## Unexpected Diversity of Three-Dimensional Photonic Crystals: Supplementary Information

Rose K. Cersonsky, ${ }^{1}$ James Antonaglia, ${ }^{2}$ Bradley D. Dice, ${ }^{2}$ and Sharon C. Glotzer ${ }^{1,2,3,4,5}$<br>${ }^{1)}$ Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI 48109<br>${ }^{2)}$ Department of Physics, University of Michigan, Ann Arbor, MI 48109<br>${ }^{3)}$ Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109<br>${ }^{4}$ Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109<br>${ }^{5)}$ Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109

(Dated: 26 March 2021)

## CONTENTS

I. Supplementary Note 1 ..... 4
A. Summaries of Data ..... 4
B. Method Figures ..... 5

1. Comparison with Previously Published Data ..... 5
2. Data Management with Signac ..... 7
C. Extended Analysis ..... 9
3. Bravais Lattice and Gap Location ..... 9
4. Correlation with PBG Existence ..... 10
5. Correlation with Large PBGs ..... 11
6. Relative Probabilities Across Space Groups ..... 12
7. Effects of $\phi$ and $\varepsilon$ ..... 13
II. Supplementary Note 2 ..... 14
A. aP4-Li (Inverse) ..... 14
B. $c F 12-\mathrm{Li}_{2} \mathrm{O}$ (Direct) ..... 15
C. $c F 136-\mathrm{Si}$ (Inverse) ..... 17
D. $c F 24-\mathrm{SiO}_{2}$ (Direct) ..... 18
E. $c F 4-\mathrm{Cu}$ (Inverse) ..... 19
F. $c F 8$-C (Direct) ..... 20
G. $c F 8$-C (Inverse) ..... 22
H. $c P 1-\mathrm{Po}$ (Inverse) ..... 24
I. $c P 24-\mathrm{SiO}_{2}$ (Direct) ..... 25
J. $c P 4-\mathrm{X}$ (Inverse) ..... 26
K. oP12-CuAsS (Direct) ..... 27
L. $t I 16-\mathrm{CoSiCu}_{2} \mathrm{~S}_{4}$ (Direct) ..... 28
M. $t I 8-\mathrm{YMn}_{2}$ (Direct) ..... 29
N. $t P 12-\mathrm{SiO}_{2}$ (Direct) ..... 31
O. $t P 4-\mathrm{PdO}$ (Direct) ..... 32
P. $h P 21-\mathrm{NaAlSiO}_{4}$ (Direct) ..... 34
Q. $c P 26-\mathrm{UBe}_{13}$ (Inverse) ..... 35
R. $m P 24-\mathrm{SiO}_{2}$ (Inverse) ..... 37
S. oF8-Pu (Inverse) ..... 38
T. $m C 64-\mathrm{P}_{3} \mathrm{~N}_{5}$ (Direct) ..... 39
U. cI16-Si (Inverse) ..... 40
V. $m C 4-\mathrm{Ce}$ (Inverse) ..... 41
W. hP4-Ge (Direct) ..... 42
X. $h R 1-\mathrm{Po}$ (Inverse) ..... 44
Y. oC48- $\mathrm{H}_{2} \mathrm{O}$ (Direct) ..... 46
Z. $h P 20-\mathrm{H}_{3} \mathrm{O}$ (Inverse) ..... 47
Supplementary References ..... 48

## I. SUPPLEMENTARY NOTE 1

## A. Summaries of Data

Another way of viewing Fig. 1 from the main text is to organize in terms of PBG size and $\varepsilon$, as shown in 1.


Supplementary Figure 1. PBGs Properties of Nature-Inspired Structural Templates. Largest PBGs found for each structure generated among $\varepsilon=4-16$. Circle areas are proportional to the PBG size; colors correspond to the location of the PBG. Some structures are shown more than once, as some structures were found to exhibit PBGs in two different locations at different filling fractions. Structures that have been previously studied or noted in the main text have been labeled.

## B. Method Figures

## 1. Comparison with Previously Published Data






$$
\text { - Ho, et al. (1990) } \quad \approx \quad \text { Moroz \& Summers (1998) }
$$

$\ddagger$ Cersonsky, et al.
$\begin{array}{ll}\text { ㅁ } & \text { Sözüer, et al. (1992) } \\ \text { ○ } & \text { Sözüer \& Haus (1993) }\end{array}$
Supplementary Figure 2. Comparison of Reported and Previously Published Data for Fixed $\varepsilon$ and $\phi$.
Color indicates bands between which the PBG occurs, with plotting marker corresponding to data source. (a) PBG between bands 2-3 (red), 8-9 (teal) and 14-15 (lavender) for Diamond at $\varepsilon=12.96$, as reported by ${ }^{1}$ and generated by the example code given by ${ }^{4}$. PBG sizes reported in Ref. ${ }^{1}$ were found to be overestimated in $^{5}$, therefore a better benchmark for diamond is provided by ${ }^{4}$. (b) PBG between bands 2 and 3 in Inverse Diamond at $\varepsilon=12.96$, as reported by ${ }^{1}$. (c) PBG between bands 5 and 6 in Inverse Simple Cubic at $\varepsilon=13$, as reported by $^{2}$. (d) PBG between bands 16 and 17 in Hexagonal Diamond at $\varepsilon=12$, as reported by ${ }^{3}$. PBG between bands 4 and 5 (orange) were unreported in ${ }^{3}$, with no indication if calculations for corresponding $\phi$ were run. (e) PBG between bands 2-3 (red) and 8-9 (teal) for Diamond at $\phi \approx 0.34$, as reported by ${ }^{1}$ and generated by the example code given by ${ }^{4}$. PBG sizes reported in Ref. ${ }^{1}$ were found to be overestimated in ${ }^{5}$, therefore a better benchmark for diamond is provided by ${ }^{4}$. (f) PBG between bands 2 and 3 in Inverse Diamond at $\phi \approx 0.19$, as reported by ${ }^{1}$. (g) PBG between bands 8 and 9 in Inverse Opal at $\phi \approx 0.26$, as reported by ${ }^{5,6}$.

In Fig. 2, we compare the PBG sizes computed using our methodology and previously published in literature within references ${ }^{1-6}$. Any discrepancies between the computations reported and previous literature can be due to differing smoothing functions of $\varepsilon$ space, using a more exhaustive IBZ, and small errors in transcribing previous literature, which were available in figure, and not
table, form.

## 2. Data Management with Signac

The data for this project was managed using signac and the workflow managed by signacflow in a multi-level project. ${ }^{7}$ The top level of the project consisted of statepoints consisting of structural data. Inside each structure statepoint was an additional project managing the statepoints containing radii and dielectric constant.


Supplementary Figure 3. Organization of Project Using signac and signac-flow. Operations and labels were stored individually for the structure at large and independent radii and dielectric constants, as was appropriate. Typical structure-level operations included symmetry calculations, PBG atlas generation, and summarizing lower level data. Typical lower level operations include running and analyzing MPB, computing fill fraction, and field analysis.


Supplementary Figure 4. Schematic of Complexity Reduction from Vector Fields to Mode Motifs.
For each mode motif in the main text, we show the reduction in visual complexity from the vector fields to a flow diagram to a mode motif. For each motif we attempted to provide a visual that best represents the motif, with many structures exhibiting variations on these motifs or mixed motif behavior.

## C. Extended Analysis

For this section, we will report percentages of structures that have a particular structural fingerprint across all structures studied and the 351 that have PBGs. We will also report relative probabilities, i.e. the probability a given fingerprint is found in structures with PBGs divided by its probability of being found in all structures. We compared the sample of structures used in this project with a rough estimate of the data space available through ICSD and COD to show that our sample set can represent a general distribution.

## 1. Bravais Lattice and Gap Location



Supplementary Figure 5. Correlation between PBG Location and Bravais Lattice. Here we show an extension of Fig. 2(a)(iii-iv) from the main text, including PBG locations where there was less clear correlation between Bravais Lattice and PBG location.

## 2. Correlation with PBG Existence



Supplementary Figure 6. Comparison of Structural Features for PBG Structures and All Structures.
For each subfigure, the grey and black markers/area denote values for all structures and those with PBGs, respectively. (a) Point group symmetry of the (i) structure and (ii) Wyckoff sites, increasing in symmetry order to the right. (b) Isoperimetric quotient of the first Brillouin zone (BZ). Isoperimetric quotient is a measure of sphericity, close to 0 for highly non-spherical shapes and 1 for spheres. The values for cubic structures, which are constant for all structures of a given centering, are denoted with red dotted lines. (c) Measure of the angle between neighboring "bonding" sites. For each lattice site, we computed this value by considering the first shell of nearest neighbor sites.

## 3. Correlation with Large PBGs



Supplementary Figure 7. The Correlation of Structural Features with Large PBGs. (a) The distribution of PBGs with respect to lattice setting and PBG size, with the Bravais lattices increasing in symmetry order to the right. (a) Distribution of PBGs with respect to (i) point group of the structure or (ii) point group of individual Wyckoff sites and PBG size, with the point groups increasing in symmetry order to the right. (b) Heat map of sphericity of the BZ and PBG size. (c) Heat map of bond angles and PBG size.

## 4. Relative Probabilities Across Space Groups



Supplementary Figure 8. Relative Probabilities for Space Group Numbers. Of the 230 total space groups, structures were calculated in the available 227 space groups. Space groups are separated by lattice group, with blue and yellow colormaps denoting the sample size and relative probabilities, respectively. Grey and black circles correspond to percentages of structures across the entire dataset and those with PBGs, respectively. Space group numbers with high or low relative probability are individually labelled.
5. Effects of $\phi$ and $\varepsilon$


Supplementary Figure 9. Summary of PBGs across Different Filling Fractions and Dielectric Constants. (a) Number of PBGs found across filling fractions from 0 to 1. (b) Largest PBGs found at each filling fraction. (c) Number of PBGs found across dielectric constants, from 4-16. (d) Largest PBGs found at each dielectric constant. Each plot is separated by band number indicated by the color guide.

## II. SUPPLEMENTARY NOTE 2

## A. aP4-Li (Inverse)

Inverse Lithium


Image of $a P 4-\mathrm{Li}$, generated by
Vesta
$\boldsymbol{a}_{\boldsymbol{1}}=\hat{x}+0.0001 \hat{y}-0.0004 \hat{z}$
$\boldsymbol{a}_{2}=1.0009 \hat{y}$
$a_{3}=1.0003 \hat{z}$

Space Group: $1 \quad$ Point Group: 1
Found in Simulation
Structure DOI: 10.1021/nn204012y
Photonics DOI: 10.1063/1.1635664


Supplementary Figure 10. Gap Atlas across filling fraction $\phi$ and frequency $\omega$


Supplementary Figure 11. Band Structure and Isosurface of $a P 4-\mathrm{Li}$ (Inverse) at radius $=0.4$, filling fraction $=0.164$, where the largest gap between bands 4 and 5 occurs with gap size $27.07 \%$.

## B. $\quad c F 12-\mathrm{Li}_{2} \mathrm{O}$ (Direct)

Lithium Amide


$$
\begin{aligned}
& \boldsymbol{a}_{\mathbf{1}}=1 / \sqrt{2} \hat{y}+1 / \sqrt{2} \hat{z} \\
& \boldsymbol{a}_{\mathbf{2}}=1 / \sqrt{2} \hat{x}+1 / \sqrt{2} \hat{z} \\
& \boldsymbol{a}_{\mathbf{3}}=1 / \sqrt{2} \hat{x}+1 / \sqrt{2} \hat{y}
\end{aligned}
$$

Space Group: $225 \quad$ Point Group: $m \overline{3} m$
Crystallographic Open Database \#4121514
Image of $c F 12-\mathrm{Li}_{2} \mathrm{O}$, generated by
Structure DOI: 10.1021/ja066016s
Vesta


Supplementary Figure 12. Gap Atlas across filling fraction $\phi$ and frequency $\omega$


Supplementary Figure 13. Band Structure and Isosurface of $c F 12-\mathrm{Li}_{2} \mathrm{O}$ (Direct) at radius $=0.27$, filling fraction $=0.278$, where the largest gap between bands 8 and 9 occurs with gap size $5.93 \%$.


Supplementary Figure 14. Band Structure and Isosurface of $c F 12-\mathrm{Li}_{2} \mathrm{O}$ (Direct) at radius $=0.3$, filling fraction $=0.39$, where the largest gap between bands 14 and 15 occurs with gap size $0.71 \%$.


Band Structure across 1st BZ


View along $a_{1}$

Supplementary Figure 15. Band Structure and Isosurface of $c F 12-\mathrm{Li}_{2} \mathrm{O}$ (Direct) at radius $=0.18$, filling fraction $=0.073$, where the largest gap between bands 17 and 18 occurs with gap size $4.04 \%$.

## C. $\boldsymbol{c F}$ 136-Si (Inverse)

## Inverse Clathrate-II



Image of $c F 136-\mathrm{Si}$, generated by
$\boldsymbol{a}_{\mathbf{1}}=1 / \sqrt{2} \hat{y}+1 / \sqrt{2} \hat{z}$
$\boldsymbol{a}_{\mathbf{2}}=1 / \sqrt{2} \hat{x}+1 / \sqrt{2} \hat{z}$
$\boldsymbol{a}_{\boldsymbol{3}}=1 / \sqrt{2} \hat{x}+1 / \sqrt{2} \hat{y}$

Space Group: 227
Point Group: $m \overline{3} m$
Inorganic Crystallographic Database \#56721
Structure DOI: 10.1103/PhysRevB. 60.950
Vesta


Supplementary Figure 16. Gap Atlas across filling fraction $\phi$ and frequency $\omega$


Band Structure across 1st BZ


View along $a_{1}$

Supplementary Figure 17. Band Structure and Isosurface of $c F 136-\mathrm{Si}$ (Inverse) at radius $=0.21$, filling fraction $=0.153$, where the largest gap between bands 2 and 3 occurs with gap size $33.9 \%$.

## D. $\boldsymbol{c F} \mathbf{2 4}-\mathrm{SiO}_{2}$ (Direct)

Cristobalite ( $\beta$ )

$\boldsymbol{a}_{\mathbf{1}}=1 / \sqrt{2} \hat{y}+1 / \sqrt{2} \hat{z}$
$\boldsymbol{a}_{\mathbf{2}}=1 / \sqrt{2} \hat{x}+1 / \sqrt{2} \hat{z}$
$\boldsymbol{a}_{\mathbf{3}}=1 / \sqrt{2} \hat{x}+1 / \sqrt{2} \hat{y}$

Space Group: 227
Point Group: $m \overline{3} m$
Inorganic Crystallographic Database \#77460
Image of $c F 24-\mathrm{SiO}_{2}$, generated by
Structure DOI: 10.1524/zkri.1992.201.1-2.125
Vesta


Supplementary Figure 18. Gap Atlas across filling fraction $\phi$ and frequency $\omega$


Supplementary Figure 19. Band Structure and Isosurface of $c F 24-\mathrm{SiO}_{2}$ (Direct) at radius $=0.19$, filling fraction $=0.227$, where the largest gap between bands 2 and 3 occurs with gap size $31.79 \%$.

## E. cF4-Cu (Inverse)

## Inverse Opal (FCC)


$\boldsymbol{a}_{\mathbf{1}}=1 / \sqrt{2} \hat{y}+1 / \sqrt{2} \hat{z}$
$\boldsymbol{a}_{\mathbf{2}}=1 / \sqrt{2} \hat{x}+1 / \sqrt{2} \hat{z}$
$\boldsymbol{a}_{\boldsymbol{3}}=1 / \sqrt{2} \hat{x}+1 / \sqrt{2} \hat{y}$

Space Group: 225
Point Group: $m \overline{3} m$
Inorganic Crystallographic Database \#43493
Structure DOI: 10.1063/1.1728392
Photonics DOI: 10.1103/PhysRevLett.63.1950

Image of $c F 4-\mathrm{Cu}$, generated by Vesta


Supplementary Figure 20. Gap Atlas across filling fraction $\phi$ and frequency $\omega$


Supplementary Figure 21. Band Structure and Isosurface of $c F 4-\mathrm{Cu}$ (Inverse) at radius $=0.51$, filling fraction $=0.217$, where the largest gap between bands 8 and 9 occurs with gap size $8.76 \%$.

## F. cF8-C (Direct)

Diamond

$\boldsymbol{a}_{\mathbf{1}}=1 / \sqrt{2} \hat{y}+1 / \sqrt{2} \hat{z}$
$\boldsymbol{a}_{\mathbf{2}}=1 / \sqrt{2} \hat{x}+1 / \sqrt{2} \hat{z}$
$\boldsymbol{a}_{\mathbf{3}}=1 / \sqrt{2} \hat{x}+1 / \sqrt{2} \hat{y}$

Space Group: 227
Point Group: $m \overline{3} m$
Inorganic Crystallographic Database \#52054
Structure DOI: 10.1107/S0108768195010810
Image of $c F 8$-C, generated by Vesta
Photonics DOI: 10.1103/PhysRevLett. 65.3152


Supplementary Figure 22. Gap Atlas across filling fraction $\phi$ and frequency $\omega$


Band Structure across 1st BZ


View along $a_{1}$

Supplementary Figure 23. Band Structure and Isosurface of $c F 8$-C (Direct) at radius $=0.33$, filling fraction $=0.419$, where the largest gap between bands 2 and 3 occurs with gap size $14.74 \%$.


Supplementary Figure 24. Band Structure and Isosurface of $c F 8$-C (Direct) at radius $=0.26$, filling fraction
$=0.208$, where the largest gap between bands 8 and 9 occurs with gap size $14.34 \%$.


Supplementary Figure 25. Band Structure and Isosurface of $c F 8$-C (Direct) at radius $=0.18$, filling fraction $=0.069$, where the largest gap between bands 14 and 15 occurs with gap size $1.85 \%$.

## G. cF8-C (Inverse)

Inverse Diamond

$\boldsymbol{a}_{\mathbf{1}}=1 / \sqrt{2} \hat{y}+1 / \sqrt{2} \hat{z}$
$\boldsymbol{a}_{\boldsymbol{2}}=1 / \sqrt{2} \hat{x}+1 / \sqrt{2} \hat{z}$
$\boldsymbol{a}_{\mathbf{3}}=1 / \sqrt{2} \hat{x}+1 / \sqrt{2} \hat{y}$

Space Group: 227
Point Group: $m \overline{3} m$
Inorganic Crystallographic Database \#52054
Structure DOI: 10.1107/S0108768195010810
Image of $c F 8-\mathrm{C}$, generated by Vesta
Photonics DOI: 10.1103/PhysRevLett.65.3152


Supplementary Figure 26. Gap Atlas across filling fraction $\phi$ and frequency $\omega$


Supplementary Figure 27. Band Structure and Isosurface of $c F 8$-C (Inverse) at radius $=0.47$, filling fraction $=0.167$, where the largest gap between bands 2 and 3 occurs with gap size $33.84 \%$.


Supplementary Figure 28. Band Structure and Isosurface of $c F 8$-C (Inverse) at radius $=0.47$, filling fraction $=0.167$, where the largest gap between bands 8 and 9 occurs with gap size $0.19 \%$.

## H. $\quad$ cP1-Po (Inverse)

Inverse Simple Cubic

$\boldsymbol{a}_{1}=\hat{x}$
$\boldsymbol{a}_{2}=\hat{y}$
$a_{3}=\hat{z}$

Space Group: $221 \quad$ Point Group: $m \overline{3} m$
Inorganic Crystallographic Database \#43211
Structure DOI: 10.1016/0022-1902(66)80270-1
Vesta


Supplementary Figure 29. Gap Atlas across filling fraction $\phi$ and frequency $\omega$


Supplementary Figure 30. Band Structure and Isosurface of $c P 1$-Po (Inverse) at radius $=0.61$, filling fraction $=0.18$, where the largest gap between bands 5 and 6 occurs with gap size $11.58 \%$.

## I. $\quad \boldsymbol{c P 2 4 - S i O} 2$ (Direct)

Cristobalite ( $\beta$, with defects)

$a_{1}=\hat{x}$
$a_{2}=\hat{y}$
$a_{3}=\hat{z}$

Space Group: 198
Point Group: 23
Inorganic Crystallographic Database \#24587

Image of $c P 24-\mathrm{SiO}_{2}$, generated by Structure DOI: 10.2475/ajs.s5-23.136.350
Vesta


Supplementary Figure 31. Gap Atlas across filling fraction $\phi$ and frequency $\omega$


Supplementary Figure 32. Band Structure and Isosurface of $c P 24-\mathrm{SiO}_{2}$ (Direct) at radius $=0.14$, filling fraction $=0.258$, where the largest gap between bands 8 and 9 occurs with gap size $27.35 \%$.

## J. $\quad$ cP4-X (Inverse)

Inverse Simple Chiral Cubic

$\boldsymbol{a}_{1}=\hat{x}$
$\boldsymbol{a}_{2}=\hat{y}$
$a_{3}=\hat{z}$

Space Group: 213
Point Group: 432
Found in Simulation
Structure DOI: 10.1103/PhysRevLett.115.158303
Image of $c P 4-\mathrm{X}$, generated by Vesta Photonics DOI: 10.1063/1.1635664


Supplementary Figure 33. Gap Atlas across filling fraction $\phi$ and frequency $\omega$


Band Structure across 1st BZ


View along $a_{1}$

Supplementary Figure 34. Band Structure and Isosurface of $c P 4-\mathrm{X}$ (Inverse) at radius $=0.4$, filling fraction $=0.164$, where the largest gap between bands 4 and 5 occurs with gap size $27.58 \%$.

## K. oP12-CuAsS (Direct)

Lautite

$a_{1}=\hat{x}$
$\boldsymbol{a}_{\mathbf{2}}=0.3307746463 \hat{y}$
$a_{3}=0.4805675518 \hat{z}$

Space Group: 62
Point Group: $m m m$
Crystallographic Open Database \#2217766
Image of $o P 12-\mathrm{CuAsS}$, generated
Structure DOI: 10.1107/S1600536808004492 by Vesta


Supplementary Figure 35. Gap Atlas across filling fraction $\phi$ and frequency $\omega$


Supplementary Figure 36. Band Structure and Isosurface of $o P 12$-CuAsS (Direct) at radius $=0.12$, filling fraction $=0.514$, where the largest gap between bands 12 and 13 occurs with gap size $10.0 \%$.

## L. $t I 16-\mathrm{CoSiCu}_{2} \mathrm{~S}_{4}$ (Direct)

Cobalt Copper Silicon Sulfide


Image of $t I 16-\mathrm{CoSiCu}_{2} \mathrm{~S}_{4}$,

Space Group: 121
Crystallographic Open Database \#1533601
$\boldsymbol{a}_{\mathbf{1}}=-0.4138049235 \hat{x}+0.4138049235 \hat{y}+0.8108828341 \hat{z}$
$\boldsymbol{a}_{\mathbf{2}}=0.4138049235 \hat{x}-0.4138049235 \hat{y}+0.8108828341 \hat{z}$
$\boldsymbol{a}_{\mathbf{3}}=0.4138049235 \hat{x}+0.4138049235 \hat{y}-0.8108828341 \hat{z}$

Structure DOI: 10.1016/j.jallcom.2004.02.004
generated by Vesta


Supplementary Figure 37. Gap Atlas across filling fraction $\phi$ and frequency $\omega$


Band Structure across 1st BZ


View along $a_{1}$

Supplementary Figure 38. Band Structure and Isosurface of $t I 16-\mathrm{CoSiCu}_{2} \mathrm{~S}_{4}$ (Direct) at radius $=0.2$, filling fraction $=0.465$, where the largest gap between bands 8 and 9 occurs with gap size $12.26 \%$.

## M. $t I 8-\mathrm{YMn}_{2}$ (Direct)

Manganese Yttrium

$\boldsymbol{a}_{\mathbf{1}}=-0.5783430911 \hat{x}+0.5783430911 \hat{y}+0.5753594859 \hat{z}$
$\boldsymbol{a}_{\mathbf{2}}=0.5783430911 \hat{x}-0.5783430911 \hat{y}+0.5753594859 \hat{z}$
$a_{3}=0.5783430911 \hat{x}+0.5783430911 \hat{y}-0.5753594859 \hat{z}$

Space Group: 141
Point Group: $4 / \mathrm{mmm}$
Crystallographic Open Database \#1524241
Image of $t I 8-\mathrm{YMn}_{2}$, generated by
Structure DOI: 10.1088/0953-8984/3/33/023
Vesta


Supplementary Figure 39. Gap Atlas across filling fraction $\phi$ and frequency $\omega$


Band Structure across 1st BZ


View rotated $45^{\circ}$ about $l_{3}$ and elevated $0 \circ$

Supplementary Figure 40. Band Structure and Isosurface of $t I 8-\mathrm{YMn}_{2}$ (Direct) at radius $=0.29$, filling fraction $=0.502$, where the largest gap between bands 2 and 3 occurs with gap size $6.01 \%$.


Supplementary Figure 41. Band Structure and Isosurface of $t I 8-\mathrm{YMn}_{2}$ (Direct) at radius $=0.2$, filling fraction $=0.174$, where the largest gap between bands 14 and 15 occurs with gap size $4.82 \%$.

## N. $t P 12-\mathrm{SiO}_{2}$ (Direct)

Cristobalite ( $\alpha$, HT)

$$
\begin{aligned}
& \boldsymbol{a}_{\mathbf{1}}=\hat{x} \\
& \boldsymbol{a}_{\mathbf{2}}=\hat{y} \\
& \boldsymbol{a}_{\mathbf{3}}=1.3977078859161431 \hat{z}
\end{aligned}
$$

Space Group: $92 \quad$ Point Group: 422
Inorganic Crystallographic Database \#34928

Image of $t P 12-\mathrm{SiO}_{2}$, generated by Structure DOI: 10.1524/zkri.1973.138.jg. 274

Vesta


Supplementary Figure 42. Gap Atlas across filling fraction $\phi$ and frequency $\omega$


Supplementary Figure 43. Band Structure and Isosurface of $t P 12-\mathrm{SiO}_{2}$ (Direct) at radius $=0.2$, filling fraction $=0.036$, where the largest gap between bands 4 and 5 occurs with gap size $24.44 \%$.

## O. tP4-PdO (Direct)

Palladium Oxide



Image of $t P 4-\mathrm{PdO}$, generated by
$\boldsymbol{a}_{\mathbf{1}}=\hat{x}$
$\boldsymbol{a}_{\mathbf{2}}=\hat{y}$
$\boldsymbol{a}_{\mathbf{3}}=1.759075899 \hat{z}$

Space Group: 131
Point Group: $4 / \mathrm{mmm}$
Crystallographic Open Database \#1009031
Structure DOI: 10.1107/S0365110X53001800


Supplementary Figure 44. Gap Atlas across filling fraction $\phi$ and frequency $\omega$


Supplementary Figure 45. Band Structure and Isosurface of $t P 4$-PdO (Direct) at radius $=0.37$, filling fraction $=0.621$, where the largest gap between bands 4 and 5 occurs with gap size $0.18 \%$.


Supplementary Figure 46. Band Structure and Isosurface of $t P 4$-PdO (Direct) at radius $=0.25$, filling fraction $=0.257$, where the largest gap between bands 18 and 19 occurs with gap size $1.28 \%$.

## P. hP21-NaAlSiO 4 (Direct)

Sodium Alumosilicate Eu-doped


Image of $h P 21-\mathrm{NaAlSiO}_{4}$,
$\boldsymbol{a}_{1}=\hat{x}$
$\boldsymbol{a}_{\mathbf{2}}=-1 / 2 \hat{x}+\sqrt{3 / 4} \hat{y}$
$a_{3}=2.444235794 \hat{z}$

Space Group: $145 \quad$ Point Group: 3
Inorganic Crystallographic Database \#433181
Structure DOI: 10.1021/acs.chemmater.7b02548
generated by Vesta


Supplementary Figure 47. Gap Atlas across filling fraction $\phi$ and frequency $\omega$


Band Structure across 1st BZ
Supplementary Figure 48. Band Structure and Isosurface of $h P 21-\mathrm{NaAlSiO}_{4}$ (Direct) at radius $=0.2$, filling fraction $=0.316$, where the largest gap between bands 6 and 7 occurs with gap size $13.97 \%$.

## Q. $\quad c P 26-\mathrm{UBe}_{13}$ (Inverse)

Inverse $A B_{13}$


$$
\begin{aligned}
& \boldsymbol{a}_{\mathbf{1}}=\hat{x} \\
& \boldsymbol{a}_{\mathbf{2}}=\hat{y} \\
& \boldsymbol{a}_{\mathbf{3}}=\hat{z}
\end{aligned}
$$

Space Group: $221 \quad$ Point Group: $m \overline{3} m$
Inorganic Crystallographic Database \#58751
Image of $c P 26-$ UBe $_{13}$, generated by Structure DOI: 10.1103/PhysRevB.32.6042
Vesta


Supplementary Figure 49. Gap Atlas across filling fraction $\phi$ and frequency $\omega$


Band Structure across 1st BZ


View along $a_{1}$

Supplementary Figure 50. Band Structure and Isosurface of $c P 26-$ UBe $_{13}$ (Inverse) at radius $=0.23$, filling fraction $=0.214$, where the largest gap between bands 5 and 6 occurs with gap size $13.3 \%$.


Band Structure across 1st BZ


View along $a_{1}$

Supplementary Figure 51. Band Structure and Isosurface of $c P 26-\mathrm{UBe}_{13}$ (Inverse) at radius $=0.24$, filling fraction $=0.179$, where the largest gap between bands 10 and 11 occurs with gap size $4.77 \%$.

## R. $m P 24-\mathrm{SiO}_{2}$ (Inverse)

Inverse Monoclinic Cristobalite (II)


$$
\begin{aligned}
& \boldsymbol{a}_{\mathbf{1}}=\hat{x} \\
& \boldsymbol{a}_{\mathbf{2}}=0.5493679512424072 \hat{y} \\
& \boldsymbol{a}_{\mathbf{3}}=-0.6192893815130248 \hat{x}+0.8864439445037495 \hat{z}
\end{aligned}
$$

Space Group: $14 \quad$ Point Group: $2 / m$
Inorganic Crystallographic Database \#91737
Vesta
Structure DOI: 10.1180/002646100549436


Supplementary Figure 52. Gap Atlas across filling fraction $\phi$ and frequency $\omega$


Supplementary Figure 53. Band Structure and Isosurface of $m P 24-\mathrm{SiO}_{2}$ (Inverse) at radius $=0.185$, filling fraction $=0.212$, where the largest gap between bands 8 and 9 occurs with gap size $1.88 \%$.

## S. oF8-Pu (Inverse)

Inverse Plutonium ( $\gamma$ )


Image of $o F 8-\mathrm{Pu}$, generated by
$a_{1}=0.4936429625 \hat{y}+0.8696646627 \hat{z}$
$\boldsymbol{a}_{\mathbf{2}}=0.2703217714 \hat{x}+0.8696646627 \hat{z}$
$a_{3}=0.2703217714 \hat{x}+0.4936429625 \hat{y}$

Space Group: $70 \quad$ Point Group: mmm
Inorganic Crystallographic Database \#44866
Structure DOI: 10.1107/S0365110X55001357

Vesta


Supplementary Figure 54. Gap Atlas across filling fraction $\phi$ and frequency $\omega$


Supplementary Figure 55. Band Structure and Isosurface of $o F 8-\mathrm{Pu}$ (Inverse) at radius $=0.28$, filling fraction $=0.222$, where the largest gap between bands 12 and 13 occurs with gap size $5.87 \%$.

## T. $m C 64-\mathrm{P}_{3} \mathrm{~N}_{5}$ (Direct)

Phosphorus (V) Nitride ( $\alpha$ )

$\boldsymbol{a}_{1}=\hat{x}$
$\boldsymbol{a}_{\mathbf{2}}=0.7184453882 \hat{y}$
$\boldsymbol{a}_{\mathbf{3}}=-0.4910905848 \hat{x}+1.0154626529 \hat{z}$

Space Group: $9 \quad$ Point Group: $m$
Crystallographic Open Database \#6000643
Image of $m C 64-\mathrm{P}_{3} \mathrm{~N}_{5}$, generated by
Structure DOI: 10.1002/(SICI)1521-3749(199804)624:4<620::
Vesta
AID-ZAAC620>3.0.CO;2-K


Supplementary Figure 56. Gap Atlas across filling fraction $\phi$ and frequency $\omega$


Supplementary Figure 57. Band Structure and Isosurface of $m C 64-\mathrm{P}_{3} \mathrm{~N}_{5}$ (Direct) at radius $=0.115$, filling fraction $=0.158$, where the largest gap between bands 12 and 13 occurs with gap size $8.53 \%$.

## U. cI16-Si (Inverse)

Inverse Silicon (II)


Image of $c I 16-\mathrm{Si}$, generated by Vesta
$\boldsymbol{a}_{\mathbf{1}}=-1 / \sqrt{3} \hat{x}+1 / \sqrt{3} \hat{y}+1 / \sqrt{3} \hat{z}$
$\boldsymbol{a}_{\mathbf{2}}=1 / \sqrt{3} \hat{x}-1 / \sqrt{3} \hat{y}+1 / \sqrt{3} \hat{z}$
$\boldsymbol{a}_{\boldsymbol{3}}=1 / \sqrt{3} \hat{x}+1 / \sqrt{3} \hat{y}-1 / \sqrt{3} \hat{z}$

Space Group: 206
Point Group: $m \overline{3}$
Inorganic Crystallographic Database \#16569
Structure DOI: 10.1107/S0365110X64001840
Photonics DOI: 10.1134/S0021364007160047


Supplementary Figure 58. Gap Atlas across filling fraction $\phi$ and frequency $\omega$


Supplementary Figure 59. Band Structure and Isosurface of $c I 16-\mathrm{Si}$ (Inverse) at radius $=0.305$, filling fraction $=0.292$, where the largest gap between bands 12 and 13 occurs with gap size $18.44 \%$.

## V. $m C 4$-Ce (Inverse)

Inverse Cerium ( $\alpha, \mathrm{HP}$ )


Image of $m C 4-\mathrm{Ce}$, generated by Vesta
$a_{1}=\hat{x}$
$\boldsymbol{a}_{\mathbf{2}}=0.6656866906 \hat{y}$
$\boldsymbol{a}_{\boldsymbol{3}}=-0.0200905187 \hat{x}+0.6651733278 \hat{z}$

Space Group: $12 \quad$ Point Group: $2 / m$
Inorganic Crystallographic Database \#41824
Structure DOI: 10.1107/S0567739477000321


Supplementary Figure 60. Gap Atlas across filling fraction $\phi$ and frequency $\omega$


Supplementary Figure 61. Band Structure and Isosurface of $m C 4-\mathrm{Ce}$ (Inverse) at radius $=0.35$, filling fraction $=0.197$, where the largest gap between bands 16 and 17 occurs with gap size $6.62 \%$.

## W. hP4-Ge (Direct)

## Hexagonal Diamond



Image of $h P 4-\mathrm{Ge}$, generated by Vesta

$$
\begin{aligned}
& \boldsymbol{a}_{\mathbf{1}}=\hat{x} \\
& \boldsymbol{a}_{\mathbf{2}}=-1 / 2 \hat{x}+\sqrt{3 / 4} \hat{y} \\
& \boldsymbol{a}_{\mathbf{3}}=1.6624365725 \hat{z}
\end{aligned}
$$

Space Group: $194 \quad$ Point Group: $6 / \mathrm{mmm}$
Inorganic Crystallographic Database \#636533
Structure DOI: 10.17188/1324726
Photonics DOI: 10.1088/0953-8984/16/6/005


Supplementary Figure 62. Gap Atlas across filling fraction $\phi$ and frequency $\omega$


Band Structure across 1st BZ


View along $a_{1}$

Supplementary Figure 63. Band Structure and Isosurface of $h P 4-G e$ (Direct) at radius $=0.34$, filling fraction $=0.161$, where the largest gap between bands 4 and 5 occurs with gap size $7.33 \%$.


Band Structure across 1st BZ
Supplementary Figure 64. Band Structure and Isosurface of $h P 4-G e$ (Direct) at radius $=0.27$, filling fraction $=0.057$, where the largest gap between bands 16 and 17 occurs with gap size $13.2 \%$.

## X. hR1-Po (Inverse)

Inverse Polonium ( $\beta$ )

$\boldsymbol{a}_{1}=\hat{x}$
$\boldsymbol{a}_{\mathbf{2}}=-0.1433198562 \hat{x}+0.9896764213 \hat{y}$
$\boldsymbol{a}_{\mathbf{3}}=-0.1433198562 \hat{x}-0.1655697092 \hat{y}+0.9757284921 \hat{z}$

Space Group: $166 \quad$ Point Group: $\overline{3} m$
Inorganic Crystallographic Database \#43212
Structure DOI: 10.1016/0022-1902(66)80270-1
Vesta


Supplementary Figure 65. Gap Atlas across filling fraction $\phi$ and frequency $\omega$


Band Structure across 1st BZ


View along $a_{1}$

Supplementary Figure 66. Band Structure and Isosurface of $h R 1$-Po (Inverse) at radius $=0.62$, filling fraction $=0.129$, where the largest gap between bands 3 and 4 occurs with gap size $2.28 \%$.


Supplementary Figure 67. Band Structure and Isosurface of $h R 1-\mathrm{Po}$ (Inverse) at radius $=0.6$, filling fraction $=0.174$, where the largest gap between bands 7 and 8 occurs with gap size $1.25 \%$.

## Y. oC48- $\mathrm{H}_{2} \mathrm{O}$ (Direct)

Ice II


$$
\begin{aligned}
& \boldsymbol{a}_{\mathbf{1}}=\hat{x} \\
& \boldsymbol{a}_{\mathbf{2}}=0.5769230628 \hat{y} \\
& \boldsymbol{a}_{\mathbf{3}}=0.7128204881 \hat{z}
\end{aligned}
$$

Space Group: 20
Point Group: 222
Image of $o C 48-\mathrm{H}_{2} \mathrm{O}$, generated by
Crystallographic Open Database \#1011063
Vesta
Structure DOI: 10.1063/1.1749748


Supplementary Figure 68. Gap Atlas across filling fraction $\phi$ and frequency $\omega$


Band Structure across 1st BZ


View along $a_{1}$

Supplementary Figure 69. Band Structure and Isosurface of $o C 48-\mathrm{H}_{2} \mathrm{O}$ (Direct) at radius $=0.105$, filling fraction $=0.237$, where the largest gap between bands 8 and 9 occurs with gap size $13.3 \%$.

## Z. $\quad \boldsymbol{P P 2 0}-\mathrm{H}_{3} \mathrm{O}$ (Inverse)

Inverse Ice Ih


$$
\begin{aligned}
& \boldsymbol{a}_{\mathbf{1}}=\hat{x} \\
& \boldsymbol{a}_{\mathbf{2}}=-1 / 2 \hat{x}+\sqrt{3 / 4} \hat{y} \\
& \boldsymbol{a}_{\mathbf{3}}=1.6281081102 \hat{z}
\end{aligned}
$$

Space Group: 194
Point Group: $6 / \mathrm{mmm}$
Image of $h P 20-\mathrm{H}_{3} \mathrm{O}$, generated by
Inorganic Crystallographic Database \#247095
Vesta
Structure DOI: 10.1063/1.1765099


Supplementary Figure 70. Gap Atlas across filling fraction $\phi$ and frequency $\omega$


Supplementary Figure 71. Band Structure and Isosurface of $h P 20-\mathrm{H}_{3} \mathrm{O}$ (Inverse) at radius $=0.375$, filling fraction $=0.209$, where the largest gap between bands 4 and 5 occurs with gap size $7.08 \%$.


Supplementary Figure 72. Band Structure and Isosurface of $h P 20-\mathrm{H}_{3} \mathrm{O}$ (Inverse) at radius $=0.39$, filling fraction $=0.175$, where the largest gap between bands 10 and 11 occurs with gap size $0.41 \%$.

## SUPPLEMENTARY REFERENCES

${ }^{1}$ Ho, K. M., Chan, C. T. \& Soukoulis, C. M. Existence of a photonic gap in periodic dielectric structures. Physical Review Letters 65, 3152-3155 (1990). URL http://www.ncbi.nlm.nih.gov/ pubmed/10042794https://link.aps.org/doi/10.1103/PhysRevLett.65.3152.
${ }^{2}$ Sözüer, H. S. \& Haus, J. W. Photonic bands: simple-cubic lattice. Journal of the Optical Society of America B 10, 296 (1993). URL https://www.osapublishing.org/abstract.cfm?URI= josab-10-2-296.
${ }^{3}$ Chen, H., Zhang, W. \& Wang, Z. Comparative studies on photonic band structures of diamond and hexagonal diamond using the multiple scattering method. Journal of Physics: Condensed Matter 16, 741-748 (2004). URL http://stacks.iop.org/0953-8984/16/i=6/a=005?key=crossref. 9ec 19323ea3e02086f8d120bd666e276.
${ }^{4}$ Johnson, S. \& Joannopoulos, J. Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis. Optics Express 8, 173 (2001).
${ }^{5}$ Sözüer, H. S., Haus, J. W. \& Inguva, R. Photonic bands: Convergence problems with the planewave method. Physical Review B 45, 13962-13972 (1992). URL https://journals.aps.org/prb/pdf/ 10.1103/PhysRevB.45.13962https://link.aps.org/doi/10.1103/PhysRevB.45.13962.
${ }^{6}$ Moroz, A. Three-Dimensional Complete Photonic-Band-gap Structures in the Visible. Physical Review Letters 83, 5274-5277 (1999). URL https://link.aps.org/doi/10.1103/PhysRevLett.83. 5274.
${ }^{7}$ Adorf, C. S., Dodd, P. M., Ramasubramani, V. \& Glotzer, S. C. Simple data and workflow management with the signac framework. Computational Materials Science 146, 220-229 (2018). 1611.03543.

