N2V (3D) 100 133 128 512x512x13 16-bit 48 392, 64, 8 Tesla P100-PCIE-16GB 240 min

Supplementary Table 2: Hyperparameters used to train the networks, GPU types allocated and corresponding training times. Some hyperparameters are hard-coded in the
networks or calculated from the other parameters. n.a.: not applicable.

Network Name Install time Image dimensions Bit-depth of images Patch size Default augmentation Validation split Total number of training patches Tesla P100 Tesla T4 CPU (if possible)
CARE (2D) 25s 1024x1024 32-bit 22 80x80 None 0.1 1980 4s per EPOCH 6s per EPOCH 823s per EPOCH
CARE (3D) 25s 1024x1024x33 32-bit 22 80x80x8 None 0.1 3960 47s per EPOCH 102s per EPOCH 5134s per EPOCH
Unet (2D) 10s 512x512 8-bit 28 512x512 1x 0.1 26 2s per EPOCH 4s per EPOCH 415s per EPOCH
Unet (3D) 10s 1024x768x165 8-bit 1 256x256x16 4x 0.2 396 842s per EPOCH 932s per EPOCH GPU required

Label-free prediction (fnet) 53s 512x512x32 8-bit 92 64x64x32 None 0.3 variable (depends on number of steps) 0.52s per STEP 0.54s per STEP GPU required
StarDist (2D) 1 min 1024x1024 16-bit 72 1024x1024 None 0.1 64 42s per EPOCH 45s per EPOCH 881s per EPOCH
StarDist (3D) 1 min 128x128x64 16-bit 27 128x128x64 None 0.1 24 60s per EPOCH 65s per EPOCH 2360s per EPOCH
Deep-STORM 10s 64x64 32-bit 20 26x26 None 0.3 7000 31s per EPOCH 61s per EPOCH 2620s per EPOCH

cycleGAN 20s 1280x1280 RGB 164 512x512 x2 n.a. 1 per image 178s per EPOCH 315s per EPOCH GPU required
pix2pix 15s 1024x1024 RGB 1748 512x512 None n.a. 1 per image 168s per EPOCH 265s per EPOCH GPU required

YOLOv2 17s 1389x1041 8-bit 30 n.a. 8x 0.1 n.a. 100s per EPOCH 102s per EPOCH 2386s per EPOCH
N2V (2D) 25s 512x512 16-bit 22 64x64 8x 0.1 9012 7s per EPOCH 11s per EPOCH 41s per EPOCH
N2V (3D) 25s 512x512x13 16-bit 1 64x64x4 8x 0.1 1383 7s per EPOCH 15s per EPOCH 641s per EPOCH

Supplementary Table 3: Notebooks and training times with respect to datasets and types of processing units (GPU and CPU if applicable) in the notebooks. n.a.: not
applicable.



Network Name Image dimensions Bit-depth Tesla P100 Tesla T4 CPU (if possible)
CARE (2D) 1024x1024 32-bit 0.6 s/frame 0.6 s/frame 13.7 s/frame
CARE (3D) 1024x1024x33 32-bit 8.3 s/stack 16s/stack 183.7s/stacks
Unet (2D) 512x512 8-bit 0.7 s/frame 1 s/frame 5 s/frame
Unet (3D) 1024x768x165 8-bit 47s/stack 69s/stack 2091 s/stack

Label-free prediction (fnet) 512x512x32 8-bit 9.1 s/stack 11.1 s/stack GPU only
StarDist (2D) 1024x1024 16-bit 1.2 s/frame 1.7 s/frame 4.3 s/frame
StarDist (3D) 128x128x64 16-bit 5.9 s/stack 5.9 s/stack 25 s/stack
Deep-STORM 256x256 32-bit 0.2 s/frame 0.6 s/frame 6.4 s/frame

cycleGAN 1280x1280 RGB 2 s/frame 3 s/frame GPU only
pix2pix 1024x1024 RGB 1.1 s/frame 1.9 s/frame GPU only

YOLOv2 1389x1041 8-bit CPU only CPU only 9.3s/frame
N2V (2D) 512x512 16-bit 0.5 s/frame 1.9 s/frame 2.6 s/frame
N2V (3D) 512x512x13 16-bit 1.7 s/stack 1.9s/stack 25 s/stack

Supplementary Table 4: Notebooks and inference times with respect to datasets and types of processing units (GPU and CPU if applicable) in the notebooks. n.a.: not
applicable.



Network Image dimensions Bit-depth tested Patch size Default augmentation Number of patches What is limiting? Max number of training images with default parameters Description of the breaking point
CARE (2D) 1024x1024 32-bit 80x80 None 100 per image Runtime RAM 1000 paired images all training patches need to fit in the runtime RAM
CARE (3D) 1024x1024x33 32-bit 80x80x8 None 200 per Stack Runtime RAM 100 paired stacks all training patches need to fit in the runtime RAM
Unet (2D) 512x512 8-bit 512x512 1x 1 per image GDrive disk space 30,000 paired images All training images need to fit on Google Drive disk space (15GB for free service)
Unet (3D) 1024x768x165 8-bit 256x256x16 4x 396 GDrive disk space 9,500 All training images must fit in GDrive disk space.

Label-free prediction (fnet) 512x512x32 8-bit 64x64x32 None variable Runtime RAM 142 paired stacks all training stacks need to fit in the runtime RAM
StarDist (2D) 1024x1024 16-bit 1024x1024 None 1 per image Runtime RAM 360 paired images all training patches need to fit in the runtime RAM
StarDist (3D) 128x128x64 16-bit 128x128x64 None 1 per Stack Runtime RAM 90 paired stacks all training patches need to fit in the runtime RAM
Deep-STORM 256x256 32-bit 26x26 None 10000 total Runtime RAM 10000 patches all training patches need to fit in the runtime RAM

cycleGAN 1280x1280 RGB 512x512 x2 1 per image GDrive disk space 5000 images (training source + training target) Trained models take a lot of space (around 10GB for 200 EPOCH)
pix2pix 1024x1024 RGB 512x512 None 1 per image GDrive disk space 4000 paired images Trained models are large (around 10GB for 200 EPOCH)

YOLOv2 1389x1041 8-bit n.a. x8 n.a. GDrive disk space 20000 images+annotations All training images need to fit on Google Drive disk space (15GB for free service)
N2V (2D) 512x512 16-bit 64x64 x8 512 per image Runtime RAM 170 images (1360 with no augmentation) all training patches need to fit in the runtime RAM
N2V (3D) 512x512x13 16-bit 64x64x4 x8 1536 per stack Runtime RAM 15 stacks (120 with no augmentation) all training patches need to fit in the runtime RAM

Supplementary Table 5: Notebooks and notebook breaking points for training with respect to datasets. n.a.: not applicable. Breaking points were determined empirically by
performing training with an increasing number of training images until the Colab session crashed (often due to exceeding the RAM limit, as highlighted in the table). Where this breaking
point was not reached, the limitation of the training dataset size is determined by the maximum space available on the Google Drive (corresponding to the 15GB of data available in the
session). In this case, values for the dataset size are estimated based on the file size in the given dataset.

Network Image size tested Bit-depth Maximum number of images per runtime Description of the issue
CARE (2D) 1024x1024 32-bit 1700 images GDrive disk space
CARE (3D) 1024x1024x33 32-bit 50 stacks GDrive disk space
Unet (2D) 512x512 8-bit 30,000 images GDrive disk space
Unet (3D) 1024x768x165 8-bit 23 stacks GDrive disk space

Label-free prediction (fnet) 512x512x32 8-bit 200 stacks GDrive disk space
StarDist 2D 1024x1024 16-bit 2000 images GDrive disk space
StarDist 3D 128x128x64 16-bit 2300 stacks GDrive disk space

Deep-STORM 256x256 32-bit 50,000 frames GDrive disk space
cycleGAN 1280x1280 RGB 3000 images GDrive disk space

pix2pix 1024x1024 RGB 3000 images GDrive disk space
YOLOv2 1389x1041 8-bit 7500 images GDrive disk space
N2V 2D 512x512 16-bit 9000 images GDrive disk space
N2V 3D 512x512x13 16-bit 700 stacks GDrive disk space

Supplementary Table 6: Notebooks and notebook breaking points for inference with respect to datasets. n.a.: not applicable. Breaking points were determined by running the
inference cell in the notebooks on an increasing number of files. Since inference is usually done at a fixed batch size it is usually not limited by RAM but by maximum memory of the
Google Drive. In this case, values for the dataset size are estimates based on the file size in the given dataset
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