
Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The authors use data from low dose CTs (LDCTs) for lung cancer screening to extract data on risk 

of cardiovascular disease (CVD). Their deep model was trained with 30,286 LDCT volumes and 

achieved the “state-of-the-art performance” (area under the curve (AUC) of 0.869) on 2,085 

National Lung Cancer Screening Trial (NLST) subjects, and effectively identified patients with high 

CVD mortality risks (AUC of 0.768). The deep model was further calibrated against the clinical gold 

standard CVD risk scores from 3 other scores from an independent dataset of 106 subjects. 

 

This is an important field of study, and it would be helpful to identify patients who are at risk to die 

of CVD from LDCTs. Indeed, this population of patients is at risk to die of both causes of death, 

lung cancer and heart disease. The results seem noteworthy, based on the AUCs and the ability to 

predict death in the validation sets. This would be a significant work to this field and related fields, 

pending addressing of the major comments below. 

 

I have two major comments: 

(1) I am unclear on the endpoint: Is overall survival an outcome, death from heart disease, death 

from lung cancer, or death from other causes? In clinical practice, it would be much more 

important to show that data from LDCTs may be used to predict death from heart disease, or any 

cause, rather than to say that data from LDCT can predict another surrogate score (eg, CAD-

RADS, MESA, etc). If mortality is presented, I would include Kaplan Meier curves and cumulative 

incidence plots of death from any cause, heart disease specific mortality, and lung cancer specific 

mortality. 

 

LDCT screening is very controversial because it does not appear to decrease overall mortality. Per 

the NELSON trial of LDCT (NEJM, 2020; PMID: 31995683), overall mortality rates are similar 

between the LDCT screening group and non-screening group (though lung cancer specific mortality 

is slightly decreased in LDCT group), so I wonder if the patients in this LDCT study are dying of 

heart disease vs lung cancer vs other causes. The causes of death would be important to point out 

in the current work. 

Additionally, the US NLST (NEJM, 2011) showed that the number needed to screen to prevent one 

lung cancer death was 320. In the current study, what would be the NNS to prevent one death 

from heart disease or other cause? 

 

Along the same lines, how many patients died of unknown causes? For patients with heart disease, 

it is not uncommon for a patient to collapse or be found dead at home. ICD-9 coded causes of 

death are tricky in this instance, because the patient may have died from MI, PE, stroke, etc. If 

the patient has a history of a lung cancer (even if it is a T1 N0 M0 lesion), the lung cancer may be 

implicated in the patient’s death (even though the cancer very likely did not kill the patient). 

 

(2) For many clinicians, myself included, machine learning is a black box, and it is one that 

clinicians can never use. There is the stereotypical figure (Figure 1A/1B) of data going in, “learned 

features” and then some sort of risk calculated (Figure 1C). How does the machine actually do 

this? Is machine learning superior to other methods, eg logistic regression, random forest? Can 

the authors provide an example of a CT (like a video) where the machine performs this 

calculation? And could readers use this work? It would be great if a clinician like myself could pull 

up a CT of the chest through PACS, open it in the authors’ program (or at least provide key slices 

for the program), and the program could provide a risk score of death from heart disease vs other 

causes. I think that for clinicians to use this in practice is the ultimate goal. With “standard” 

logistic regression, multivariate analysis, and nomogram, this could be estimated. Currently, as a 

reader of this work, it appears the authors have a good model, but it is unclear how it works, and I 

don’t know how I can apply it to my own practice (though I would really like to). 

 



Thus, I cannot comments on the methods. I would recommend a machine learning expert review 

this work, because I am not familiar with their methods and comparison to KAMP-Net or AE+SVM. 

 

Other comments: 

• I would discuss more about the risk of death from competing causes in the discussion section. 

For example, the Nature Comms journal has published the following on this topic: PMID 32332714, 

31729378 

• CVD is an overarching term that includes heart disease, stroke, aneurysm, etc. I recommend the 

authors just talk about heart disease. 

• Could the authors please discuss how these CTs could be used to follow pediatric cancer patients 

to predict competing death? For example, PMID 32298481 

• The grammar / syntax needs to be corrected in a few areas, eg, “and achieved the state-of-the-

art performance” 

• Also, state of art performance is very subjective. I would delete this. 

• There are references in the abstract, and this cannot be present. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

In this paper, the authors present a deep learning model for CVD risk analysis from LDCT collected 

in a lung cancer screening setting. The deep learning method extracts the heart area from the CT 

scan, and performs an analysis of that area to produce a binary score whether signs of CVD are 

present or not. A subject was considered CVD-positive if any cardiovascular abnormality was 

reported in the subject’s CT screening exams or the subject died of CVD. A CVD-negative subject 

has no CVD related medical history and no reported cardiovascular abnormality in any of the CT 

scans during the trial, and did not die of circulatory system diseases. The authors trained their 

system using data from the NLST trial, for which they also set 20%, a set of 2085 subjects, aside 

for testing. Finally, a retrospective dataset of 119 subjects is collected from MGH and the 

performance of the model is evaluated against the three clinical standards for measuring CVD from 

cardiac CT: CAC scores, CAD-RADS scores, and MESA scores. 

 

Major points: 

- The paper is unclear about what the deep learning model precisely predicts. Based on my review 

of the paper, I think the model is primarily intended to predict whether there are signs of CVD or 

not. However, this is quite vague in the abstract and needs to be clarified. This model is not 

directly trained for mortality prediction, I think. However, page 3 reads "A deep CNN model for 

CVD mortality risk analysis of LDCT images was designed and trained on the NLST dataset". 

Further on in this paragraph, it reads that the model was trained for CVD positive or CVD negative 

so this is unclear and really needs clarification. If the model intends to predict mortality, it needs a 

time frame needs to be attached to that. Mortality within five years, one year? 10 years? 

- The external validation is limited - a relatively small dataset of 119 patients is retrospectively 

collected. In addition, the authors retrained a logistic regression model using 5-fold CV using the 

features from the deep learning model? Why? In this way, it is not a direct external validation of 

the model developed on the NLST data, but more a validation of the feature extractor part of the 

DL model. Also, it is not completely clear what features are used. The output of the fully connected 

layer? How many features are there in this feature representation? Since a five-fold CV is 

performed, are the selected features for the logistic regression stable? 

- For the NLST cases, what CT scan is used? This is unclear. If all CT volumes are used, how do the 

authors get one score per patient? Is the maximum deep learning score across the different 

volumes used? Why not perform an analysis per CT when assessing the performance of the model 

to detect signs of CVD? 

- The abstract and introduction are too strong with regards to the benefits of using LDCT for CVD 

screening. At present, there is no scientific consensus whether the benefits of LDCT screening for 

CVD outweigh the harms. LDCT screening has only shown benefit for redudcing lung cancer 



mortality in a specific high-risk population. The introduction and abstract shoudl be changed to 

reflect this and explain the current situation better. 

 

Minor issues: 

- NLST is quite old data. What effect does this have on the model? 

- The claims in the Discussion need to be toned down. No prospective data yet, so this is only 

preliminary evidence. 

- The deep learning model mostly focuses on the CAC, it seems, as the AUC is 0.942 for this, while 

lower for MESA and CAD-RADS (0.817 and 0.809 respectively). Isn't this method primarily picking 

up the calcifications in the heart? Any analysis done to check this? 

- Since reader group 2, consisting of only one reader, performed better, please split out the 

experience levels of the three readers (M.K.K., R.S. and R.D.K.). Is there a difference in 

experience level? 

- The authors write "Then, a max pooling is employed on the slide dimension to fuse all these 

feature maps into one feature map". So, Resnet-18 has 256 feature maps after L13. The feature 

map size is 14x14x256xz, where z is the number of slices. Then, a max pool is done over the z-

direction, which leads to a new feature map of 14x14x256? If yes, this sentence should be 

rephrased because it reads 'one feature map', which is confusing. 

- How were the heatmaps generated? This needs to be clarified. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

In the manuscript, the authors developed a deep learning algorithm to predict the cardiovascular 

risk of a subject from a low dose chest CT for lung cancer screening. The deep learning algorithm 

was trained with the NLST dataset, and exhibited radiologist-level performance in detection of 

cardiovascular disease and prediction of cardiovascular mortality in a split-sample test dataset. In 

an independent test dataset, the algorithm also exhibited nice performances for prediction of 

cardiovascular risk scores obtained from ECG-gated cardiac CTs. 

I believe that the result is meaningful, because cardiovascular disease is a major source of 

mortality in population who undergo lung cancer screening and identifying high risk patients from 

the low dose chest CT using deep learning technique without additional examination may help 

patients to receive appropriate intervention. 

Below are my specific comments and suggestions regarding the manuscript: 

1. The NLST dataset were labeled as normal or abnormal based on LDCT report, medical history, 

and cause of mortality. Since cardiovascular abnormalities on LDCT or cardiovascular diseases 

have wide spectrum of severity or clinical relevance (e.g. from tiny coronary calcification to overt 

sign of heart failure, and from mild arterial hypertension to myocardial infarction), the authors 

need to provide clear definition of abnormal label, or actual spectrum of LDCT abnormalities or 

cardiovascular diseases in the NLST dataset. 

2. Regarding the interpretation by radiologists, radiologists focused on the presence and extent of 

coronary artery calcifications, for prediction of cardiovascular disease or related mortality. 

However, there may other abnormalities suggesting cardiovascular diseases such as enlarged 

heart chamber, dilatation or calcification of aorta, and pleural or pericardial effusion, and the 

performance of radiologists for identification of cardiovascular diseases may hdave been 

underestimated. 

3. The authors may provide representative cases along with the heat maps from the algorithm, to 

demonstrate whether the algorithm actually focused on findings of cardiovascular diseases (e.g. 

coronary calcification). 

4. For cardiovascular mortality prediction in the NLST dataset, performance of radiologists 

exhibited substantial difference. I wonder whether there was difference in the experience of 

radiologists and less-experienced radiologist exhibited lower performance. 

5. In the MGH dataset, the algorithm was evaluated against various cardiovascular risk scores 

from the ECT-gated cardiac CTs, but not evaluated against actual presence of cardiovascular 



disease or related mortality. I believe that evaluation against mortality might be practically 

impossible, however, performance against the presence of cardiovascular disease (as in the NLST) 

may help readers to understand the true performance of algorithm in an independent dataset. 

6. Cardiac motion artifact and noise are major cause of limited evaluation of coronary artery 

calcification in the LDCTs, and their degrees are directly related with scanning and reconstruction 

protocols. Therefore, the authors may present detailed scanning and reconstruction protocols (e.g. 

CT scanner, pitch, reconstruction kernel, …) of LDCTs (especially in the MGH dataset). 

7. Although I am not a statistical expert, I am concerned about whether the ROC analyses for 

cardiovascular mortality ignoring the time to death and censoring is appropriate. 
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Comments and Responses 
 
AE Comment: “As you will see from the reports copied below, the reviewers raise important 
concerns. We find that these concerns limit the strength of the study, and therefore we ask you 
to address them with additional work. Without substantial revisions, we will be unlikely to send 
the paper back to review. In particular, adding additional external validation data would 
increase chances for publication.” 

 
Response: We are highly grateful to the editor and the reviewers for assessing our manuscript 
and providing constructive critiques, which have significantly improved our research quality. 
We believe that we have fully addressed all the comments with major revisions to our work, as 
detailed in our point-to-point responses below. The manuscript has also been revised 
accordingly, and the changes are highlighted in blue. In summary, we have made the following 
four key revisions:  
 

1. Augmentation of the validation datasets and additional experiments with 
enhanced results: We have tripled the size of the independent CVD screening dataset 
acquired at MGH from 106 patients to 335 patients. As recommended, we have 
performed a direct external validation of the deep learning model on CVD screening. 
On the NLST dataset, as suggested, three radiologists have independently annotated all 
the test studies including calcium levels of 2,085 CT scans. All the relevant experiments 
have been re-performed. The new findings are consistent with our previous results, 
demonstrating the potential of LDCT for dual screening of lung cancer and CVD. 

2. Attention in the network architecture for interpretability: To interpret the 
performance of our network, we have improved the network architecture to extract 
image features with a novel attention mechanism. Also, we have visualized the feature 
extraction workflow, showing important network behaviors. 

3. Transparency and reproducibility of our network: To improve the transparency and 
reproducibility of our work, we have publicly released our source code on GitHub 
(https://github.com/DIAL-RPI/CVD-Risk-Estimator/). We have also packaged our 
model into an open-access and ready-to-use tool 
(https://colab.research.google.com/github/DIAL-RPI/CVD-Risk-
Estimator/blob/develop/colab_run.ipynb) for the community to test and feedback. 

4. First CVD nomogram from deep features (CAC, pericardial fat, and others): We 
would like to emphasize that our work represents a significant advancement over 
current estimation of CAC, which is already a function of some commercial cardiac CT 
software. Beyond CAC computation, we offer the first nomogram from CAC, 
pericardial fat, and other deep features to predict patient CVD mortality risks. In 
addition to our deep learning approach's competitive performance relative to 
radiologists' CAC grading of lung cancer screening  LDCT images, the developed 
model computed and highly correlated with three clinical gold standard scores on our 
independently collected ECG-gated cardiac CT images and obtained exciting results. 

  



Response to Reviewer#1: 
 

The authors use data from low dose CTs (LDCTs) for lung cancer screening to extract data on 
risk of cardiovascular disease (CVD). Their deep model was trained with 30,286 LDCT 
volumes and achieved the “state-of-the-art performance” (area under the curve (AUC) of 
0.869) on 2,085 National Lung Cancer Screening Trial (NLST) subjects, and effectively 
identified patients with high CVD mortality risks (AUC of 0.768). The deep model was further 
calibrated against the clinical gold standard CVD risk scores from 3 other scores from an 
independent dataset of 106 subjects. 
 
This is an important field of study, and it would be helpful to identify patients who are at risk 
to die of CVD from LDCTs. Indeed, this population of patients is at risk to die of both causes 
of death, lung cancer and heart disease. The results seem noteworthy, based on the AUCs and 
the ability to predict death in the validation sets. This would be a significant work to this field 
and related fields, pending addressing of the major comments below.   
 
l Major Comments 
I have two major comments: (To improve the clarity of our response, we have split each major 
comment into a set of sub-comments for responding.) 
1) Comment #1: 

A) I am unclear on the endpoint: Is overall survival an outcome, death from heart disease, 
death from lung cancer, or death from other causes? 

Response: There are two endpoints in this project: i) diagnosed cardiovascular diseases 
(CVDs), and ii) CVD related mortality. For clarification, we’ve revised the Introduction section 
(Page 2, Paragraph 3) as follows: 
“To tackle the limitations of the prior studies, we built an end-to-end deep neural network to 
a) screen patients for CVDs and b) quantify CVD mortality risk scores directly from chest 
LDCT examinations. Specifically, our approach focuses on the cardiac region in a chest LDCT 
scan and makes predictions based on automatically learned comprehensive features of CVDs 
and mortality risks. The prediction is calibrated against the incidence of CVD abnormalities 
during the follow-up period of a clinical trial, subjective assessment of radiologists in reader 
studies, and the CVD risk scores calculated from electrocardiogram (ECG)-gated cardiac CT 
including the CAC score33, CAD-RADS score34, and MESA 10-year CHD risk score35.” 

 

B) In clinical practice, it would be much more important to show that data from LDCTs 
may be used to predict death from heart disease, or any cause, rather than to say that data 
from LDCT can predict another surrogate score (eg, CAD-RADS, MESA, etc).  

Response: We agree! We performed the experiment of mortality prediction on the NLST 
dataset in our initial manuscript. It would be ideal if we could directly evaluate the proposed 
algorithm on the MGH dataset for CVD mortality prediction. However, since the MGH dataset 
was collected from a patient cohort after 2015, the mortality records are not available for CVD 
mortality prediction. Therefore, we could only use the clinically adopted risk scores – derived 
from ECG-gated cardiac CT scans – as our best surrogates to evaluate the trained model for 
mortality prediction. To compensate for this limitation, in the revised manuscript, we have 
expanded our MGH dataset from 106 patients to 335 patients for evaluating CVD screening. 
Of those, 235 patients, who underwent ECG-gated cardiac CT exams, were further used to 



evaluate the estimated risk scores. In the revision, the detailed description of the expanded 
MGH dataset can be found on Page 4, Paragraph 4: 

“Furthermore, through an institutional review board (IRB) approved retrospective study, we 
acquired an independent and fully de-identified dataset from MGH in 2020. This MGH dataset 
contains 335 patients (161 men, 174 women, mean age 63.6±8.0 years), who underwent LDCT 
for lung cancer screening. Of these, 100 patients had no observed CVD abnormalities in their 
LDCT. The remaining 235 subjects underwent ECG-gated cardiac CT for CVD risk assessment 
for atypical chest pain, equivocal stress test, and chest pain with low to intermediate risk for 
CHD. Three CVD risk scores were calculated for the 235 subjects from their cardiac CT 
images, including CAC score33, coronary stenosis (quantified as CAD-RADS)34, and MESA 10-
year CHD risk35. Table 1 lists the characteristics of the dataset (see Methods, MGH dataset). 
The MGH dataset was used to evaluate the clinical significance of the NLST-trained model for 
feature extraction without re-training or fine-tuning. For the validation of CVD screening, a 
subject was labeled as CVD-positive if the subject underwent an ECG-gated cardiac CT 
screening and received either a CAC score > 10 or a CAD-RADS score > 1. Correspondingly, 
a CVD-negative subject had either all the LDCT screening exams being negative or the 
calculated scores of CAC ≤ 10 and CAD-RADS ≤ 1. Based on the above criteria, 181 subjects 
were CVD positive and 154 patients were CVD negative. For the quantification of CVD 
mortality risk, since this MGH dataset was collected from a patient cohort, who had recent 
exams (2015-2020), the mortality records are not yet available. We instead calibrate our model 
against the three gold standard risk scores as surrogate evaluators.” 

 
The corresponding results and analysis on the newly added CVD screening experiment are at 
Page 7, Paragraph 3 and Fig. 4a: 
“In the experiment of CVD screening shown in Fig. 4a, our deep learning model achieved a 
significantly higher (p<0.0001) AUC value of 0.924 (95% confidence interval, 0.909-0.940) 
than its performance on the NLST dataset (0.871), where the network was originally trained. 
Superior performance on this external MGH dataset may be due to the better image quality of 
the contemporary MGH dataset acquired from newer scanners. Furthermore, the MGH 
annotated datasets and use of ECG-gated cardiac CT as a gold standard may have been 
superior to the annotation in NLST. This experiment shows that the proposed deep learning 
model has good generalizability and is highly consistent with human experts' joint label for 
CVD screening from LDCT and CVD scores calculated on ECG-gated cardiac CT.” 
 

Results and analysis of the surrogate CVD risk score prediction on the expanded MGH dataset 
are summarized from Page 9 to Page 10 and Fig. 4b, c, & d:  

“The features extracted by the trained CVD feature extractor from LDCT were first used to 
estimate the CAC score33. With a threshold of 400 for CAC scores, the MGH subjects were 
divided into two groups: 78 subjects with severe CAC and 157 subjects with none or minor 
CAC. Our model achieved an AUC value of 0.942 (95% confidence interval, 0.927-0.958) and 
significantly outperformed the other two methods (p<0.0001, see Fig. 4b). It is worth noting 
that our model is competitive with experienced radiologists. The AUC of our DL model was 
only slightly lower than the radiologists' CAC grading without significant difference (p>0.43), 
despite the fact that our DL model has never been trained for CAC score estimation. These 
results suggest that deep learning analysis of LDCT can well approximate the human expert 
performance using CCT in differentiating patients with severe and non-severe CAC.  



 

 
 
The second experiment evaluates the capability of the deep learning model in classifying 
subjects into high and low risk groups using LDCT by comparing against the coronary stenosis 
(CAD-RADS) scores34 obtained by human experts on CCT. Subjects with CAD-RADS scores 
greater than or equal to 4 are labeled as with severe stenosis, i.e., positive samples (51 
subjects). The other 184 subjects with smaller scores were labeled as negative. Our model 
reached an AUC value of 0.808 (95% confidence interval, 0.758-0.858, see Fig. 4c). Our model 
significantly outperformed the other two methods (p≤0.0338). Unlike calcification, coronary 
stenosis is much harder to detect through a chest LDCT screening, while it is a direct 
biomarker of CVD risk. The performance obtained using LDCT is thus highly encouraging. 



The superiority demonstrates that our model can quantify the subclinical imaging markers on 
LDCT, making it a promising tool for CVD assessment in lung cancer screening. 

In the third experiment, patients were divided into high and low risk groups according to MESA 
10-year risk score35, which is a clinical gold-standard risk stratification score for CVD 
integrating multiple factors including gender, age, race, smoking habit, family history, diabetes, 
lipid lowering and hypertension medication, CAC score extracted from CCT, and laboratory 
findings including cholesterol and blood pressure. Because some of the 235 subjects did not 
have all the needed exams, we are only able to calculate the MESA scores of 106 subjects. 
When median MESA 10-year risk score in our patients was used as a threshold (14.2), 52 
subjects with greater scores were labeled as high risk, while the other 54 subjects were labeled 
as low risk. Our model achieved an AUC value of 0.799 (95% confidence interval, 0.736-0.863), 
which significantly outperformed all the other methods (see Fig. 4d).” 

 
C) If mortality is presented, I would include Kaplan Meier curves and cumulative 
incidence plots of death from any cause, heart disease specific mortality, and lung cancer 
specific mortality. 

Response: Thanks for the suggestion! We have added a Kaplan Meier curve for the NLST 
dataset on CVD related mortality (Fig. 3). The corresponding analysis of these results can be 
found as follows (Page 7, Paragraph 1): 
“For further comparison, Fig. 3 shows the Kaplan Meier curves of different risk groups labeled 
by our model and the radiologists, respectively. For the radiologists, we used the average 
reader prediction of CAC Grade 2+ to separate the subjects into low/high risk groups and 
drew the Kaplan Meier curves for both groups. The final survival probabilities of low and high 
risk groups by radiologists are 95.79% and 85.83%, respectively. For fair and direct 
comparison, in Fig. 3a, we selected a threshold to divide the quantified CVD risk scores using 
our model so that the low risk group has a survival probability of 95.79%, similar to the 
radiologists. Under this circumstance, the model-predicted high-risk group showed a 
significantly lower (p=0.0059) final survival probability of 73.24%. Similarly, in Fig. 3b, we 
selected a threshold so that the high-risk group has a survival probability of 85.75%, also 
similar to the radiologists. In this case, the model-predicted low-risk group achieved a 
significantly higher (p=0.0272) final survival probability of 97.46%.” 

 

 



D) LDCT screening is very controversial because it does not appear to decrease overall 
mortality. Per the NELSON trial of LDCT (NEJM, 2020; PMID: 31995683), overall 
mortality rates are similar between the LDCT screening group and non-screening group 
(though lung cancer specific mortality is slightly decreased in LDCT group), so I wonder if 
the patients in this LDCT study are dying of heart disease vs lung cancer vs other causes. 
The causes of death would be important to point out in the current work. 

Response: Great point! We agree with the reviewer that using LDCT for lung cancer screening 
only does not seem to decrease the overall mortality as shown by the literature. Heart diseases, 
the leading cause of death for patients in NLST, should also be screened. The observation 
motivated our study, which tries to reuse the LDCT scans of those patients to conduct a 
“radiation free” CVD risk screening. We have incorporated the reviewer’s comments into our 
manuscript as follows (Page 1 Paragraph 1): 

“Cardiovascular disease (CVD) affects nearly half of American adults and causes more than 
30% offatality1. The prediction of CVD risk is fundamental to the clinical practice in managing 
patienthealth2. Recent studies have shown that the patients diagnosed with cancer have a ten-
fold greater risk of CVD mortality than the general population3. For lung cancer screening, 
low dose computed tomography (LDCT) has been proven effective through clinical trials4, 5.  
In the National LungCancer Screening Trial (NLST), 356 participants who underwent LDCT 
died of lung cancer during the 6-year follow-up period. However, more patients, 486 others, 
died of CVD. The NELSON trial shows similar overall mortality rates between the study groups 
even though the lung cancer mortality decreased in the LDCT screening group6. Therefore, 
screening significant comorbidities like CVD in high-risk subjects undergoing LDCT for lung 
cancer screening is critical to lower overall mortality. Nevertheless, when the cancer risk 
population receives cancer screening, radiologists overlook their potential CVD risk.” 

 
E) Additionally, the US NLST (NEJM, 2011) showed that the number needed to screen to 
prevent one lung cancer death was 320. In the current study, what would be the NNS to 
prevent one death from heart disease or other cause?  

Response: In NLST, the NNS was calculated by comparing the actual deaths in the LDCT 
group and the chest X-ray group. However, our study aims to analyze existing LDCT exams 
for CVD screening, which is not a clinical trial and thus has no control group to compare with. 
To evaluate the clinical importance of our work, in our revised manuscript, we report a 
sensitivity on the death prediction with the control of positive predictive value (PPV) on Page 
6 Paragraph 2. We then compared the prediction results of our model with those of the 
radiologists through a reader study. The corresponding content in the paper has been revised 
as follows: 

“With the same PPV of averaged CAC Grade 2+ (10.8%), our model achieved a sensitivity of 
80.8%. Specifically, in the NLST test set, our model successfully identified 97 of the 120 
deceased subjects as high risk, while the averaged CAC Grade 2+ labeled 35 of those 97 cases 
as low risk.” 

 
F) Along the same lines, how many patients died of unknown causes? For patients with 
heart disease, it is not uncommon for a patient to collapse or be found dead at home. ICD-
9 coded causes of death are tricky in this instance, because the patient may have died from 
MI, PE, stroke, etc. If the patient has a history of a lung cancer (even if it is a T1 N0 M0 
lesion), the lung cancer may be implicated in the patient’s death (even though the cancer 
very likely did not kill the patient). 



Response: Once again, we agree with the reviewer. Indeed, the ICD-10 codes may be imperfect 
for our study. We have added this as a limitation of our work (Page 11 Paragraph 2). Mitigating 
its influence on our study motivated us to collect new data at MGH and evaluate our model 
using the surrogate gold standard CVD risk scores on the MGH dataset. Our results on the 
MGH data support the utilities of our trained model. 
“Our study’s limitation includes using ICD-10 codes for assigning the cause of deaths as CVD, 
which may miss some CVD-related deaths or mislabel patients who died from other heart 
diseases as CVD mortality. Mitigating its influence on our study motivated us to collect new 
data at MGHand evaluate our model using the surrogate gold standard CVD risk scores on 
the MGH dataset. Our results on the MGH dataset support the pre-trained model’s utilities on 
data from a different source.” 
 

2) Comment #2: 
A) For many clinicians, myself included, machine learning is a black box, and it is one 
that clinicians can never use. There is the stereotypical figure (Fig. 1A/1B) of data going in, 
“learned features” and then some sort of risk calculated (Fig. 1C). How does the machine 
actually do this? Is machine learning superior to other methods, e.g. logistic regression, 
random forest?  

Response: In the revised manuscript, we have clarified the above points by adding more 
detailed descriptions on the workflow and redrawn Fig. 1 to illustrate the training and validation 
process clearly. The new content can be found from Page 2 Paragraph 4 to Page 4 Paragraph 1. 
For your convenience, the revised content is also attached below. In short, the deep learning 
model in our study was trained in an end-to-end fashion for CVD detection. The model extracts 
a high-dimensional feature vector from the input LDCT image. A distinctive difference 
between deep learning-based methods and classical machine learning methods like logistic 
regression and random forest lies in the feature definition and extraction. Classical methods 
require manual feature definition and extraction, which is also often referred to as feature 
engineering. The performance of classical machine learning methods is largely determined by 
the quality of hand-crafted features. In contrast, deep learning models automatically learn to 
extract relevant features in the training process. This data-driven feature extraction mechanism 
coupled with massive computing power and large-scale datasets makes deep learning 
outperform traditional machine learning methods in a large number of applications. In this 
study, we exploited the advantage of deep learning and the availability of large-scale clinical 
trial data to tackle the challenging problem of CVD risk stratification from LDCT scans.  

To address the reviewer’s concern on model interpretability and transparency, we have made 
three additional major revisions. First, we have redesigned our model to explicitly incorporate 
an attention mechanism, which helps show the information being used. Second, we have 
included heatmaps demonstrating the focus areas of the network. The corresponding 
discussions have been updated in the revision. Third, besides releasing our source code, we 
packed the trained model into an open-access and ready-to-use tool so that others can test and 
verify our model (https://colab.research.google.com/github/DIAL-RPI/CVD-Risk-
Estimator/blob/develop/colab_run.ipynb).  

Revised Fig. 1 and the corresponding description on Page 2 Paragraph 4: 



 
“Fig. 1 shows an overview of our study. Two datasets with a total of 10,730 subjects were 
included in our study (Fig. 1a). The public National Lung Screening Trial (NLST) dataset was 
used for model development and validation. It includes lung cancer screening LDCT exams of 
10,395 subjects with abnormality records from the exam reports and causes of death for 
deceased subjects. An independent dataset collected at Massachusetts General Hospital (MGH) 
was used for further validation. Besides images and clinical reports of LDCT exams, the MGH 
dataset also collected ECG-gated cardiac CT of the same group of subjects, which enable us 
to calculate the clinically used CVD risk scores through clinical protocols for the validation. 
Our approach consists of two key components. First, a CNN heart detector was trained with 
263 LDCTs from the NLST dataset to isolate the heart region (Fig. 1b). Second, we proposed 
a three-dimensional (3D) CNN model, Tri2D-Net, consisting of a CVD feature extractor and a 
CVD screening classifier was trained using CVD screening results as targeted labels (Fig. 1c). 
After training, the predicted probability of being CVD positive is used as a quantified CVD 
mortality risk score, which was validated by the CVD mortality labels on the NLST dataset. To 
further evaluate the generalization capability of our model, we calibrated the learned high-
dimensional CVD features with three popular gold standard CVD risk scores, including, CAC 
score33, CAD-RADS score34, and MESA 10-year CHD risk score35.”  

 
 

 
 

 



Supplementary Fig. 1 for the improved model with attention mechanism and the corresponding 
description (Page 13 Paragraph 4): 

  

 
“As shown in Supplementary Fig. 1, the proposed Tri2D-Net consists of two stages, feature 
extraction and feature fusion. The former uses three 2D CNN branches to independently extract 
features from the three orthogonal views. By setting a cross-entropy loss for each branch, the 
three 2D CNN branches separately receive direct feedback to learn their parameters. This  
leads to a dramatically reduced optimization space compared to a massive 3D network46. 
Specifically, in each branch, we split the original Resnet-1835 into two parts, the first 13 layers 
(L13) and the last 5 layers (L-5). To introduce clinical prior knowledge into the network, we 
applied an attention block to help the model focus on calcification and fat regions, which highly 
correlate with CVD48. The attention block first selects the calcification and fat regions with 
HU ranges (calcification: HU > 130; fat: HU in [-190, -30]). Then the masked slides are 
separately fed into a 4 layers CNN (first 4 layers of VGG1149) to generate an attention map for 
each slide. The feature fusion module then concatenates the three feature representations 
extracted by the 2D CNN branches and feeds the result to a classifier for the final prediction.”  

 
 

 
 

 
 

 
 



Heatmaps demonstrating the focus areas of the network (Fig. 5) and the corresponding case 
study on Page 10 Paragraph 3: 

  

 
“To interpret the prediction results of Tri2D-Net, we generated heatmaps using the Gradient-
weighted Class Activation Mapping (Grad-CAM39) and exported the attention maps from the 
attention block. Fig. 5 shows the results of three representative subjects from the NLST 
dataset.Fig. 5a&b belong to two subjects who died of CVD, referred as Case-a and Case-b, 
respectively. Fig. 5c shows the image of a subject Case-c, who survived by the end of the trial. 
Case-a has severe CAC with an average CAC Grade of 3.0 by the three radiologists. Tri2D-
Net captured the strong calcium as shown in the Grad-CAM heatmap and predicted a high 
CVD risk score of 0.90. Case-b (Fig. 5b) had mild to moderate CAC with an average CAC 
Grade of 1.67. However, the attention block noticed abundant juxtacardiac fat and Tri2D-Net 
gave a high score of 0.82  for the case. Case-c has mild CAC graded as 1.33 by the radiologists. 
Since there was little calcification and juxtacardiac fat as indicated by the heatmaps, Tri2D-
Net predicted a low risk score of 0.23 for this survived patient. Visualization of these cases 
demonstrates the contributions of both CAC and juxtacardiac fat to our model for predicting 
CVD risk scores in contrast with the mere reliance on CAC as the sole biomarker in prior 
studies26–30. The ability to capture various features for CVD makes our model superior to the 
existing CAC scoring models for CVD screening and CVD mortality quantification.” 
 

B) Can the authors provide an example of a CT (like a video) where the machine performs 
this calculation? And could readers use this work? It would be great if a clinician like myself 
could pull up a CT of the chest through PACS, open it in the authors’ program (or at least 
provide key slices for the program), and the program could provide a risk score of death 
from heart disease vs other causes. I think that for clinicians to use this in practice is the 
ultimate goal. With “standard” logistic regression, multivariate analysis, and nomogram, 
this could be estimated. Currently, as a reader of this work, it appears the authors have a 
good model, but it is unclear how it works, and I don’t know how I can apply it to my own 
practice (though I would really like to). 



Response: Thanks for the suggestion! We have released our source code on Github 
(https://github.com/DIAL-RPI/CVD-Risk-Estimator). Eight demos were included. The videos 
of four demos were added. To improve the usability, we have also updated the repository and 
packed the model into a ready-to-use tool powered by Google Colab 
(https://colab.research.google.com/github/DIAL-RPI/CVD-Risk-
Estimator/blob/develop/colab_run.ipynb). The tool stores neither uploaded data nor patient 
information. The tool will estimate a stratified score from a LDCT scan showing both CVD 
probability and mortality risk. 

 
 
l Minor Comments 
1) I would discuss more about the risk of death from competing causes in the discussion 

section. For example, the Nature Comms journal has published the following on this topic: 
PMID 32332714, 31729378 

Response: Thank you for your suggestion! We have discussed the heart disease-related 
fatalities in patients with cancer on Page 11 Paragraph 2 by referring to the two articles [41,42]: 

“There are reports on increased heart disease-related fatalities of cancer patients in general, 
likely related to decreased cancer-specific mortality and aging population41. Older age-group, 
male gender, African American race, and unmarried status are key risk factors for cardiac 
mortality in cancer patients. Another study based on data from the Surveillance, Epidemiology, 
and End Results program reported higher risk of fatal stroke in patients with cancer42.” 
 

2) CVD is an overarching term that includes heart disease, stroke, aneurysm, etc. I 
recommend the authors just talk about heart disease. 

Response: Our previous analyses included all CVD related deaths including those related to 
heart disease, stroke, and other vascular causes due to the small number of death cases (within 
the 16,264 NLST subjects we had access to, there were only 1,521 death cases in total 
regardless of causes), limited access to the causes of death (only ICD-10 codes) and the details 
of relative abnormalities found on LDCT screening reports (only marked as “significant 
cardiovascular abnormality”). In our updated manuscript, we added a table showing the details 
of the selected CVD-related ICD-10 codes (Supplementary Table 1). What’s more, we also 
included an additional stratified analysis on patients with deaths related to heart disease only. 
The corresponding results are on Supplementary Fig. 3:  



 
3) Could the authors please discuss how these CTs could be used to follow pediatric cancer 

patients to predict competing death? For example, PMID 32298481  



Response: The approach can be extended to other CT exams if sufficient data can be collected 
and labeled, such as for pediatric cancer patients in [40]. We have mentioned such a possibility 
on Page 11 Paragraph 2:  
“It is worth noting that the proposed method demonstrated on this specific application may 
apply to other clinical studies, for example, predicting the cause of death among pediatric 
patients withcancer40.” 

 
4) The grammar/syntax needs to be corrected in a few areas, eg, “and achieved the state-of-

the-art performance” 
Response: Thanks for pointing out the problems! We have checked the paper and fixed these 
problems. 

 

5) Also, state of art performance is very subjective. I would delete this. 
Response: We have deleted such expressions in our revision. 

 
6) There are references in the abstract, and this cannot be present. 

Response: Done. 
  



Response to Reviewer#2: 
 

In this paper, the authors present a deep learning model for CVD risk analysis from LDCT 
collected in a lung cancer screening setting. The deep learning method extracts the heart area 
from the CT scan, and performs an analysis of that area to produce a binary score whether 
signs of CVD are present or not. A subject was considered CVD-positive if any cardiovascular 
abnormality was reported in the subject’s CT screening exams or the subject died of CVD. A 
CVD-negative subject has no CVD related medical history and no reported cardiovascular 
abnormality in any of the CT scans during the trial, and did not die of circulatory system 
diseases. The authors trained their system using data from the NLST trial, for which they also 
set 20%, a set of 2085 subjects, aside for testing. Finally, a retrospective dataset of 119 subjects 
is collected from MGH and the performance of the model is evaluated against the three clinical 
standards for measuring CVD from cardiac CT: CAC scores, CAD-RADS scores, and MESA 
scores. 
 
l Major Comments 

1) The paper is unclear about what the deep learning model precisely predicts. Based on my 
review of the paper, I think the model is primarily intended to predict whether there are 
signs of CVD or not. However, this is quite vague in the abstract and needs to be clarified. 
This model is not directly trained for mortality prediction, I think. However, page 3 reads 
"A deep CNN model for CVD mortality risk analysis of LDCT images was designed and 
trained on the NLST dataset". Further on in this paragraph, it reads that the model was 
trained for CVD positive or CVD negative, so this is unclear and really needs clarification. 
If the model intends to predict mortality, it needs a time frame needs to be attached to that. 
Mortality within five years, one year? 10 years?  

Response: Sorry for the confusion. The deep learning model in our study was first trained for 
CVD screening. The output of the deep learning model is a probability in the range of 0 to 1, 
with 0 being very unlikely and 1 being very likely for a patient to have CVD. We then 
considered this same output value as a risk score for mortality prediction. In our study, we 
evaluated the potential of this risk score by predicting the mortality of patients within 6 years, 
which is the length of the follow-up period of the NLST. In the revision, we have clarified these 
two deliverables on Page 2, Paragraph 3: 

“To tackle the limitations of the prior studies, we built an end-to-end deep neural network to 
a) screen patients for CVDs and b) quantify CVD mortality risk scores directly from chest 
LDCT examinations. Specifically, our approach focuses on the cardiac region in a chest LDCT 
scan and makes predictions based on automatically learned comprehensive features of CVDs 
and mortality risks. The prediction is calibrated against the incidence of CVD abnormalities 
during the follow-up period of a clinical trial, subjective assessment of radiologists in reader 
studies, and the CVD risk scores calculated from electrocardiogram (ECG)-gated cardiac CT 
including the CAC score33, CAD-RADS score34, and MESA 10-year CHD risk score35.” 

 
 

 
 

 



To illustrate the training and validation workflow of our work more clearly, we also redrew the 
Fig. 1 and added more detailed description from Page 2 to Page 3: 

 

 
“Fig. 1 shows an overview of our study. Two datasets with a total of 10,730 subjects were 
included in our study (Fig. 1a). The public National Lung Screening Trial (NLST) dataset was 
used for model development and validation. It includes lung cancer screening LDCT exams of 
10,395 subjects with abnormality records from the exam reports and causes of death for 
deceased subjects. An independent dataset collected at Massachusetts General Hospital (MGH) 
was used for further validation. Besides images and clinical reports of LDCT exams, the MGH 
dataset also collected ECG-gated cardiac CT of the same group of subjects, which enable us 
to calculate the clinically used CVD risk scores through clinical protocols for the validation. 
Our approach consists of two key components. First, a CNN heart detector was trained with 
263 LDCTs from the NLST dataset to isolate the heart region (Fig. 1b). Second, we proposed 
a three-dimensional (3D) CNN model, Tri2D-Net, consisting of a CVD feature extractor and a 
CVD screening classifier was trained using CVD screening results as targeted labels (Fig. 1c). 
After training, the predicted probability of being CVD positive is used as a quantified CVD 
mortality risk score, which was validated by the CVD mortality labels on the NLST dataset. To 
further evaluate the generalization capability of our model, we calibrated the learned high-
dimensional CVD features with three popular gold standard CVD risk scores, including, CAC 
score33, CAD-RADS score34, and MESA 10-year CHD risk score35.”  

 
 

 



2) Comments#2: 
A) The external validation is limited - a relatively small dataset of 119 patients is 
retrospectively collected.  

Response: We have made our best efforts to expand the external validation dataset from 106 
to 335 patients, including 181 CVD positive and 154 CVD negative patients. On this expanded 
validation dataset, we have conducted a new experiment of CVD screening by directly applying 
the model trained on the NLST dataset without any tuning. The updated results from this 
experiment are shown in Fig. 4a (shown in the response to the part B) of this comment). The 
detailed analysis is on Page 7 Paragraph 3: 
“In the experiment of CVD screening shown in Fig. 4a, our deep learning model achieved a 
significantly higher (p<0.0001) AUC value of 0.924 (95% confidence interval, 0.909-0.940) 
than its performance on the NLST dataset (0.871), where the network was originally trained. 
Superior performance on this external MGH dataset may be due to the better image quality of 
the contemporary MGH dataset acquired from newer scanners. Furthermore, the MGH 
annotated datasets and use of ECG-gated cardiac CT as a gold standard may have been 
superior to the annotation in NLST. This experiment shows that the proposed deep learning 
model has good generalizability and is highly consistent with human experts' joint label for 
CVD screening from LDCT and CVD scores calculated on ECG-gated cardiac CT.” 

The description of the this expanded MGH dataset is as follows (Page 4 Paragraph 4): 
“Furthermore, through an institutional review board (IRB) approved retrospective study, we 
acquired an independent and fully de-identified dataset from MGH in 2020. This MGH dataset 
contains 335 patients (161 men, 174 women, mean age 63.6±8.0 years), who underwent LDCT 
for lung cancer screening. Of these, 100 patients had no observed CVD abnormalities in their 
LDCT. The remaining 235 subjects underwent ECG-gated cardiac CT for CVD risk assessment 
for atypical chest pain, equivocal stress test, and chest pain with low to intermediate risk for 
CHD. Three CVD risk scores were calculated for the 235 subjects from their cardiac CT 
images, including CAC score33, coronary stenosis (quantified as CAD-RADS)34, and MESA 10-
year CHD risk35. Table 1 lists the characteristics of the dataset (see Methods, MGH dataset). 
The MGH dataset was used to evaluate the clinical significance of the NLST-trained model for 
feature extraction without re-training or fine-tuning. For the validation of CVD screening, a 
subject was labeled as CVD-positive if the subject underwent an ECG-gated cardiac CT 
screening and received either a CAC score > 10 or a CAD-RADS score > 1. Correspondingly, 
a CVD-negative subject had either all the LDCT screening exams being negative or the 
calculated scores of CAC ≤ 10 and CAD-RADS ≤ 1. Based on the above criteria, 181 subjects 
were CVD positive and 154 patients were CVD negative. For the quantification of CVD 
mortality risk, since this MGH dataset was collected from a patient cohort, who had recent 
exams (2015-2020), the mortality records are not yet available. We instead calibrate our model 
against the three gold standard risk scores as surrogate evaluators.” 

 
B)  In addition, the authors retrained a logistic regression model using 5-fold CV using 
the features from the deep learning model? Why? In this way, it is not a direct external 
validation of the model developed on the NLST data, but more a validation of the feature 
extractor part of the DL model. Also, it is not completely clear what features are used. The 
output of the fully connected layer? How many features are there in this feature 
representation? Since a five-fold CV is performed, are the selected features for the logistic 
regression stable?  



Response: We thank the reviewer for pointing out the problem. In the revised article, we have 
added a new CVD screening experiment by directly applying the trained model from NLST to 
the expanded MGH dataset as a direct external validation. We have also updated the previous 
experiments' results, which aim to validate whether the trained CVD feature extractor can 
effectively extract features highly related to CVD mortality risks. Since we do not have the 
mortality records, we have calibrated the deep features extracted from LDCT against the gold 
standard CVD scores calculated with the established clinical procedures based on the ECG-
gated coronary angiograms. In the revision, we have provided all details about this experiment. 
The features used in all three experiments are from the last fully-connected layer, which is a 
1,536-dimensional feature vector. All these 1,536 dimensions are directly used by the logistic 
regression models in the 5-fold CV experiments. That is, the feature selection in three 
experiments are consistent. We have included the key points and updated results in the revision 
(Page 9 to Page 10): 
“To evaluate the generalization ability of the deep learning quantified CVD risk score, we 
directly applied the trained CVD feature extractor to the MGH data and used the extracted 
high-dimensional feature to estimate the three gold standard risk scores calculated from ECG-
gated cardiac CT for comparison through linear classifiers (logistic regression). Five-fold 
cross-validation was used in all three experiments to fit and validate the three linear classifiers. 
Note that in all three experiments, the CVD feature extractor parameters are fixed, and the 
linear classifiers are directly applied to the entire high-dimensional feature without dimension 
reduction or feature selection. It is a standard procedure to evaluate whether the feature 
extractor can effectively extract features highly relative to downstream tasks36-38. Our model 
was compared with the radiologists’ annotated CAC grades and the two other previously 
reported studies on CVD risk prediction31,32. Like in the NLST experiments, the CAC grades 
performance under the settings of 1+, 2+ and 3 was calculated. Our experimental results are 
presented as follows. 

 
The features extracted by the trained CVD feature extractor from LDCT were first used to 
estimate the CAC score33. With a threshold of 400 for CAC scores, the MGH subjects were 
divided into two groups: 78 subjects with severe CAC and 157 subjects with none or minor 
CAC. Our model achieved an AUC value of 0.942 (95% confidence interval, 0.927-0.958) and 
significantly outperformed the other two methods (p<0.0001, see Fig. 4b). It is worth noting 
that our model is competitive with experienced radiologists. The AUC of our DL model was 
only slightly lower than the radiologists' CAC grading without significant difference (p>0.43), 
despite the fact that our DL model has never been trained for CAC score estimation. These 
results suggest that deep learning analysis of LDCT can well approximate the human expert 
performance using CCT in differentiating patients with severe and non-severe CAC.  
 
The second experiment evaluates the capability of the deep learning model in classifying 
subjects into high and low risk groups using LDCT by comparing against the coronary stenosis 
(CAD-RADS) scores34 obtained by human experts on CCT. Subjects with CAD-RADS scores 
greater than or equal to 4 are labeled as with severe stenosis, i.e., positive samples (51 
subjects). The other 184 subjects with smaller scores were labeled as negative. Our model 
reached an AUC value of 0.808 (95% confidence interval, 0.758-0.858, see Fig. 4c). Our model 
significantly outperformed the other two methods (p≤0.0338). Unlike calcification, coronary 
stenosis is much harder to detect through a chest LDCT screening, while it is a direct 
biomarker of CVD risk. The performance obtained using LDCT is thus highly encouraging. 
The superiority demonstrates that our model can quantify the subclinical imaging markers on 
LDCT, making it a promising tool for CVD assessment in lung cancer screening. 



 
In the third experiment, patients were divided into high and low risk groups according to MESA 
10-year risk score35, which is a clinical gold-standard risk stratification score for CVD 
integrating multiple factors including gender, age, race, smoking habit, family history, diabetes, 
lipid lowering and hypertension medication, CAC score extracted from CCT, and laboratory 
findings including cholesterol and blood pressure. Because some of the 235 subjects did not 
have all the needed exams, we are only able to calculate the MESA scores of 106 subjects. 
When median MESA 10-year risk score in our patients was used as a threshold (14.2), 52 
subjects with greater scores were labeled as high risk, while the other 54 subjects were labeled 
as low risk. Our model achieved an AUC value of 0.799 (95% confidence interval, 0.736-0.863), 
which significantly outperformed all the other methods (see Fig. 4d).” 

 



3) For the NLST cases, what CT scan is used? This is unclear. If all CT volumes are used, 
how do the authors get one score per patient? Is the maximum deep learning score across 
the different volumes used? Why not perform an analysis per CT when assessing the 
performance of the model to detect signs of CVD? 

Response: Thanks for the great question. In the training phase, all candidate CT volumes were 
treated as independent cases to increase training samples. In the validation and testing phases, 
a single CT volume was randomly selected from the candidate volumes of each subject to 
preserve the original data distribution. Since the number of CT scans is not consistent across 
the subjects, the use of these CT scans as independent cases would change the data distribution 
and introduce a bias to the test results. We have not included any ensemble methods to merge 
predictions on multiple cases of the same subject since the NLST dataset was not prepared for 
such a study. The situation of CVD positive subjects is especially complex. For CT scans of 
one subject, there are cases for which only the second scan was labeled as abnormal, but no 
CVD abnormalities were reported on the first and third scans. Hence, we have only focused on 
the normal and abnormal scans with clear labels. The changes over time were not considered 
in this work. In the revision, we have further clarified these issues on Page 13 Paragraph 4 and 
more detailed inclusion and exclusion criteria in the case of the NLST dataset can be found on 
Supplementary Fig. 2.  

“Since the NLST was designed for lung cancer screening, CVD related information is 
incomplete. Therefore, we used LDCT from only those patients with clear CVD information. In 
the training set, all LDCT volumes generated in the candidate exams were treated as 
independent cases to increase the number of training samples. In the validation and testing 
phases, a single CT volume was randomly selected from the candidate volumes of each subject 
to preserve the original data distribution. Since the number of LDCT exams is inconsistent 
across subjects (for example, patients with death or diagnosis of lung cancer on initial LDCTs 
did not complete all follow-up LDCTs), the use of these CT volumes as independent cases can 
change the data distribution and introduce a bias to the test results.” 



 

 
 

4) The abstract and introduction are too strong with regards to the benefits of using LDCT 
for CVD screening. At present, there is no scientific consensus whether the benefits of 
LDCT screening for CVD outweigh the harms. LDCT screening has only shown benefit 
for reducing lung cancer mortality in a specific high-risk population. The introduction 
and abstract should be changed to reflect this and explain the current situation better. 

Response: Both the abstract and introduction have been revised. The new abstract reads as 
follows: 
“Cancer patients have a higher risk of cardiovascular disease (CVD) mortality than the 
general population. Low dose computed tomography (LDCT) for lung cancer screening offers 



an opportunity for simultaneous CVD risk estimation in at-risk patients. Our deep learning 
CVD risk prediction model, trained with 30,286 LDCTs from the National Lung Cancer 
Screening Trial, achieved an area under the curve (AUC) of 0.871 on a separate test set of 
2,085 subjects and identified patients with high CVD mortality risks (AUC of 0.768). We 
validated our model against ECG-gated cardiac CT based markers including coronary artery 
calcification (CAC) score, CAD-RADS score, and MESA 10-year CHD risk score from an 
independent dataset of 335 subjects. Our work shows that, in high-risk patients, deep learning 
can convert LDCT for lung cancer screening into a dual-screening quantitative tool for CVD 
risk estimation.” 
 
l Minor Comments 
1) The NLST is quite old data. What effect does this have on the model? 

Response: Thank you for your comment. Compared to a somewhat historic data from NLST, 
we had more contemporary data from MGH from 2015-2020 acquired on modern MDCT 
scanners including GE 750 HD, GE Revolution, Siemens Definition Edge, Force, and Flash 
scanners. LDCT images in the NLST dataset contain stronger noise than those recently 
collected at MGH. However, training on such noisy data helps produce a robust and more 
generalizable model. Given the improved accuracy, we do not think that the old NLST 
adversely affected the performance of our algorithm on the new data from MGH. The 
corresponding analysis can be found in the response to the major comment #1). 

 
2) The claims in the Discussion need to be toned down. No prospective data yet, so this is only 

preliminary evidence. 
Response: We have revised the Discussions to reflect the point (Page 10 Paragraph 2). Thanks!  

“In summary, our deep learning model demonstrates the value of lung cancer screening LDCT 
for CVD risk estimation. Given the increasing utilization of LDCT-based lung cancer screening, 
shared risk factors, and high prevalence of CVD in these at-risk patients, the potential of 
obtaining a quantitative and reliable CVD risk score by analyzing the same scans may benefit 
a large patient population. The further comparative study on the deep learning model of LDCT 
images with human experts on CCT for risk group classification shows that the deep learning 
model can analyze LDCTs to achieve performance approximating the clinical reading with 
dedicated cardiac CTs. The comparable or superior performance of our model from LDCT 
implies that additional dedicated ECG-gated coronary calcium scoring and other laboratory 
tests could be avoidable. Our deep learning model may thus help reduce the cost and radiation 
dose in the workup of at-risk patients for CVD with quantitative information from a single 
LDCT exam. Given the technical challenges associated with the quantification of CAC from 
LDCT for lung cancer screening versus ECG-gated CCT, our study indicates a significant 
development in establishing a CVD-related risk nomogram with LDCT.” 

 
3) The deep learning model mostly focuses on the CAC, it seems, as the AUC is 0.942 for this, 

while lower for MESA and CAD-RADS (0.817 and 0.809 respectively). Isn't this method 
primarily picking up the calcifications in the heart? Any analysis done to check this? 

Response: Since calcium is the most salient and relevant feature to CVD, it would not be a 
surprise that our model pays significant attention to calcium in the heart region. To study 
whether our model utilized features other than calcium, we have performed case studies in the 
revised paper. Based on the visualization of the learned features, our model can also capture 



epicardial fat, which is also an important marker of underlying coronary artery disease48. The 
details of the case studies are on Page 10 Paragraph 3:  

 

 
“To interpret the prediction results of Tri2D-Net, we generated heatmaps using the Gradient-
weighted Class Activation Mapping (Grad-CAM39) and exported the attention maps from the 
attention block. Fig. 5 shows the results of three representative subjects from the NLST 
dataset.Fig. 5a&b belong to two subjects who died of CVD, referred as Case-a and Case-b, 
respectively. Fig. 5c shows the image of a subject Case-c, who survived by the end of the trial. 
Case-a has severe CAC with an average CAC Grade of 3.0 by the three radiologists. Tri2D-
Net captured the strong calcium as shown in the Grad-CAM heatmap and predicted a high 
CVD risk score of 0.90. Case-b (Fig. 5b) had mild to moderate CAC with an average CAC 
Grade of 1.67. However, the attention block noticed abundant juxtacardiac fat and Tri2D-Net 
gave a high score of 0.82  for the case. Case-c has mild CAC graded as 1.33 by the radiologists. 
Since there was little calcification and juxtacardiac fat as indicated by the heatmaps, Tri2D-
Net predicted a low risk score of 0.23 for this survived patient. Visualization of these cases 
demonstrates the contributions of both CAC and juxtacardiac fat to our model for predicting 
CVD risk scores in contrast with the mere reliance on CAC as the sole biomarker in prior 
studies26–30. The ability to capture various features for CVD makes our model superior to the 
existing CAC scoring models for CVD screening and CVD mortality quantification.” 
 

4) Since reader group 2, consisting of only one reader, performed better, please split out the 
experience levels of the three readers (M.K.K., R.S. and R.D.K.). Is there a difference in 
experience level?  

Response: For a more convincing comparison, M.K.K and R.S. have independently reviewed 
the whole test set, leading to three sets of independent reviews. The updated results are now 
summarized in Fig. 2, along with the corresponding analysis from Page 5 to Page 7. 
Furthermore, we included Kaplan Meier curves to compare the performance of our model to 
the radiologists.: 



“Two experiments were conducted on the NLST dataset for the evaluation of CVD screening 
and CVD mortality quantification, respectively, where the proposed deep learning model was 
compared with other deep learning models and against CAC grades read by radiologists. 
Three radiologists from MGH (M.K.K., R.S. and R.D.K.) with 2-15 years of clinical experience 
averaged at 7 years, independently graded all the 2,085 CT volumes to obtain the CAC grades. 
Four CAC categories were used, including no calcification (level 0 - normal), calcification 
over less than 1/3 of the length of coronary arteries (level 1 - minimal), calcification over 1/3 
to 2/3 of the coronary arterial lengths (level 2 - moderate) and calcification greater than 2/3 
of the arterial length (level 3 - heavy). The average reader results are calculated by averaging 
the results of the three radiologists. 

 
 

We first evaluated the proposed model for identifying patients with CVDs from the lung cancer 
screening population. Fig. 2a shows the receiver operating characteristic curves (ROCs) of 
multiple methods. Our deep learning model achieved an area under the curve (AUC) of 0.871 
(95% confidence interval, 0.860-0.882)(see Methods, Statistical analysis). With a positive 
predictive value (PPV) of 50.00%, the model achieved a sensitivity of 87.69%, which suggests 
that our model can identify 87.69% of the CVD-positive subjects using only a chest LDCT scan, 
when allowing half of the positive predictions as false. For the reader performance, all patients 
with ≥ minimal CAC (CAC Grade 1+) are considered as abnormal. It can be seen in Fig. 2a 
that CAC Grade 1+ yielded a sensitivity of 96.6% and a PPV of 35.3%. With a similar 
sensitivity of 96.6%, our model achieved a slightly but not significantly higher PPV of 38.4% 
(p=0.3847). In addition, we compared our model with the two recently reported works, KAMP-
Net31 and Auto-encoder (AE+SVM)30. The table in Fig. 2a shows that our model significantly 
outperformed the other two methods (p<0.0001). It indicates that our model can differentiate 
subjects with high CVD risk from those with low risk from LDCT. 



 
 
Further, we evaluated the performance of our model in quantification of CVD mortality risk.  
The results are shown in Fig. 2b, where CAC Grades 1+, 2+, and 3 denote the performance of 
mortality prediction using extent of subjective CAC categories 1 and above, categories 2 and 
above, and 3 only, respectively. CAC Grades 1+, 2+, and 3 denote the performance of 
mortality prediction using categories 1 and above, categories 2 and above, and 3 only, 
respectively. The trained deep learning model was directly applied to this testing set to predict 
the CVD-caused mortality without fine-tuning. Our deep learning model achieved an AUC 
value of 0.768 (95% confidence interval, 0.734-0.801), which significantly outperformed the 
competing methods (p < 0.0001) as shown in Fig. 2b. With the same PPV of averaged CAC 
Grade 2+ (10.8%), our model achieved a sensitivity of 80.8%. Specifically, in the NLST test 
set, our model successfully identified 97 of the 120 deceased subjects as high risk, while the 
averaged CAC Grade 2+ labeled 35 of those 97 cases as low risk. Additionally, it can be seen 
from Fig. 2b that our model achieved a similar performance to the average performance of 
human experts. Although the performance of reader 1 is higher than our model, there is a 
significant difference between the two groups' annotation (p<0.0001). For further comparison, 
Fig. 3 shows the Kaplan Meier curves of different risk groups labeled by our model and the 
radiologists, respectively. For the radiologists, we used the average reader prediction of CAC 
Grade 2+ to separate the subjects into low/high risk groups and drew the Kaplan Meier curves 
for both groups. The final survival probabilities of low and high risk groups by radiologists 
are 95.79% and 85.83%, respectively. For fair and direct comparison, in Fig. 3a, we selected 
a threshold to divide the quantified CVD risk scores using our model so that the low risk group 
has a survival probability of 95.79%, similar to the radiologists. Under this circumstance, the 
model-predicted high-risk group showed a significantly lower (p=0.0059) final survival 
probability of 73.24%. Similarly, in Fig. 3b, we selected a threshold so that the high-risk group 
has a survival probability of 85.75%, also similar to the radiologists. In this case, the model-
predicted low-risk group achieved a significantly higher (p=0.0272) final survival probability 
of 97.46%. Thus, our model can help reduce inter-and intra-observer variations in quantifying 
CAC. The model can also automatically categorize CVD risks so that radiologists can focus 
on other tasks such as lung nodule detection, measurement, stability assessment, classification 
(based on nodule attenuation), and other incidental findings in the chest and upper abdomen.” 

 



5) The authors write "Then, a max pooling is employed on the slide dimension to fuse all these 
feature maps into one feature map". So, Resnet-18 has 256 feature maps after L13. The 
feature map size is 14x14x256xz, where z is the number of slices. Then, a max pool is done 
over the z-direction, which leads to a new feature map of 14x14x256? If yes, this sentence 
should be rephrased because it reads 'one feature map', which is confusing. 

Response: Yes, the understanding is correct. We have rephrased this sentence and moved 
details of the model to the supplementary information Page S1 Paragraph 1: 
“Then a max pooling operation is employed along the dimension of slices to merge the feature 
maps of all slices into a single new feature map.” 
 

6) How were the heatmaps generated? This needs to be clarified. 
Response: The heatmaps were generated using Grad-CAM39, a widely used visualization 
technique for CNN that produces a coarse localization map highlighting the important regions 
in the image for the final prediction. We provide the details in the response to comment #3) 
above.  
  



 
Response to Reviewer#3: 

l Major Comments 
1) The NLST dataset were labeled as normal or abnormal based on LDCT report, medical 

history, and cause of mortality. Since cardiovascular abnormalities on LDCT or 
cardiovascular diseases have wide spectrum of severity or clinical relevance (e.g. from tiny 
coronary calcification to overt sign of heart failure, and from mild arterial hypertension to 
myocardial infarction), the authors need to provide clear definition of abnormal label, or 
actual spectrum of LDCT abnormalities or cardiovascular diseases in the NLST dataset. 

Response: For the LDCT reports, we looked for the note of “significant cardiovascular 
abnormalities” recorded in the dataset. If a subject has such a note on any of the LDCT exams, 
the subject is labeled as CVD positive. For the cause of mortality, based on the ICD-10 codes 
recorded in the dataset, we selected 17 codes related to CVD. The 17 codes are listed in 
Supplementary Table 1. All the deceased subjects with a CVD-related ICD-10 code are labeled 
as CVD positive. For the medical history, we used the histories of heart disease and 
hypertension reported in the dataset. A subject is labeled as CVD negative only if 1) the subject 
had no abnormalities reported in any of the LDCT exams, 2) did not die during the trial because 
of CVD and 3) did not have any known history of CVD. We excluded subjects with history of 
heart disease, heart attack, stroke and hypertension from the CVD negative list. 
 

We agree with the reviewer that NLST labels can be misleading and difficult to categorize. To 
overcome the labelling issues, as stated in the revised manuscript, three radiologists separately 
graded CAC on 2,085 LDCT CTs from NLST. Our model performed favorably compared to 
these radiologists for both CVD screening and CVD mortality risk estimation. A detailed 
description of CAC grading is given on Page 6 Paragraph 1, which is also attached below. More 
importantly, the independent MGH dataset was much better labeled and includes three CVD 
risk scores were calculated from the subjects’ cardiac CT images, including CAC score, 
coronary stenosis (quantified as CAD-RADS), and MESA 10-year CHD risk. With this 
external validation MGH dataset, the effectiveness of our model has been clearly demonstrated 
by its strong performance in all the four experiments on these well-controlled and clearly-
labeled external data. 



2) Regarding the interpretation by radiologists, radiologists focused on the presence and 
extent of coronary artery calcifications, for prediction of cardiovascular disease or related 
mortality. However, there may other abnormalities suggesting cardiovascular diseases 
such as enlarged heart chamber, dilatation or calcification of aorta, and pleural or 
pericardial effusion, and the performance of radiologists for identification of 
cardiovascular diseases may have been underestimated 

Response: We agree with the reviewer that other cardiac findings as stated in the comment can 
also predict CVD related risks. Although our network may implicitly learn these features in the 
data-driven manner, we plan to train our model to look for other findings as you stated in your 
comment (such as pericardial effusion, pleural effusion, cardiac chamber dilation, aortic 
dimensions). Our review revealed that there were very few cases with these findings (<1%) in 
the MGH dataset to make a statistically meaningful evaluation. With an enriched dataset, in 
future, we intend to have radiologists assess these findings as well.  
Based on the cases we have now and aided by visualization, we have shown that our model did 
use features other than calcification like excessive of fat to help estimate CVD risks. The 
corresponding analysis is shown in the response to the next question. 

 
3) The authors may provide representative cases along with the heat maps from the algorithm, 

to demonstrate whether the algorithm actually focused on findings of cardiovascular 
diseases (e.g. coronary calcification). 

Response: Thanks for the suggestion! We have added Fig. 5 to visualize representative cases, 
along with the corresponding analysis (Page 10 Paragraph 3):.  

 
“To interpret the prediction results of Tri2D-Net, we generated heatmaps using the Gradient-
weighted Class Activation Mapping (Grad-CAM39) and exported the attention maps from the 
attention block. Fig. 5 shows the results of three representative subjects from the NLST 
dataset.Fig. 5a&b belong to two subjects who died of CVD, referred as Case-a and Case-b, 
respectively. Fig. 5c shows the image of a subject Case-c, who survived by the end of the trial. 



Case-a has severe CAC with an average CAC Grade of 3.0 by the three radiologists. Tri2D-
Net captured the strong calcium as shown in the Grad-CAM heatmap and predicted a high 
CVD risk score of 0.90. Case-b (Fig. 5b) had mild to moderate CAC with an average CAC 
Grade of 1.67. However, the attention block noticed abundant juxtacardiac fat and Tri2D-Net 
gave a high score of 0.82  for the case. Case-c has mild CAC graded as 1.33 by the radiologists. 
Since there was little calcification and juxtacardiac fat as indicated by the heatmaps, Tri2D-
Net predicted a low risk score of 0.23 for this survived patient. Visualization of these cases 
demonstrates the contributions of both CAC and juxtacardiac fat to our model for predicting 
CVD risk scores in contrast with the mere reliance on CAC as the sole biomarker in prior 
studies26–30. The ability to capture various features for CVD makes our model superior to the 
existing CAC scoring models for CVD screening and CVD mortality quantification.” 
 

4) For cardiovascular mortality prediction in the NLST dataset, performance of radiologists 
exhibited substantial difference. I wonder whether there was difference in the experience 
of radiologists and less-experienced radiologist exhibited lower performance. 

Response: For a more convincing comparison, M.K.K and R.S. have independently reviewed 
the whole test set, leading to three sets of independent reviews. The three readers are all from 
MGH and have 2-15 years of clinical experience averaged at 7 years. We have included this 
information on Page 5 Paragraph 2: 
“Three radiologists from MGH (M.K.K., R.S. and R.D.K.) with 2 to 15 years of clinical 
experience averaged at 7 years, independently graded all the 2,085 CT volumes to obtain the 
CAC grades.” 

 
The updated results are now shown in Fig. 2, along with the corresponding analysis from Page 
5 to page 7. What’s more, we also included Kaplan Meier curves to further compare our model 
with the radiologists: 

“We first evaluated the proposed model for identifying patients with CVDs from the lung 
cancer screening population. Fig. 2a shows the receiver operating characteristic curves (ROCs) 
of multiple methods. Our deep learning model achieved an area under the curve (AUC) of 
0.871 (95% confidence interval, 0.860-0.882)(see Methods, Statistical analysis). With a 
positive predictive value (PPV) of 50.00%, the model achieved a sensitivity of 87.69%, which 
suggests that our model can identify 87.69% of the CVD-positive subjects using only a chest 
LDCT scan, when allowing half of the positive predictions as false. For the reader performance, 
all patients with ≥ minimal CAC (CAC Grade 1+) are considered as abnormal. It can be seen 
in Fig. 2a that CAC Grade 1+ yielded a sensitivity of 96.6% and a PPV of 35.3%. With a 
similar sensitivity of 96.6%, our model achieved a slightly but not significantly higher PPV of 
38.4% (p=0.3847). In addition, we compared our model with the two recently reported works, 
KAMP-Net31 and Auto-encoder (AE+SVM)30. The table in Fig. 2a shows that our model 
significantly outperformed the other two methods (p<0.0001). It indicates that our model can 
differentiate subjects with high CVD risk from those with low risk from LDCT. 



 

 

 
 
Further, we evaluated the performance of our model in quantification of CVD mortality risk.  
The results are shown in Fig. 2b, where CAC Grades 1+, 2+, and 3 denote the performance of 
mortality prediction using extent of subjective CAC categories 1 and above, categories 2 and 
above, and 3 only, respectively. CAC Grades 1+, 2+, and 3 denote the performance of 
mortality prediction using categories 1 and above, categories 2 and above, and 3 only, 
respectively. The trained deep learning model was directly applied to this testing set to predict 
the CVD-caused mortality without fine-tuning. Our deep learning model achieved an AUC 
value of 0.768 (95% confidence interval, 0.734-0.801), which significantly outperformed the 
competing methods (p < 0.0001) as shown in Fig. 2b. With the same PPV of averaged CAC 
Grade 2+ (10.8%), our model achieved a sensitivity of 80.8%. Specifically, in the NLST test 
set, our model successfully identified 97 of the 120 deceased subjects as high risk, while the 



averaged CAC Grade 2+ labeled 35 of those 97 cases as low risk. Additionally, it can be seen 
from Fig. 2b that our model achieved a similar performance to the average performance of 
human experts. Although the performance of reader 1 is higher than our model, there is a 
significant difference between the two groups' annotation (p<0.0001). For further comparison, 
Fig. 3 shows the Kaplan Meier curves of different risk groups labeled by our model and the 
radiologists, respectively. For the radiologists, we used the average reader prediction of CAC 
Grade 2+ to separate the subjects into low/high risk groups and drew the Kaplan Meier curves 
for both groups. The final survival probabilities of low and high risk groups by radiologists 
are 95.79% and 85.83%, respectively. For fair and direct comparison, in Fig. 3a, we selected 
a threshold to divide the quantified CVD risk scores using our model so that the low risk group 
has a survival probability of 95.79%, similar to the radiologists. Under this circumstance, the 
model-predicted high-risk group showed a significantly lower (p=0.0059) final survival 
probability of 73.24%. Similarly, in Fig. 3b, we selected a threshold so that the high-risk group 
has a survival probability of 85.75%, also similar to the radiologists. In this case, the model-
predicted low-risk group achieved a significantly higher (p=0.0272) final survival probability 
of 97.46%. Thus, our model can help reduce inter-and intra-observer variations in quantifying 
CAC. The model can also automatically categorize CVD risks so that radiologists can focus 
on other tasks such as lung nodule detection, measurement, stability assessment, classification 
(based on nodule attenuation), and other incidental findings in the chest and upper abdomen.” 

 
5) In the MGH dataset, the algorithm was evaluated against various cardiovascular risk 

scores from the ECT-gated cardiac CTs, but not evaluated against actual presence of 
cardiovascular disease or related mortality. I believe that evaluation against mortality 
might be practically impossible, however, performance against the presence of 
cardiovascular disease (as in the NLST) may help readers to understand the true 
performance of algorithm in an independent dataset. 

Response: We agree! We have made our best efforts to expand this dataset from 106 to 335 
patients, including 181 CVD positive and 154 CVD negative patients. On this expanded dataset, 
we have conducted a new experiment of CVD screening by directly applying the model trained 
on the NLST dataset without any tuning. The updated results from this experiment are shown 
in Fig. 4a. The detailed analysis has been reported on Page 7 Paragraph 3: 
“In the experiment of CVD screening shown in Fig. 4a, our deep learning model achieved a 
significantly higher (p<0.0001) AUC value of 0.924 (95% confidence interval, 0.909-0.940) 
than its performance on the NLST dataset (0.871), where the network was originally trained. 
Superior performance on this external MGH dataset may be due to the better image quality of 
the contemporary MGH dataset acquired from newer scanners. Furthermore, the MGH 
annotated datasets and use of ECG-gated cardiac CT as a gold standard may have been 
superior to the annotation in NLST. This experiment shows that the proposed deep learning 
model has good generalizability and is highly consistent with human experts' joint label for 
CVD screening from LDCT and CVD scores calculated on ECG-gated cardiac CT.” 



 
 
The description of the this expanded MGH dataset is on Page 4 Paragraph 4: 

“Furthermore, through an institutional review board (IRB) approved retrospective study, we 
acquired an independent and fully de-identified dataset from MGH in 2020. This MGH dataset 
contains 335 patients (161 men, 174 women, mean age 63.6±8.0 years), who underwent LDCT 
for lung cancer screening. Of these, 100 patients had no observed CVD abnormalities in their 
LDCT. The remaining 235 subjects underwent ECG-gated cardiac CT for CVD risk assessment 
for atypical chest pain, equivocal stress test, and chest pain with low to intermediate risk for 
CHD. Three CVD risk scores were calculated for the 235 subjects from their cardiac CT 
images, including CAC score33, coronary stenosis (quantified as CAD-RADS)34, and MESA 10-
year CHD risk35. Table 1 lists the characteristics of the dataset (see Methods, MGH dataset). 



The MGH dataset was used to evaluate the clinical significance of the NLST-trained model for 
feature extraction without re-training or fine-tuning. For the validation of CVD screening, a 
subject was labeled as CVD-positive if the subject underwent an ECG-gated cardiac CT 
screening and received either a CAC score > 10 or a CAD-RADS score > 1. Correspondingly, 
a CVD-negative subject had either all the LDCT screening exams being negative or the 
calculated scores of CAC ≤ 10 and CAD-RADS ≤ 1. Based on the above criteria, 181 subjects 
were CVD positive and 154 patients were CVD negative. For the quantification of CVD 
mortality risk, since this MGH dataset was collected from a patient cohort, who had recent 
exams (2015-2020), the mortality records are not yet available. We instead calibrate our model 
against the three gold standard risk scores as surrogate evaluators.” 

 
We still preserved the original three experiments, since these three experiments evaluates the 
model’s reliability in CVD mortality risk estimation while the newly added experiment focuses 
on CVD screening. Based on the expanded dataset, the three original experiments have been 
updated. The corresponding details and results have been described as follows (from Page 9 to 
Page 10): 
“To evaluate the generalization ability of the deep learning quantified CVD risk score, we 
directly applied the trained CVD feature extractor to the MGH data and used the extracted 
high-dimensional feature to estimate the three gold standard risk scores calculated from ECG-
gated cardiac CT for comparison through linear classifiers (logistic regression). Five-fold 
cross-validation was used in all three experiments to fit and validate the three linear classifiers. 
Note that in all three experiments, the CVD feature extractor parameters are fixed, and the 
linear classifiers are directly applied to the entire high-dimensional feature without dimension 
reduction or feature selection. It is a standard procedure to evaluate whether the feature 
extractor can effectively extract features highly relative to downstream tasks36-38. Our model 
was compared with the radiologists’ annotated CAC grades and the two other previously 
reported studies on CVD risk prediction31,32. Like in the NLST experiments, the CAC grades 
performance under the settings of 1+, 2+ and 3 was calculated. Our experimental results are 
presented as follows. 
The features extracted by the trained CVD feature extractor from LDCT were first used to 
estimate the CAC score33. With a threshold of 400 for CAC scores, the MGH subjects were 
divided into two groups: 78 subjects with severe CAC and 157 subjects with none or minor 
CAC. Our model achieved an AUC value of 0.942 (95% confidence interval, 0.927-0.958) and 
significantly outperformed the other two methods (p<0.0001, see Fig. 4b). It is worth noting 
that our model is competitive with experienced radiologists. The AUC of our DL model was 
only slightly lower than the radiologists' CAC grading without significant difference (p>0.43), 
despite the fact that our DL model has never been trained for CAC score estimation. These 
results suggest that deep learning analysis of LDCT can well approximate the human expert 
performance using CCT in differentiating patients with severe and non-severe CAC.  
 
The second experiment evaluates the capability of the deep learning model in classifying 
subjects into high and low risk groups using LDCT by comparing against the coronary stenosis 
(CAD-RADS) scores34 obtained by human experts on CCT. Subjects with CAD-RADS scores 
greater than or equal to 4 are labeled as with severe stenosis, i.e., positive samples (51 
subjects). The other 184 subjects with smaller scores were labeled as negative. Our model 
reached an AUC value of 0.808 (95% confidence interval, 0.758-0.858, see Fig. 4c). Our model 
significantly outperformed the other two methods (p≤0.0338). Unlike calcification, coronary 
stenosis is much harder to detect through a chest LDCT screening, while it is a direct 



biomarker of CVD risk. The performance obtained using LDCT is thus highly encouraging. 
The superiority demonstrates that our model can quantify the subclinical imaging markers on 
LDCT, making it a promising tool for CVD assessment in lung cancer screening. 
 
In the third experiment, patients were divided into high and low risk groups according to MESA 
10-year risk score35, which is a clinical gold-standard risk stratification score for CVD 
integrating multiple factors including gender, age, race, smoking habit, family history, diabetes, 
lipid lowering and hypertension medication, CAC score extracted from CCT, and laboratory 
findings including cholesterol and blood pressure. Because some of the 235 subjects did not 
have all the needed exams, we are only able to calculate the MESA scores of 106 subjects. 
When median MESA 10-year risk score in our patients was used as a threshold (14.2), 52 
subjects with greater scores were labeled as high risk, while the other 54 subjects were labeled 
as low risk. Our model achieved an AUC value of 0.799 (95% confidence interval, 0.736-0.863), 
which significantly outperformed all the other methods (see Fig. 4d).” 

 
6) Cardiac motion artifact and noise are major cause of limited evaluation of coronary artery 

calcification in the LDCTs, and their degrees are directly related with scanning and 
reconstruction protocols. Therefore, the authors may present detailed scanning and 
reconstruction protocols (e.g. CT scanner, pitch, reconstruction kernel, …) of LDCTs 
(especially in the MGH dataset). 

Response: Thanks for the suggestion. We have included Tables 1, Supplementary Table 2 and 
Supplementary Table 3 to show the scanning and reconstruction protocols for the NLST and 
MGH datasets, respectively. 

 



 

 



 
7) Although I am not a statistical expert, I am concerned about whether the ROC analyses for 

cardiovascular mortality ignoring the time to death and censoring is appropriate. 
Response: Thanks for the comment. To appropriately evaluate our model for CVD mortality 
prediction, we have included the Kaplan Meier curves of the CVD-caused death in Fig. 3. The 
corresponding details have been provided in the response to comment #4) above. 

 



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The authors have made significant revisions. The Kaplan Meier plots are helpful. They have 

incorporated the sensitivity and PPV. The distinction in the endpoints is helpful. They comment on 

deaths from unknown causes. it is nice that the responses, edits, and figures are in the response 

letter. 

 

I just have a few minor questions, maybe the authors could clarify: 

 

1. I understand there are 2 endpoints, diagnosed CVDs and CVD related mortality. If patients are 

being followed by LDCTs, then by definition, they have risk factors for lung cancer (usually 

significant smoking history or tobacco use), and these same risk factors also cause CVDs. Thus, 

they are likely followed by lung and heart physicians, and by default, they will be more likely to be 

labeled as having a CVD by either provider. Can the authors better describe this in the paper? 

Would it affect their findings? 

2. In the KM plots, what is “reader”? Is that the same thing as radiologist? Can you provide the 

number at risk below? Can you make the x axis use good time points (eg 12, 24 months; or 

years). I am not sure what time is and why it is going by 500s. I would make the y axis go from 0-

1. Can you provide a p value comparison among the curves? What is the survival probability (y 

axis)? Death from any cause? In Figure 2, “Reader” is also used, and you may want to use 

radiologist or reader to be consistent. 

3. Thank you for better explaining the model (https://colab.research.google.com/github/DIAL-

RPI/CVD-Risk-Estimator/blob/develop/colab_run.ipynb) and providing Figure 1 and Sup Figure 1. 

For clinicians, this will still be a black box. For example, clinicians do not understand CNN, Tri2D-

Net, extracted high dimensional CVD feature, deep CNN (is that different from CNN?), gradient 

weight class activation mapping. Other terms that clinicians may not know are MESA, CAC, CAD-

RADS, AE+SVM, KAMP NET, Grad-CAM. You may want to explain it a little better for people with 

no understanding of machine learning or these minutiae of this field. Consider using a brief 

glossary or table. 

4. The authors could incorporate a table of patient demographics (similar to 1, but centered on the 

patients and the scans). How many exams were “normal” vs “abnormal”? What are some of the 

features detected in them? What was the comorbidity breakdown? 

 

 

 

Reviewer #2: 

Remarks to the Author: 

This revision of the original paper contains several important improvements over the original 

paper. The most important improvements are the extension of the MGH validation set and the 

extension of the experiments, especially the Kaplan-Meier curves. In the meantime, a paper with a 

similar task has been published in Nature Communications: 

https://www.nature.com/articles/s41467-021-20966-2. I think the paper has improved 

substantially, but I still have several major comments: 

 

1. I think it would make a lot of sense if this paper is put into context with the already published 

paper. That code is also publicly available, so it would be a much better comparison than the 

current comparison with the AE-SVM and KAMP-Net in my opinion. 

2. The paper is still confusing to me because it tackles both CVD screening (findings CVD 

abnormalities, primarily CAC), and CVD mortality prediction. For mortality prediction, there is no 

external data set, because there is no mortality data present for the MGH dataset. Therefore, the 

paper has little evidence on how the presented system would generalize to other datasets for 

predicting mortality. 

2. To be able to use the presented system for CVD screening on the MGH dataset, the authors 



have to perform a 5-fold CV where they use linear classifiers on the features extracted from the 

original network as the final classifiers. It is unclear what linear classifiers are used. This needs 

clarification. Are they applied on the output of the fully connected layer, so the 1536-dimensional 

feature vector? If the authors used 5-fold CV, and 4 folds are used to optimize the linear classifier 

and 1 fold as test, this means that there are roughly 270 cases used to optimize this linear 

classifier? How different were the 5 classifiers in the end? This gives an indication how stable the 

feature set is. For me, it would be much more clear if the score of the original system would be 

validated in these experiments. This would then show the readers how the output of the system 

trained on NLST corresponds to CAC scores on the MGH dataset. 

- One of the claims of the paper is that this system is trained end-to-end for mortality prediction 

and hence may look at more imaging aspects than only CAC. For example, it could look at 

epicardial fat. There is very little evidence that this is really the case. The only evidence I can find 

is the anecdotal Grad-CAM images from Figure 5. An experiment in which radiologists label this, 

and then a check on how the scores of the system correspond with that, would be a step to do 

that. 

 

Minor comments: 

- I now understand that a random CT scan per patient is used for the NLST data. Also, I think I 

now understood that patients with inconsistent CVD labels over time are excluded. Therefore, the 

authors go from 16,264 subjects to 10,395 subjects. Two comments: 1) I think it would have 

made more sense if the baseline CT would be used for all NLST subjects, because then, you had 

roughly 6.5 years of follow-up for all NLST subjects. But this is a minor comment. 2) The exclusion 

of subjects with inconsistent labels is a limitation of the study that needs to be added to the 

discussion. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

I appreciate to have a chance to review the revised manuscript. 

I believe the concerns brought up in the initial manuscript were substantially reduced. 



Response to Reviewer#1: 
 

The authors have made significant revisions. The Kaplan Meier plots are helpful. They have 
incorporated the sensitivity and PPV. The distinction in the endpoints is helpful. They comment 
on deaths from unknown causes. it is nice that the responses, edits, and figures are in the 
response letter. 
 
Response: We would like to thank the reviewer for the great comments that have guided us in 
significantly improving the quality of the paper. 

 
I just have a few minor questions, maybe the authors could clarify: 
 
1.1) I understand there are 2 endpoints, diagnosed CVDs and CVD related mortality. If 

patients are being followed by LDCTs, then by definition, they have risk factors for lung 
cancer (usually significant smoking history or tobacco use), and these same risk factors 
also cause CVDs. Thus, they are likely followed by lung and heart physicians, and by 
default, they will be more likely to be labeled as having a CVD by either provider. Can 
the authors better describe this in the paper? Would it affect their findings? 

Response: In a recent study of 3,110 patients who underwent LDCT for lung cancer screening, 
contrary to the general perception, less than one-third of patients with significant CAC 
(236/756 patients) had established diagnosis of coronary artery disease at the baseline LDCT 
[7]. Furthermore, of the 155 patients with a change in cardiovascular management, under one-
quarter of patients (36/155 patients) were referred to cardiologists. Given the fact that patients 
undergoing LDCT are asymptomatic subjects who can undergo definitive lung cancer 
treatment, it is desirable and beneficial that an effective CVD risk estimating program helps 
uncover those patients who are at higher risk of CVD-related mortality. This demonstrates the 
potential for our algorithm to better assess the risk of CVD and trigger the next level of 
mitigating steps to decrease the associated risk. We have revised the following paragraph on 
page 1 in the paper to clarify it. 
“Cardiovascular disease (CVD) affects nearly half of American adults and causes more than 
30% of fatality1. The prediction of CVD risk is fundamental to the clinical practice in managing 
patienthealth2. Recent studies have shown that the patients diagnosed with cancer have a ten-
fold greater risk of CVD mortality than the general population3. For lung cancer screening, 
low dose computed tomography (LDCT) has been proven effective through clinical trials4, 5. In 
the National Lung Screening Trial (NLST), 356 participants who underwent LDCT died of lung 
cancer during the 6-year follow-up period. However, more patients, 486 others, died of CVD. 
The NELSON trial shows similar overall mortality rates between the study groups even though 
the lung cancer mortality decreased in the LDCT screening group6. Therefore, screening 
significant comorbidities like CVD in high-risk subjects undergoing LDCT for lung cancer 
screening is critical to lower the overall mortality. Nevertheless, when the cancer risk 
population receives cancer screening, their potential CVD risk may be overlooked. A recent 
study reported that only one-third of patients with significant coronary artery calcification 
(CAC) on LDCT had established coronary artery disease diagnosis, whereas just under one-
quarter of the patients had a change in his/her cardiovascular management following LDCT 
with referral to cardiologists7.” 
 
1.2) In the KM plots, what is “reader”? Is that the same thing as radiologist? Can you 

provide the number at risk below? Can you make the x axis use good time points (eg 



12, 24 months; or years). I am not sure what time is and why it is going by 500s. I would 
make the y axis go from 0-1. Can you provide a p value comparison among the curves? 
What is the survival probability (y axis)? Death from any cause? In Figure 2, “Reader” 
is also used, and you may want to use radiologist or reader to be consistent. 

Response: By “reader” we meant “radiologist”. We apologize for the confusion. In our revised 
paper, we have replaced “reader” with “radiologist” in Fig. 3.  

We have updated the KM plots in Fig. 3 by clearly stating the numbers at risk. We have changed 
the x-axis label from “number of days” to “number of years” for clarity. The y-axis has been 
normalized. Since all the datapoints are above 0.7, to better visualize the data and show the 
differences, the y-axis tick starts from 0.7. It has been made consistent across the two KM plots. 
We have also clarified the label for the y axis to be “CVD-death free survival”, and added p-
values between the curves in Fig. 3, as shown below.  

 
 

1.3) Thank you for better explaining the model 
(https://colab.research.google.com/github/DIAL-RPI/CVD-Risk-
Estimator/blob/develop/colab_run.ipynb) and providing Figure 1 and Sup Figure 1. 
For clinicians, this will still be a black box. For example, clinicians do not understand 
CNN, Tri2D-Net, extracted high dimensional CVD feature, deep CNN (is that different 
from CNN?), gradient weight class activation mapping. Other terms that clinicians may 
not know are MESA, CAC, CAD-RADS, AE+SVM, KAMP NET, Grad-CAM. You may 
want to explain it a little better for people with no understanding of machine learning 
or these minutiae of this field. Consider using a brief glossary or table. 

Response: Great point! We have provided a glossary in the supplementary material on pages 
S1 and S2, which is also attached below. 
“CAC Score: The coronary artery calcium (CAC) score is a semiqualitative measure of 
coronary calcification with ECG-gated, non-contrast CT. Agatston score34 is used as a 
measure of CAC in this paper. It reflects the total area of calcium deposits and the density of 
the calcium in coronary artery. 



CAD-RADS: The Coronary Artery Disease - Reporting and Data System (CAD-RADS)35 is an 
expert consensus document developed to standardize reporting of findings with coronary CT 
angiography. 
MESA Score: The Multi-Ethnic Study of Atherosclerosis (MESA) risk score36 is an estimation 
of 10-year coronary heart disease risk obtained using traditional risk factors and coronary 
artery calcium. 
CNN (a.k.a. deep CNN): A convolutional neural network (CNN) is one class of deep neural 
networks that most commonly applied to visual images analysis. 
DeepCAC: A deep learning based system17 designed for automatically calculating the CAC 
score from a chest CT image. 
AE+SVM: A two-stage machine learning based model32 designed for CVD mortality 
prediction. It is composed by an auto-encoder (AE) for image feature extraction and a support 
vector machine (SVM) for classification. 
KAMP-Net: An end-to-end deep learning based model33 designed for all-cause mortality 
prediction from a low-dose chest CT scan. 
Grad-CAM: Gradient-weighted Class Activation Mapping (Grad-CAM)37 is a visualization 
approach for intuitive interpretation of decisions made by a convolutional neaural network 
based model. It uses the gradient of a target class flowing into the final convolutional layer to 
produce a coarse localization map highlighting important regions in an image for predicting 
the class.”  

 
1.4) The authors could incorporate a table of patient demographics (similar to 1, but 

centered on the patients and the scans). How many exams were “normal” vs 
“abnormal”? What are some of the features detected in them? What was the 
comorbidity breakdown? 

Response: To present patient demographics more clearly, we have split the original Table 1 
into new Tables 1 and 2 focusing on demographics and scans parameters, respectively. We 
have added the number of “normal” and “abnormal” LDCT exams to Table 1. The new tables 
are on pages 4 and 5. 
In addition, we have provided additional information on comorbidity breakdown in 
Supplementary Figs. 4-6.  
All the new tables and figures are also attached below for your convenience. 

 



 

 

  

 

 



 

   



Response to Reviewer#2: 
 

This revision of the original paper contains several important improvements over the original 
paper. The most important improvements are the extension of the MGH validation set and the 
extension of the experiments, especially the Kaplan-Meier curves. In the meantime, a paper 
with a similar task has been published in Nature Communications: 
https://www.nature.com/articles/s41467-021-20966-2.  
 

Response: We would like to thank you so much for helping us improve our work and also 
pointing out the recently published paper in Nature Communications on a very similar topic. It 
is a great opportunity for us to use the results in that paper for not only cross validating our 
work but also demonstrating the unique values of our approach and results. We have therefore 
included the results obtained using their shared code in this revised version. More details are 
provided in the point-to-point response below.  
 
l Major Comments 
I think the paper has improved substantially, but I still have several major comments: 
 
2.1) I think it would make a lot of sense if this paper is put into context with the already 

published paper. That code is also publicly available, so it would be a much better 
comparison than the current comparison with the AE-SVM and KAMP-Net in my 
opinion. 

Response: We completely agree with you and have thus included the comparison with the 
work (https://www.nature.com/articles/s41467-021-20966-2), which is referred to as 
DeepCAC [17] in the revised version. DeepCAC developed a series of deep convolutional 
neural networks to locate the heart and then segment coronary artery calcium (CAC) from CT 
images. The prediction of cardiovascular risk is solely based on the quantified CAC. In contrast, 
after the heart is separated using a detection network, our deep network directly predicts the 
cardiovascular risk using the automatically learnt features including but not limited to CAC.  
We have included the ROCs obtained using the source code released by the authors of [17] in 
Figs. 4 and 2 in the revised version. As is clearly shown, DeepCAC indeed performed better 
than the two previous methods, AE+SVM and KAMP-Net. However, our proposed method 
outperformed DeepCAC with a significant margin (p≤0.0017) in both cardiovascular disease 
(CVD) screening and CVD mortality prediction on the NLST dataset. This is because our 
proposed method exploits other imaging features in addition to CAC, such as paracardiac fat. 
We have also applied DeepCAC to the MGH dataset for CVD screening. Again, our model 
significantly outperformed DeepCAC (p=0.0102). Note that DeepCAC also performed better 
on the MGH dataset (AUC=0.879) than the NLST dataset (AUC=0.753), which is consistent 
with our model (AUC=0.924 on the MGH dataset and AUC=0.871 on the NLST dataset). As 
we have explained in the manuscript, this may be due to the fact that the MGH dataset has 
better CT image quality.  

All the revised figures and corresponding analysis are also attached below for your convenience. 



 

 

 
“We first evaluated the proposed model for identifying patients with CVDs from the lung 
cancer screening population. Fig. 2a shows the receiver operating characteristic curves (ROCs) 
of multiple methods. Our deep learning model achieved an area under the curve (AUC) of 
0.871 (95% confidence interval, 0.860-0.882)(see Methods, Statistical analysis). With a 
positive predictive value (PPV) of 50.00%, the model achieved a sensitivity of 87.69%, which 
suggests that our model can identify 87.69% of the CVD-positive subjects using only a chest 
LDCT scan, when allowing half of the positive predictions as false. For the radiologist 
performance, all patients with ≥ minimal CAC (CAC Grade 1+) are considered as abnormal. 
It can be seen in Fig. 2a that CAC Grade 1+ yielded a sensitivity of 96.6% and a PPV of 35.3%. 
With a similar sensitivity of 96.6%, our model achieved a slightly but not significantly higher 
PPV of 38.4% (p=0.3847). In addition, we compared our model with the three recently 
reported works, KAMP-Net33, Auto-encoder (AE+SVM)32, and a deep learning based CAC 
socring model (DeepCAC)17. The table in Fig. 2a shows that our model significantly 
outperformed the other three methods (p<0.0001). It indicates that our model can use LDCT 
to differentiate subjects with high CVD risk from those with low risk. 

 
Further, we evaluated the performance of our model in quantifying CVD mortality risk. The 
results are shown in Fig. 2b, where CAC Grades 1+, 2+, and 3 denote the performance of 
mortality prediction using extent of subjective CAC categories 1 and above, categories 2 and 
above, and 3 only, respectively. The trained deep learning model was directly applied to this 
testing set to predict the CVD-caused mortality without fine-tuning. Our deep learning model 
achieved an AUC value of 0.768 (95% confidence interval, 0.734-0.801), which significantly 
outperformed the competing methods (p ≤ 0.0017) as shown in Fig. 2b. With the same PPV 
of averaged CAC Grade 2+ (10.8%), our model achieved a sensitivity of 80.8%. Specifically, 
in the NLST test set, our model successfully identified 97 of the 120 deceased subjects as high 



risk, while the averaged CAC Grade 2+ labeled 35 of those 97 cases as low risk. 
Additionally, it can be seen from Fig. 2b that our model achieved a similar performance to 
the average performance of human experts. It is worth mentioning that a significant 
difference exists between the three radiologists' annotations (p<0.0001), even though 
radiologist 1 performed better than our model.” 

 

 
“In the experiment of CVD screening shown in Fig. 4a, our deep learning model achieved a 
significantly higher (p<0.0001) AUC value of 0.924 (95% confidence interval, 0.909-0.940) 
than its performance on the NLST dataset (0.871), where the network was originally trained. 
Superior performance on this external MGH dataset may be due to the following two factors. 
First, MGH dataset acquired with contemporary scanners contains better quality images. 



Second, the MGH dataset combines the annotations of LDCT and ECG-gated cardiac CT as 
gold standard, which is more accurate than the annotation in NLST.” 

 
2.2) The paper is still confusing to me because it tackles both CVD screening (findings CVD 

abnormalities, primarily CAC), and CVD mortality prediction. For mortality prediction, 
there is no external data set, because there is no mortality data present for the MGH 
dataset. Therefore, the paper has little evidence on how the presented system would 
generalize to other datasets for predicting mortality. 

Response: The performance of CVD mortality prediction shown in Fig. 2b was evaluated on 
an independent test set from NLST, which was separated from the training and validation sets. 
The test data subjects were included in neither the training nor validation sets. In the recent 
DeepCAC paper [17], the method was also validated on the NLST dataset for mortality 
prediction. 
We agree with the reviewer that the lack of mortality recorded imaging datasets in both public 
and private domains is a general limitation of the existing studies. Since the use of LDCT at 
MGH (as well as from other US sites) started after the USPTF recommendations on LDCT, 
which came much later than the NLST, we do not have access to a sufficient number of patients 
with mortality information from CVD. We believe that with the increasing use of LDCT over 
time, CT data with CVD mortality information will become available and allow us to test 
generalizability of our work on datasets beyond NLST. The corresponding discussion has been 
included in Paragraph 2 on Page 11: 
“Our study’s limitation includes using CVD related ICD-10 codes for labeling the subjects, 
which may miss some CVD-related deaths or mislabel patients who died from other heart 
diseases as CVD mortality. Mitigating its influence on our study motivated us to collect data 
at MGH and evaluate our model using the surrogate gold standard CVD risk scores on the 
MGH dataset. Our results on the MGH dataset support the pre-trained model’s utilities on 
data from a different source. Another limitation is that we did not have access to a sufficient 
number of patients with mortality information from CVD. The use of LDCT at MGH (as well 
as from other United States sites) started after the United States Preventive Services Taskforce 
recommended annual screening for lung cancer with LDCT in 2013. We believe that with the 
increasing use of LDCT over time, CT data with CVD mortality information will become 
available.” 

 
2.3) To be able to use the presented system for CVD screening on the MGH dataset, the 

authors have to perform a 5-fold CV where they use linear classifiers on the features 
extracted from the original network as the final classifiers. It is unclear what linear 
classifiers are used. This needs clarification. Are they applied on the output of the fully 
connected layer, so the 1536-dimensional feature vector? If the authors used 5-fold CV, 
and 4 folds are used to optimize the linear classifier and 1 fold as test, this means that 
there are roughly 270 cases used to optimize this linear classifier? How different were 
the 5 classifiers in the end? This gives an indication how stable the feature set is. For 
me, it would be much more clear if the score of the original system would be validated 
in these experiments. This would then show the readers how the output of the system 
trained on NLST corresponds to CAC scores on the MGH dataset. 

Response: We agree with the reviewer that directly validating the scores of our model in those 
experiments on the MGH dataset would be clearer. This was the case for the CVD screening, 
but not for the other three experiments. In this revision, we have thus followed the reviewer’s 
suggestion and re-performed the experiments to directly apply our model output to predict the 



risks categorized by CAC score, CAD-RADS, and MESA 10-years risk score, respectively. 
We have also updated Fig. 4 to include the new experimental results. The figure is attached 
under the response to Comment #2.1. We have also revised the corresponding description in 
the main text (Pages 9 and 10), which is reproduced as follows: 

“To evaluate the generalization ability of the deep learning quantified CVD risk score, we 
directly applied the trained model to the MGH data and evaluate the consistency between the 
model predicted risk score from LDCT and the three clinically adopted risk scores calculated 
from ECG-gated cardiac CT. Our model was compared with two other previously reported 
studies on CVD risk prediction32,33. 

The predicted risk score from LDCT was first evaluated against the CAC score34. With a 
threshold of 400 for CAC scores, the MGH subjects were divided into two groups: 78 subjects 
with severe CAC and 157 subjects with none or minor CAC. Our model achieved an AUC value 
of 0.881 (95% confidence interval, 0.851-0.910) and significantly outperformed the other two 
methods (p<0.0001, see Fig. 4b), despite the fact that our model has never been trained for 
CAC score estimation. These results suggest that our deep learning quantified CVD risk score 
is highly consistent with the CAC scores derived from ECG-gated cardiac CT in differentiating 
patients with severe and non-severe CAC.  
The second experiment evaluates the capability of the deep learning model in classifying 
subjects into high and low risk groups using LDCT by comparing against the coronary stenosis 
(CAD-RADS) scores35 obtained by human experts on CCT. Subjects with CAD-RADS scores 
greater than or equal to 4 are labeled as with severe stenosis, i.e., positive samples (51 
subjects). The other 184 subjects with smaller scores were labeled as negative. Our model 
reached an AUC value of 0.763 (95% confidence interval, 0.704-0.821, see Fig. 4c). Our model 
significantly outperformed the other two methods (p≤0.0080). Unlike calcification, coronary 
stenosis is much harder to detect through a chest LDCT screening, while it is a direct 
biomarker of CVD risk. The performance obtained using LDCT is thus highly encouraging. 
The superiority demonstrates that our model can quantify the subclinical imaging markers on 
LDCT, making it a promising tool for CVD assessment in lung cancer screening. 
In the third experiment, patients were divided into high and low risk groups according to MESA 
10-year risk score36, which is a clinical gold-standard risk stratification score for CVD 
integrating multiple factors including gender, age, race, smoking habit, family history, diabetes, 
lipid lowering and hypertension medication, CAC score extracted from CCT, and laboratory 
findings including cholesterol and blood pressure. Because some of the 235 subjects did not 
have all the needed exams, we are only able to calculate the MESA scores of 106 subjects. 
When median MESA 10-year risk score in our patients was used as a threshold (14.2), 52 
subjects with greater scores were labeled as high risk, while the other 54 subjects were labeled 
as low risk. Our model achieved an AUC value of 0.835 (95% confidence interval, 0.781-0.890), 
which significantly outperformed all the other methods (see Fig. 4d).” 

 
2.4) One of the claims of the paper is that this system is trained end-to-end for mortality 

prediction and hence may look at more imaging aspects than only CAC. For example, 
it could look at epicardial fat. There is very little evidence that this is really the case. 
The only evidence I can find is the anecdotal Grad-CAM images from Figure 5. An 
experiment in which radiologists label this, and then a check on how the scores of the 
system correspond with that, would be a step to do that. 

Response: Good point! We agree that Fig. 5 only shows three cases on epicardial fat using 
Grad-CAM. To demonstrate that the developed system utilizes other information besides CAC, 
we computed the correlation between our deep learning estimated CVD risk score and the 



epicardial fat volume. To measure the epicardial fat volume, we first used an existing deep 
learning based heart segmentation model [17] to segment the heart region. Then, we identified 
fat using HU-value-based thresholding. All voxels within [-190,-30] HU were considered as 
fat. The Pearson correlation coefficient between our model predicted risk score and the fat 
volume is 0.199 (𝑝 < 0.0001). In contrast, the radiologist estimated CAC scores had a Pearson 
correlation of 0.078 (𝑝 = 0.0004) with the fat volume. The deep learning auto-estimated CAC 
by DeepCAC got a Pearson correlation of 0.0851 (𝑝 = 0.0001) with the fat volume. The 
correlation between the output of our model and the volume of fat is much stronger than the 
compared methods that focus on CAC only. This indicates that our model considers fat as one 
of risk factors in the risk quantification. The corresponding results have been included in the 
Discussions section of the revised manuscript. 

In addition, we came across several references, which have consistently demonstrated that 
epicardial/pericardial fat is correlated with CVD risks. Prior studies including one by Rosito et 
al. on 1,155 patients from the Framingham Heart Study reported that pericardial fat was related 
to hypertension, diabetes mellitus, and higher triglycerides, lower high density lipoprotein, and 
metabolic syndromes (p<0.01) [39]. In another study on 1,030 patients with type 2 diabetes, 
Christensen et al. reported that epicardial fat improved risk prediction over other CVD risk 
factors [38]. 
“To interpret the prediction results of Tri2D-Net, we generated heatmaps using the Gradient-
weighted Class Activation Mapping (Grad-CAM)37 and exported the attention maps from the 
attention block. Fig. 5 shows the results of three representative subjects from the NLST dataset. 
Figs. 5a and 5b belong to two subjects who died of CVD, referred as Case-a and Case-b, 
respectively. Fig. 5c shows the image of a subject Case-c, who survived by the end of the trial. 
Case-a has severe CAC with an average CAC Grade of 3.0 by the three radiologists. Tri2D-
Net captured the strong calcium as shown in the Grad-CAM heatmap and predicted a high 
CVD risk score of 0.90. Case-b (Fig. 5b) had mild to moderate CAC with an average CAC 
Grade of 1.67. However, the attention block noticed abundant juxtacardiac fat and Tri2D-Net 
gave a high score of 0.82 for the case. Case-c has mild CAC graded as 1.33 by the radiologists. 
Since there was little calcification and juxtacardiac fat as indicated by the heatmaps, Tri2D-
Net predicted a low risk score of 0.23 for this survived patient. Visualization of these cases 
demonstrates the contributions of both CAC and juxtacardiac fat to our model for predicting 
CVD risk scores in contrast with the mere reliance on CAC as the sole biomarker in prior 
studies17, 28–31. It is consistent with the clinical findings that epicardial/pericardial fat 
correlates with several CVD risks38,39. Based on this finding, we further examined the Pearson 
correlation between our model predicted CVD risk score and juxtacardiac fat volume. Our 
model achieved a Pearson correlation of 0.199 (p<0.0001) with juxtacardiac fat volume. In 
contrast, the radiologist estimated CAC and the deep learning estimated CAC17 got Pearson 
correlation of 0.078 (p=0.0004) and 0.085 (p=0.0001), respectively. The ability to capture 
various features in addition to CAC makes our model superior to the existing CAC scoring 
models for CVD screening and CVD mortality quantification.” 

 
 
l Minor Comments 
1) I now understand that a random CT scan per patient is used for the NLST data. Also, I think 

I now understood that patients with inconsistent CVD labels over time are excluded. 
Therefore, the authors go from 16,264 subjects to 10,395 subjects. Two comments: 1) I 
think it would have made more sense if the baseline CT would be used for all NLST subjects, 
because then, you had roughly 6.5 years of follow-up for all NLST subjects. But this is a 



minor comment. 2) The exclusion of subjects with inconsistent labels is a limitation of the 
study that needs to be added to the discussion. 

Response: 1) When training the model, we used LDCT scans of each patient from all the 
available time points. In our sampled test set, 1,851 subjects were active at the end of the trial 
with an averaged follow-up time of 6.5 ± 0.6 years. In these subjects, only 275 subjects had 
follow-up time less than 6 years. The remaining 1,576 subjects had greater than 6 years of 
follow-up. We plotted the histogram of the follow-up time below to show the distribution. 

2) We excluded 5,869 subjects due to either technical reasons (slice spacing > 3mm, scan length 
along superior to inferior < 200 mm, or inability to process certain LDCT images) or for the 
lack of information related to absence or presence of CVD. For those subjects with inconsistent 
labels in their LDCT reports, we did not exclude any of them but only used their scans with 
clear/latest labels. We have clarified this point in the revised version. 

 
 
“The NLST data are publicly available through the Cancer Data Access System (CDAS) of the 
National Institutes of Health (NIH). LDCTs were collected from multiple institutions, with slice 
spacing varying from 0.5mm to 5mm. Scans with slice spacing larger than 3mm or with scan 
length along superior to inferior less than 200 mm were filtered out. Supplementary Fig. 2 
shows the inclusion and exclusion criteria. Since the NLST was designed for lung cancer 
screening, CVD related information is incomplete. Therefore, we only used LDCT images with 
clear CVD information. Specifically, for all CVD-negative patients and CVD-positive patients 
who died in the trial with CVD-related causes, all available LDCT exams were consideredas 
valid exams. For other CVD-positive patients, only the exams with clear CVD abnormalities 
reported were considered as valid exams. In the training set, all LDCT volumes generated in 
the valid exams were treated as independent cases to increase the number of training samples. 
In the validation and testing phases, a single CT volume was randomly selected from the valid 
exams of each subject to preserve the original data distribution. Since the number of LDCT 
exams is inconsistent across subjects (for example, patients with death or diagnosis of lung 
cancer on initial LDCTs did not complete all the follow-up LDCTs), the use of these CT 
volumes as independent cases can change the data distribution and introduce a bias to the 
results. After the random selection, the formed test set keeps an averaged follow-up time of 



6.5±0.6 years. Other properties of the NLST dataset are summarized in Tables 1 and 2. More 
detailed information including manufacturer, scanner,and reconstruction kernel can be found 
in Supplementary Table 2.” 
  



Response to Reviewer#3: 
 

I appreciate to have a chance to review the revised manuscript. I believe the concerns brought 
up in the initial manuscript were substantially reduced. 

Response: We appreciate the reviewer’s critiquesc/suggestions very much which are 
invaluable in helping us improve the quality of our paper. 
 



Reviewers' Comments: 

 

Reviewer #1: 

None 

 

Reviewer #2: 

Remarks to the Author: 

I appreciate the extensive revision of the manuscript by the authors, and I think the changes have 

improved the manuscript a lot! The improved performance over the recently published DeepCAC 

model is promising. 

I am satisfied with the responses, and only have two minor points: 

 

1) I do not understand why the results in Fig 4 for KAMP-Net and AE+SVM have also changed for 

the CAC, CAD-RADS and MESA figures. Did the authors previously also use linear classifiers on top 

of the features extracted by these approaches in the 5-fold CV? That would be my only 

explanation.. 

 

2) I appreciate the correlation experiment with the juxtacardiac fat and I think this adds the 

needed evidence that the model also looks at juxtacardiac fat. From the letter to the reviewers, it 

is clear that an automatic algorithm is used to measure this, but it is not explained in the added 

section in the discussion. I think this needs to be briefly explained to the readers, just like the 

authors explained it to me in the letter. 



 
 
 
 
 
 

Responses to Reviewers’ Critiques 
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Comments and Responses 
 
AE Comment: “Thank you again for submitting your manuscript "Deep Learning Predicts 
Cardiovascular Disease Risks from Lung Cancer Screening Low Dose Computed 
Tomography" to Nature Communications. We have now received reports from 2 reviewers 
and, on the basis of their comments, we have decided to invite a revision of your work for 
further consideration in our journal. Your revision should address all the points raised by 
our reviewers (see their reports below).” 

 

Response: We are highly grateful to the editor and the reviewers for the very quick 
turnaround. In this revision, we have addressed the two minor comments, as detailed in our 
point-to-point responses below. The manuscript has also been updated accordingly with the 
changes highlighted in blue.  



Response to Reviewer #2: 
 

I appreciate the extensive revision of the manuscript by the authors, and I think the changes 
have improved the manuscript a lot! The improved performance over the recently published 
DeepCAC model is promising. 
 

Response: We appreciate the reviewer’s advice, which has helped us tremendously improve 
the quality of our paper. 
 
I am satisfied with the responses, and only have two minor points: 
 
1) I do not understand why the results in Fig 4 for KAMP-Net and AE+SVM have also 
changed for the CAC, CAD-RADS and MESA figures. Did the authors previously also use 
linear classifiers on top of the features extracted by these approaches in the 5-fold CV? That 
would be my only explanation. 
 

Response: Your understanding is correct. We previously used linear classifiers on top of the 
features extracted by these approaches in the 5-fold CV, but in our last round of revision all 
the algorithms were directly applied to the MGH datasets without finetuning. Hence, the 
results were accordingly changed in the updated figures. 
 
2) I appreciate the correlation experiment with the juxtacardiac fat and I think this adds the 
needed evidence that the model also looks at juxtacardiac fat. From the letter to the 
reviewers, it is clear that an automatic algorithm is used to measure this, but it is not 
explained in the added section in the discussion. I think this needs to be briefly explained to 
the readers, just like the authors explained it to me in the letter. 

Response: Good point! We have added the explanation in the first paragraph on page 11 of 
the main text. 

“To measure the volume of juxtacardiac fat, we first used an existing deep learning based 
heart segmentation model17 to segment the heart region. Then, we identified fat inside the 
segmented heart by HU-based cutoffs (voxels in [-190,-30] HU were considered to represent 
fat).” 
 



Reviewers' Comments: 

 

Reviewer #2: 

Remarks to the Author: 

I am satisfied with the responses of the authors. I think the paper is ready for publication. 



Response to Reviewer #2: 
 

I am satisfied with the responses of the authors. I think the paper is ready for publication. 
 

Response: We highly appreciate your effort and advice that has helped us significantly enhance 
the quality and impact of our work. 
 
 


