Supplementary Information

Superconducting diode effect via conformal-mapped nanoholes

Yang-Yang Lyu^{1,2,+}, Ji Jiang^{3,4,+}, Yong-Lei Wang^{1,*}, Zhi-Li Xiao^{2,5,*}, Sining Dong¹, Qing-Hu Chen³, Milorad V. Milošević⁴, Huabing Wang^{1,6}, Ralu Divan⁷, John E. Pearson², Peiheng Wu^{1,6}, Francois M. Peeters⁴ and Wai-Kwong Kwok²

¹Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China

²Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

³Department of Physics, Zhejiang University, Hangzhou, China

⁴NANOlab Center of Excellence and Department of Physics, University of Antwerp, Antwerp, Belgium

⁵Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, USA

⁶Purple Mountain Laboratories, Nanjing 211111, China

⁷Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, USA

+ Authors contribute equally

* Correspondence to: <u>yongleiwang@nju.edu.cn</u>; <u>xiao@anl.gov</u>;

Supplementary Fig. 1 | Results for section TRI with triangular array of nanoholes. a, Dark-field optical image of the TRI section in Fig. 1a. Scale bar, 10 μ m. The inset is a SEM image of the nanoholes with a nominal diameter of 110 nm. Scale bar of inset, 1 μ m. b, Color map (experimental results) of the magnetic field and AC current dependent DC voltages obtained from section TRI, displaying negligible rectification. c, Simulated rectification signals for a sample with nano-holes in a triangular array. The rectification is nearly absent compared to the sample with nanoholes in a conformal array, and consistent with the experimental observation.

Supplementary Fig. 2 | Superconducting transition of the MoGe film. The resistance versus temperature curve shows an onset transition temperature of ~ 6 K.

Supplementary Fig. 3 | Rectification effect for a sample with a nominal hole diameter of 220 nm. a, Dark field optical image of the sample. Scale bar, 10 μ m. The inset is a SEM image of the nanoholes with diameter of ~220 nm. Scale bar of inset, 1 μ m. b, Curves of the magnetic field and AC current dependent DC voltages. The maximal rectification signal occurs around the magnetic field of ~80 Oe, which corresponds to a flux-quantum density that is twice the average hole density.

Supplementary Fig. 4 | Nonreciprocal superconducting-to-normal transitions. Screenshots of superconducting Cooper-pair density from Video 1 at various instances t (t_0 is the period of the sine wave AC current). **a-g**, in 1st half period with I>0. **h-n**, in the 2nd half period with I<0. Blue indicates superconducting state, while red indicates normal state. Gray arrows denote the direction of flux motion.

Supplementary Fig. 5 | Nonequivalent nucleation and evolution of hot spots. Screenshots of temperature maps obtained from Video 2 at various instances t (t_0 is the period of sine wave AC current). **a-g**, in the 1st half period with I>0. **h-n**, in the 2nd half period with I<0. White indicates high temperature, while dark color indicates low temperature.

Supplementary Fig. 6 | **Dynamic distribution of flux-quanta and asymmetric supercurrent density in a pristine sample.** The dynamic distribution mapping of flowing flux-quanta driven by supercurrent is obtained from a screenshot of Video 3. Green and gray arrows indicate the direction of current and flux-flow, respectively. The bottom region of the fluxonic map has a higher supercurrent density, a faster flux-flow with a lower flux density as compared to those in the top region. Right panel depicts distribution of supercurrent density along the vertical direction.

Supplementary Fig. 7 | Trajectories of flux-quanta. a and **b**, fluxonic trajectory map under positive (a) and negative (b) current, respectively. White dots show the positions of the nanoholes. White lines are single flux-quantum trajectories. Green arrows depict the direction of flux-quantum motion. The dotted fans highlight the areas with strong flux funneling effect.

Supplementary Fig. 8 | Magnetic field dependent quasi-DC experiments. The measurements were conducted using quasi-DC currents with Abs-AC waveforms shown in the insets.

Supplementary Fig. 9 | **Frequency dependence of the superconducting diode effect.** Rectification signals obtained at various AC frequencies. The magnetic field is 40 Oe.