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Supplementary Note 1: Charge-carrier density and mobility from Hall 

measurements 

From linear fits of the low-field Hall measurements (Supplementary Fig. 2a and b), we obtain 

the temperature-dependent dominant charge-carrier concentration n = (dxy/d|B|·e)-1 and the 

average mobility  = (xx,0·e·n)-1 (Supplementary Fig. 2c) of ZrTe5, using a single-band model.  

 

Supplementary Note 2: Mapping of the Fermi surface by analyzing Shubnikov-

de Haas oscillations 

We mapped the Fermi surface of our ZrTe5 samples by analyzing Shubnikov-de Haas 

oscillations in the temperature (T)-dependent longitudinal magneto-electrical resistivity 

xx(B).1 In these measurements, the electrical current is applied along the a-axis with the 

magnetic field set along the a, b, and c axis of the crystals. The results of our analysis are 

summarized in Supplementary Table 1. For all directions, we observe single frequencies BF,i, 

as shown in (Figs. 1 – 3 and Supplementary Figs. 3 - 14) with i being the direction of applied 

magnetic field. The Landau level index v is related to the Fermi surface as 2(v + g) = BF, j/B, 

where the phase shift g is approximately zero for all samples. From the slope of linear fits in 

Landau-index fan diagrams, we extract BF, j and use the Onsager relation BF, j = (ℏ/2e)SF, j to 

extract the Fermi surface cross-section SF,j. Here, ℏ is the reduced Planck constant and e is the 

electron charge. Under the assumption of an ellipsoidal Fermi surface, the Fermi wave vectors 
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are then given by kF,a = ���,���,�/����,�, kF,b = ���,���,�/� and kF,c = ���,���,�/����,� . 

The kF, j relate then directly to the Fermi wave length F, j = 2/kF,j.  

The resistance amplitude of the maxima in the Shubnikov-de Haas oscillations in the oscillatory 

part of the longitudinal electrical resistivity xx(B) is proportional to 

(B)/sinh[(B)]·exp(c/B)  with the cyclotron frequency c,j=
� |�|

��,�
 and (B) = 

��������

ħ�|�|
, 

where mc, j is the cyclotron mass. Hence, when plotting log(xx(B)·(B)/sinh[(B)]) against 

1/B, the carrier lifetime  can be extracted from the slope of the logarithmic (Supplementary 

Fig. 8c-e). xx(B) is obtained from subtracting the smooth background from the measurement 

data using a 2nd order polynomial. The corresponding effective mass can be extracted from 

fitting the T-dependence to (B)/sinh[(B)] (Supplementary Fig. 8f-h). Assuming that the 

massive Dirac band exhibits a linear dispersion at low energies, we finally can obtain the 

effective masses m* from the cyclotron masses in the x, y and z direction: mc,a = ���
∗ ��

∗, mc,c 

= ���
∗ ��

∗   and mc,b = ���
∗ ��

∗, respectively. The Fermi velocities vF,j can be further obtained 

with vF, j m*
 j = ℏ kF, j. Eventually, the average Fermi energy can be estimated using EF = (vF,a

2 

ℏ2kF,a
2 + vF,b

2 ℏ2kF,b
2  + vF,c

2 ℏ2kF,c
2)0.5 . For sample A we obtain EF = (12 ± 3) meV, in agreement 

with the distance of EF and the conduction band edge CB1 observed in the scanning tunneling 

spectra in Fig. 2e. The deviation of EF is obtained from the error of the fits in kF,i and vF,i. 

 

Supplementary Note 3: Calculation of the Hall conductivity tensor element 

We calculate the Hall conductivity tensor element xy using xy = xy/(xx
2+xy

2), assuming that 

xx
 = yy. However, in general xy = xy/(xxyy +xy

2) with a magnetic field in b-direction. Due 

to the geometry of the ZrTe5 crystals (elongated needles) and its mechanical fragility, 

performing reliable measurements of yy on our samples is not possible.  Instead, we estimate 
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the error of the xy using the ratio of Drude resistivities yy/xx = (nace2a/��
∗ )/ (nace2c/��

∗) 

estimated from the quantum lifetimes and effective masses obtained from Shubnikov-de Haas 

oscillations on sample A, given in Supplementary Table 1. nac is the charge-carrier 

concentration in the x-y-plane. Based on this analysis we find yy/xx ≈ 0.8, which results in an 

error of 1 % between the theoretical xy and xy at the Hall plateaus, owing to xx (B) < xy (B). 

This error lays well within the estimated error of kF,b of 10 %. Therefore, the scaling of the Hall 

plateaus in xy. Hall plateaus are expected to be observable in the measurement of in xy. 

 

Supplementary Note 4: Non-linear electrical transport in multilayer quantum Hall 

systems 

In Ref.1, a non-Ohmic transport behavior has been observed in the quantum Hall state, 

interpreted as evidence for the existence of a magnetic field-induced charge density wave 

(CDW). Indeed, one expects a non-Ohmic behavior arising from a sliding CDW state when the 

applied bias voltage or current reaches its depinning threshold. However, non-Ohmic transport 

is also seen in multilayer quantum Hall systems without a CDW2 - or more general, without a 

sliding of the 2DEG lattice. Instead, the non-Ohmic current–voltage characteristics is caused 

by a crossover from surface transport to bulk transport upon reaching a certain threshold 

voltage: At low voltages, the current flows through the surface of the sample only, but at high 

voltages also through its bulk when localization gaps are overcome. Hence, a mon-Ohmic 

transport characteristics does not necessarily provide evidence for a CDW state in a quantum 

Hall system. 
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Supplementary Note 5: Derivative relations between electrical and 

hermoelectrical quantum transport coefficients in ZrTe5 

For a wide range of conditions, high mobility two-dimensional quantum Hall systems have been 

observed to display the empirical electrical3–6 and thermoelectrical7 derivative relations 

 

xx = r B dxy/dB,  (1) 

 

and 

 

Sxy = s B dSxx/dB, (2) 

 

where B is the magnetic field, xx and xy are the longitudinal and Hall component of the 

resistivity tensor, respectively, and Sxy and Sxx are the Nerst and the Seebeck coefficient, 

respectively. r and s are sample-dependent constants, found to be in the range of 0.01 – 0.05 

and approximately equal to each other. They provide a measure of the local electron 

concentration fluctuations,8–10 determining the dissipation in the quantum Hall system.  

To test these relations for the 3D Hall effect in ZrTe5, we have plotted both the measured and 

calculated (Eq. 1) xx for Sample A (Supplementary Fig. 15 a) and Sample B (Supplementary 

Fig. 15 b) as well as the measured and calculated (Eq. 2) Sxy for Sample A (Supplementary Fig. 

15 c) and Sample B (Supplementary Fig. 15 d). We find that the measured and calculated 

quantities show maxima and minima at the same magnetic field positions. In particular, the 

derivative relations are well fulfilled with r = 0.04 and s = 0.01 for Sample A and r = 0.03 

and s = 0.01 for Sample B, which is in the expected range reported for two-dimensional 

quantum Hall systems. These results indicate that the plateaus observed in xy of ZrTe5, are 

indeed related to quantum Hall physics. 
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Supplementary Note 6: Discussion of the sensitivity of Electrical resistivity, 

thermoelectric coefficients and magnetization for probing the hypothetical Charge-

Density-Wave in ZrTe5 

Electrical resistivity, thermoelectric coefficients and magnetization on their own might not be 

enough to conclude the absence of a charge-density-wave (CDW) transition. Nevertheless, we 

argue that despite the backgrounds in each of these quantities, we clearly resolve Shubnikov-

de Haas and de Haas van-Alphen oscillations up to the 4th and 5th Landau level. The ability to 

see such tiny modifications of the density of states in a 3D system at the Fermi level strongly 

supports that the resolution of all of these measurements is well in range to detect a full gapping 

of the Fermi surface as expected for the CDW scenario in the quantum limit of ZrTe5. 

Quantitatively, the expected effect of a potential CDW transition in ZrTe5 on the electrical 

resistivity, thermoelectric coefficients and magnetization in fields at low temperatures can be 

estimated from the low or zero-field temperature-dependencies of these quantities, because 

ZrTe5 undergoes a Lifshitz transition at around 90 K. At this Lifshitz transition, the Fermi level 

crosses the intrinsic band gap of ZrTe5 between hole and electron bands, which is in the order 

of 20 meV1 and, hence, of the order of the expected CDW gap11 in the magnetic field range of 

interest at low temperatures. Each of the quantities, electrical resistivity, thermoelectric 

coefficients and magnetization, shows a significant response at the Lifshitz transition as 

explained in the main text of the manuscript. It is therefore to be expected that the opening of a 

CDW gap, if it is of the size that was stipulated by papers advocating this scenario,1,11 should 

similarly show up in these measurements.  

 

 



   

 
 

 
9 

 

Supplementary Note 7: Discussion of the sensitivity of Scanning Tunneling 

Spectroscopy for probing the hypothetical Charge-Density-Wave in ZrTe5 

Scanning Tunneling Spectroscopy (STS) provides direct information about the electronic 

density of states in a sample as a function of the energy and is probes the local electronic 

structure of metals, semiconductors, insulators and CDW gaps on a scale unobtainable with 

other spectroscopic methods.12–14 We do not see a reason why STS should be not be able to 

detect the CDW formation in ZrTe5.  

Quantitatively, the expected effect of a potential CDW transition in ZrTe5 on the dI/dV spectra 

at low temperatures can be estimated from the bulk band gap observed as a drop of the dI/dV 

magnitude above CB1 in Fig. 2e, which is in the order of 20 meV1 and, hence, of the order of 

the expected CDW gap11 in the magnetic field range of interest at low temperatures. It is 

therefore to be expected that the opening of a CDW gap, if it is of the size that was stipulated 

by papers advocating this scenario,1,11 should similarly show up in these measurements. Still, 

no signatures of a CDW were observed in our measurements. 

 

Supplementary Note 8: Discussion of the sensitivity of ultrasound propagation 

measurements for probing the hypothetical Charge-Density-Wave in ZrTe5 

As mentioned in the main text, ultrasound propagation is considered one of the most sensitive 

probes for detecting phase transitions. One argument for this sensitivity is that ultrasound 

measurements probe the system’s compressibility, and thus a thermodynamic quantity that is 

very much sensitive to sudden changes in the free energy, such as those caused by a CDW gap 

opening. This idea has been successful applied in a wide range of materials at the CDW 

transition.15–21 We do not see a reason why ultrasound should be not be able to detect the CDW 

formation in ZrTe5. Still, no signatures of a CDW were observed in our measurements. 
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For a quantitative estimate of the resolution of our ultrasound measurement setup, we recall that 

for usual electronic phase transitions the changes of sound velocity are in the order of 10-3 - 10-

2. The setup used in our experiment can detect changes of sound velocity of the order of 10-6 

down to 2 K and magnetic fields up to 38 T.22 Our measurement could thus only miss the CDW 

formation if the electron-phonon coupling is extremely weak, and if the CDW gap is 

particularly small, which would in turn directly contradict the existing theoretical picture for 

the formation of a CDW in ZrTe5 proposed in Supplementary Ref. 11. 

To test if we can instead reconcile our ultrasound data with our theoretical scenario, we 

modelled the ultrasound measurement as follows. We started from the exact same model with 

the exact same model parameters as were used for the description of transport and 

magnetization, to which we added a generic electron-phonon-coupling. We then calculated the 

sound velocity renormalization to second order in the electron-phonon-coupling. The sound 

velocity renormalization more precisely derives from an electronic particle-hole bubble 

diagram. In that respect, our calculation is very similar to the one of Ref. 23 for Weyl semimetals. 

We find that the changes of the sound velocity in ZrTe5 observed in our experiments on samples 

can well be explained in our model (see Fig. 2f). 

 

Supplementary Note 9: Discussion of the sensitivity of X-ray diffraction for probing 

the hypothetical Charge-Density-Wave in ZrTe5 

X-ray diffraction (XRD) is a very sensitive tool for the study of structural properties of matter. 

An XRD experiment can, therefore, typically detect the formation of a CDW via the emergence 

of a satellite Bragg peaks together with an additional broad fluctuation contribution close to the 

transition point.14 Those additional satellite peaks are expected to originate from both the charge 
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modulation of the electrons involved in the formation of the CDW order and the additional 

modulation of charge density of the core electrons associated with the modulation of the lattice.  

The reason we have selected the (010)-reflection as a benchmark for the search of satellite 

reflections is that in orthorhombic crystals the (010)-reflections are forbidden by selection rules. 

Here, their presence signifies a slight distortion from the perfect orthorhombic symmetry. The 

observed (010)-type reflections are over 200-times smaller than the main Bragg reflections in 

the case of ZrTe5.24 This fact alone signifies that the intensity of the used beam allows to resolve 

even the slightest distortion to perfect periodicity. In addition, the faint appearance of the (010)-

type reflections ensures that the potentially emerging satellite peaks would not be 

overshadowed by the main reflection.  

For a quantitative estimate of the momentum (k) resolution of our X-ray diffraction 

measurements, we use the rather conservative assumption that the apparent width of the (010)-

reflection is already limited by instrumental resolution. This procedure puts a lower bound on 

our k-space resolution to be ca. 0.036 nm-1. This is an order of magnitude smaller than the 

expected kq of the CDW in ZrTe5.1   

Of course, there still remains the argument that the amplitude of charge modulation could be so 

small that the new Bragg reflections would not be observable despite using an X-Ray source 

even with very high brilliance (P21 beamline at Petra III, DESY Hamburg).  Recently, Qin et 

al.11 have used the band structure parameters of ZrTe5 to calculate the required strength of the 

phonon-electron coupling, and the energy gap resulting from the formation of a CDW in this 

model. They estimated that the CDW gap should be of the order of 10-20 meV. They also argue 

that the CDW-formation is driven by electron-phonon-coupling, whose coupling constant 

would have to be around 537.3eV · nm-1. Those values are significantly bigger than in the 

corresponding ones for NbSe2 for example, where the gap is only around 5meV.25 This should 
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translate to even a greater intensity of the new superstructure Bragg peaks related to the CDW 

order in ZrTe5. However, already the CDW-induced satellite peaks in the X-ray spectra of 

NbSe2 are easily detectable even in commercially available in-house X-ray diffractometers.25 

In contrast, our experiments employed synchrotron radiation with incident beam energy 100 

keV ensuring we would probe not only the surface of the sample but actually its bulk. In 

addition, the brilliance of the P.21 beamline exceeds 1018 �������

� ��� ������.�%��.
  -  several orders 

of magnitude more than achievable in in-house X-ray sources. Such a setting should in our view 

allow to detect even the smallest structural details (as outlined in the previous sections), in 

particular partial loss of translational invariance. For diffraction on NbSe2 using in-house x-ray 

sources see for example Supplementary Ref. 25 and for measurements performed using 

synchrotron radiation for example Ref. 26. 

This suggests that, if present, the CDW order should be clearly visible in our X-ray 

measurements as additional superstructure satellite peaks. In fact, the same instrument we have 

used in the study of ZrTe5 has been used in the past for the study CDW order in YBCO27 with 

a similar gap size to that expected in ZrTe5. Still, no such peaks were detected in our 

measurements. We therefore believe that our X-ray data is strongly suggestive of a state without 

a CDW. 

 

Supplementary Note 10: Discussion of the sensitivity of Raman spectroscopy for 

probing the hypothetical Charge-Density-Wave in ZrTe5 

To demonstrate the sensitivity of our setup, we have also measured on the prototypical CDW 

material TiSe2, in which we do in fact see the expected additional peaks that emerge due to the 

formation of a CDW (see Supplementary Fig. 17). In contrast, on ZrTe5, our Raman 

experiments do not show any signatures of a gap formation (which would be heralded by 
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additional peaks appearing). Our Raman data is therefore strongly suggesting the absence of a 

CDW in ZrTe5. 

 

 
 
Supplementary Figures 

 

 

Supplementary Fig. 1. Longitudinal resistivity xx (left axis, dark blue) and Seebeck 

coefficient (right axis, green) of ZrTe5 sample B as a function of temperature T at zero 

magnetic field.  
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Supplementary Fig. 2. Charge-carrier concentration n and Hall mobility  of sample A 

and B at 2 K. a, Linear fits (red line) of the Hall resistivity data (black curve) at low magnetic 

fields (fit range ±0.5 T) of sample A and b, of sample B. The charge-carrier concentration n = 

(dxy/d|B|·e)-1 is extracted from the slope of the linear fits dxy/d|B|. Here, e is the electron 

charge. Subsequently, the Hall mobility  = (xx,0·e·n)-1 is calculated, using the longitudinal 

electrical resistivity values at zero field xx,0 from Fig. 1a and Supplementary Fig. 1. 
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Supplementary Fig. 3. Rotation angle-dependence of the Shubnikov-de Haas oscillations 

of Sample B. a, The longitudinal electrical resistivity xx versus magnetic field B for various 

rotation angles of B in the b-a plane and b, xx in the b-c plane at 2 K. c, Corresponding Landau-

level fan diagram for various rotation angles of B in the b-a plane and d, in the b-c plane. The 

dots in the fan diagrams are the position of the minima (integer Landau index v) and maxima 

(half-integer v) of xx in versus B plotted in Supplementary Fig. 3a and b. The lines are linear 

fits, which slope is the Shubnikov-de Haas frequency BF. e, BF as a function of the angle between 

B and the b-axis, rotated within the a-b plane and f, within the b-c plane. 
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Supplementary Fig. 4. Rotation angle-dependence of the Shubnikov-de Haas oscillations 

of Sample A. a, The Seebeck coefficient Sxx versus magnetic field B for various rotation angles 

of B in the b-a plane and b, Sxx in the b-c plane at 2 K. c, Corresponding Landau-level fan 

diagram for various rotation angles of B in the b-a plane and d, in the b-c plane. The points in 

the fan diagrams are the position of the minima (integer Landau index v) and maxima (half-

integer v) of Sxx in versus B plotted in Supplementary Fig. 3a and b. 
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Supplementary Fig. 5. Analysis of the Shubnikov-de Haas oscillations in the 

thermodynamic properties of Sample C, E and G for the magnetic field B applied along 

the b-axis of the crystals at 2 K.  a, Magnetization M of Sample C as a function of B. b, Sound 

velocity variation vs/vs of the transverse mode (propagation along the a-axis, polarization 

vector in the a-c plane) of Sample E as a function of B. a, Magnetization M of Sample G as a 

function of B. d, Oscillatory part of the magnetization M as a function of inverse magnetic 

field B-1, obtained by subtracting the linear background from the data shown in Supplementary 

Fig. 5 a. e, vs/vs as a function of B-1. f, M as a function of B-1, obtained by subtracting the 

linear background from the data shown in Supplementary Fig. 5 c. g, Corresponding Landau-

level fan diagram of Sample C; h, Sample E; and i, Sample G. The points in the fan diagrams 

are the position of the minima (integer Landau index v) and maxima (half-integer v) the 
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corresponding data plotted in Supplementary Fig. 5 d-f. The red lines are linear fits, which slope 

is the Shubnikov-de Haas frequency given in Supplementary Table 1. 
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Supplementary Fig. 6. Topography, magnetotransport and analysis of the Shubnikov-de 

Haas oscillations of Sample D. a, Topography of ZrTe5 from scanning tunneling microscopy 

at 0.4 K in zero magnetic field B. b, Longitudinal electrical resistance Rxx (left axis) and Hall 

resistance Rxy (right axis) as a function of B at 2 K with B applied along the b-axis of the crystal. 

c, The oscillatory part of the longitudinal resistance Rxx versus inverse magnetic field B-1, 

obtained by subtracting a second order pominomial background from the Rxx data shown in 

Supplementary Fig. 6 b. d, Corresponding Landau-level fan diagram. The points in the fan 

diagram are the position of the minima (integer Landau index v) and maxima (half-integer v). 

The red line is a linear fit, which slope is the Shubnikov-de Haas frequency given in 

Supplementary Table 1. 

 



   

 
 

 
20 

 

  

Supplementary Fig. 7. Temperature (T)-dependence of the longitudinal electrical 

resistivity xx and the Hall resistivity xy of Sample B. a, xx and b, xy as a function of 

magnetic field B for various T (30 K ≥) with B applied along the b-axis of the crystal. c, xx and 

d, xy as a function of B for various 200 K ≥ T > 30 K with B applied along the b-axis of the 

crystal. 
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Supplementary Fig. 8. Determination of the mobility and cyclotron mass of Sample B. a, 

Longitudinal electrical resistivity xx as a function of magnetic field B for various temperatures 

T ≥ 30 K with B applied along the a-axis of the crystal and b, along the c-axis of the crystal. c, 

Dingle plots of xx|B|sinh[(T)] versus B-1 with (B) = 
��������

ħ��
 at 2 K with B applied along 

the a-axis of the crystal, d, the b-axis of the crystal and e, along the a-axis of the crystal. The 

lines are linear fits to the measurement data to obtain the Dingle temperature, as explained in 

the Supplementary Note 2. f, The cyclotron masses mc for B applied along a, g, along b and h, 

along the c-axis of the crystals obtained from fits (red lines) to xx/xx,0, where xx,0 is the 

extrapolated oscillatory part of the longitudinal electrical resistivity xx at zero Kelvin.xx 

is obtained by subtracting a second order polynomial background from the measurement data.  

xx for each principal direction is taken at the magnetic field of the lowest accessible Landau 

level. 

 



   

 
 

 
22 

 

 

Supplementary Fig. 9. Temperature (T)-dependence of the Seebeck coefficient Sxx and the 

Nernst coefficient Sxy of Sample A. a, Sxx and b, Sxy as a function of magnetic field B for 

various T (42 K ≥) with B applied along the b-axis of the crystal. c, Sxx and d, Sxy as a function 

of B for various 200 K ≥ T > 30 K with B applied along the b-axis of the crystal. 
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Supplementary Fig. 10. Magneto-transport data of Sample A across the full magnetic field 

(B)-range investigated at 2 K with B applied along the b-axis of the crystal. a, Longitudinal 

electrical resistivity xx, b, Hall resistivity xy, c, Seebeck coefficient Sxx and d, Nernst 

coefficient Sxy as a function of B. The plateau observed in xy scales with (h/e2) /kF,b, with the 

Planck constant h, the electron charge e, and the Fermi wave vector along the b-axis of the 

crystal kF,b. 
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Supplementary Fig. 11. Magneto-transport data of Sample A from -2 T to 2 T at 2 K with 

the magnetic field B applied along the b-axis of the crystal. a, Longitudinal electrical 

resistivity xx, b, Hall resistivity xy, c, Seebeck coefficient Sxx and d, Nernst coefficient Sxy as 

a function of B. The plateau observed in xy scales with (h/e2) /kF,b, with the Planck constant 

h, the electron charge e, and the Fermi wave vector along the b-axis of the crystal kF,b. 
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Supplementary Fig. 12. Magneto-transport data of Sample B across the full magnetic field 

(B)-range investigated at 2 K with B applied along the b-axis of the crystal. a, Longitudinal 

electrical resistivity xx, b, Hall resistivity xy, c, Seebeck coefficient Sxx and d, Nernst 

coefficient Sxy as a function of B. The plateau observed in xy scales with (h/e2) /kF,b, with the 

Planck constant h, the electron charge e, and the Fermi wave vector along the b-axis of the 

crystal kF,b. 
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Supplementary Fig. 13. Magneto-transport data of Sample B from -2 T to 2 T at 2 K with 

the magnetic field B applied along the b-axis of the crystal. a, Longitudinal electrical 

resistivity xx, b, Hall resistivity xy, c, Seebeck coefficient Sxx and d, Nernst coefficient Sxy as 

a function of B. The plateau observed in xy scales with (h/e2) /kF,b, with the Planck constant 

h, the electron charge e, and the Fermi wave vector along the b-axis of the crystal kF,b. 
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Supplementary Fig. 14. High-field magneto-transport on Sample H. a, Longitudinal 

electrical resistivity xx at 2 K as a function of magnetic field B applied along the b-axis of the 

crystal up to ±70 T; b, up to ±20 T; and c, up to ±2 T. d, Oscillatory part of the llongitudinal 

electrical resistivity xx as a function of B-1. e, Corresponding Landau-level fan diagram. The 

points in the fan diagram are the position of the minima (integer Landau index v) and maxima 

(half-integer v) of xx versus B plotted in Supplementary Fig. 13d. 
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Supplementary Fig. 15. Derivative relations between electrical and thermoelectrical 

quantum transport coefficients of Sample A and B. a, Measured (blue line) and calculated 

(red line) longitudinal electrical resistivity xx at 2 K as a function of magnetic field B applied 

along the b-axis of the crystal of Sample A. The calculated xx is obtained from the empirical 

relation xx = ·B·dxy/dB from xy plotted in Supplementary Fig. 9 b. b, Measured (blue line) 

and calculated (red line) xx at 2 K as a function of B applied along the b-axis of the crystal of 

Sample B. The calculated xx is obtained from the empirical relation xx = r·B·dxy/dB from xy 

plotted in Supplementary Fig. 11 b. c, Measured (dark grey line) and calculated (green line) 

Nernst coefficient Sxy at 2 K as a function of B applied along the b-axis of the crystal of Sample 

A. The calculated Sxy is obtained from the empirical relation Sxy = s·B·dSxx/dB from Sxx plotted 

in Supplementary Fig. 9 c. d, Measured (dark grey line) and calculated (green line) Nernst 

coefficient Sxy at 2 K as a function of B applied along the b-axis of the crystal of Sample A. The 
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calculated Sxy is obtained from the empirical relation Sxy = ·B·dSxx/dB from Sxx plotted in 

Supplementary Fig. 11 c. r and s are scaling factors of the order of 0.01. 
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Supplementary Fig. 16. 3D electrons in magnetic fields. a, Sketch of a stack of non-

interacting two-dimensional electron systems (2DESs) in the quantum Hall state. a, b and c 

denote the spatial directions, B the magnetic field. b Energy (E)-levels as a function of 

momentum vector kb in b-direction of a stack of non-interacting 2DESs in a finite magnetic 

field. EF denotes the Fermi level c, Sketch of a stack of interacting 2DESs in the quantum Hall 

state. d, Formation of three-dimensional (3D) Landau bands for non-vanishing electron hopping 

between the layers of a 2DESs. kF,b labels the Fermi wave vector in the b-direction. e, Sketch of 

a stack of a 3D electron system in the quantum Hall state. f, Dispersion of ZrTe5 around EF at 

zero field, g, 1T and, h, 2 T with the magnetic field applied along the b-axis.  
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Supplementary Fig. 17. Raman spectra of TiSe2 to bench mark our Raman measurements 

setup at various temperatures. The Raman modes of the undistorted crystal at high 

temperatures are located at 136 and 205 cm−1, labelled with Eg, and A1
g, respectively. At 205 K 

exhibits a charge-density wave transition, leading to additional Raman modes at 76 and 115 

cm−1 labelled with Eg
CDW, and A1,CDW

g, respectively, in agreement with previous Raman studies 

on TiSe2.28,29 
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Supplementary Tables 

Sample Magnetic 

field’s 

direction 

SdH 

frequency 

 

Fermi 

area 

Fermi 

wave 

vector 

Fermi 

wave 

length 

Cyclotron 

mass 

Effective 

mass 

Fermi 

velocity 

Dingle 

temperature 

Lifetime 

  BF  

(T) 

SF  

(10-4 

Å-2) 

k F  

(10-3 

Å-1) 

F   

(nm) 

mc  

(m0) 

m*  

(m0) 

vF  

(105 

m/s) 

TD 

 (K) 



 (ps)

 

 

B || a 16.7 

± 0.5 

15.9 

± 0.5 

4.8 

± 0.6 

130.9 

± 15.1 

- - - - - 

A B || b 1.1 

± 0.1 

0.9 

± 0.1 

77.8 

± 7.9 

8.1 

± 0.3 

- - - - - 

 B || c 12.3 

± 0.3 

11.7 

± 0.3 

6.8 

± 8.9 

96.5 

± 13.8 

- - - - - 

 B || a 15.2  

± 0.3 

15.2  

± 0.3 

5.3 

± 1.1 

108.1 

± 21.1 

0.68 

± 0.02 

0.021 

± 0.001 

3.1 

± 0.8 

0.32 

± 0.03 

0.20 

± 0.02 

B B || b 1.2  

± 0.2 

1.2  

± 0.2 

72.9  

± 7.5 

8.6 

± 0.9 

0.04 

± 0.01 

6.078 

± 0.685 

0.1 

± 0.03 

1.43 

± 0.13 

0.91 

± 0.1 

 B || c 13.9  

± 0.3 

13.9  

± 0.3 

6.5 

± 1.3 

94.4 

± 17.2 

0.36 

± 0.08 

0.075 

± 0.001 

1.0 

± 0.2 

1.85 

± 0.54 

0.66 

± 0.2 

C B || b 1.2 

± 0.1 

1.1 

± 0.1 

- - - - - - - 

D B || b 1.2  

± 0.2 

1.2  

± 0.2 

- - - - - - - 

E B || b 1.0 

± 0.1 

0.9 

± 0.1 

- - - - - - - 

G B || b 1.1 

± 0.2 

1.0 

± 0.2 

- - - - - - - 

H B || b 1.2 

± 0.2 

1.1 

± 0.2 

- - - - - - - 

 

Supplementary Table 1. Band-structure parameters of ZrTe5 Sample A, B, C, D, E, G and 

H, obtained from Shubnikov-de Haas oscillations. The variations denote the errors from the 

fits and from error propagation as explained in the Supplementary Information and the main 

text. 
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