Supplementary Information for: "Unsplit superconducting and time reversal symmetry breaking transitions in Sr_2RuO_4 under hydrostatic pressure and disorder."

Vadim Grinenko,^{1, 2, *} Debarchan Das,³ Ritu Gupta,³ Bastian Zinkl,⁴ Naoki Kikugawa,⁵ Yoshiteru

Maeno,⁶ Clifford W. Hicks,^{7,8} Hans-Henning Klauss,¹ Manfred Sigrist,^{4,†} and Rustem Khasanov^{3,‡}

¹Institute for Solid State and Materials Physics,

Technische Universität Dresden, D-01069 Dresden, Germany

²Leibniz-Institut für Festkörper- und Werkstoffforschung (IFW) Dresden, D-01171 Dresden, Germany

³Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland

⁴Institute for Theoretical Physics, ETH Zurich, CH-8093 Zurich, Switzerland

⁵National Institute for Materials Science, Tsukuba 305-0003, Japan

⁶Department of Physics, Kyoto University, Kyoto 606-8502, Japan

⁷Max Planck Institute for Chemical Physics of Solids, D-01187 Dresden, Germany

⁸School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom

Supplementary Note 1: Specific heat of $Sr_{2-v}La_vRuO_4$ at ambient pressure

The specific heat measurements were performed at ambient pressure for several pieces of $Sr_{2-y}La_yRuO_4$ single crystals.

Supplementary Figure 1: Specific heat curves taken for four ending pieces of C140 and C171 Sr₂RuO₄ rods. The mean value of the 'specific-heat' superconducting transition temperature $T_c^{\rm SH}$ is obtained by an equal-entropy construction of the idealized specific heat jump [panel (a)]. The minimum and maximum values of the transition temperature ($T_{\rm c,min}$) and $T_{\rm c,max}$) are determined from the crossing points of linearly extrapolated $C_{\rm el}/T$ vs. T curves in the vicinity of T_c [panel (b)].

For Sr_2RuO_4 used in hydrostatic pressure measurements, the electronic specific heat capacity $C_{\rm el}/T$ was measured for four samples: one sample cut from each end of both the C140 and C171 sections. Results are presented in Fig. 1. The specific-heat critical temper-

Supplementary Figure 2: Temperature dependence of the normalized electronic specific heat $C_{\rm el}/T\gamma_{\rm n}$ measured on a small piece cut from the Sr_{1.98}La_{0.02}RuO₄ µSR sample (blue open circles). Open squares correspond to the $C_{\rm el}/T\gamma_{\rm n}$ vs. *T* data for one of Sr₂RuO₄ samples [C171, end 1; Fig. 1(c)]. Solid lines represent an equal-entropy construction used to determine the superconducting transition temperature $T_{\rm c}$. The double-sided arrow represent the way of determination of the specific heat jump at $T_{\rm c}$ ($\Delta C_{\rm el}/T_{\rm c}\gamma_{\rm n}$).

ature T_c of each sample was obtained by an equalentropy construction, illustrated in panel (a). The spread on the critical temperature of each sample is taken as $T_{c, \text{max}} - T_{c, \text{min}}$, where $T_{c, \text{max}}$ and $T_{c, \text{min}}$ are determined for each transition as illustrated in panel (b). T_c was found to be 1.35(3) and 1.34(3) K for the two samples from rod C140, and 1.27(4) and 1.26(3) for those from C171. Because both rods were used in the hydrostatic pressure measurements, we take a combined value $T_c^{\text{SH}} = 1.30(6)$ K for the specific-heat critical temperature of these samples together.

The temperature dependence of $C_{\rm el}/T$ for a small piece cut from the Sr_{1.98}La_{0.02}RuO₄ μ SR sample is presented in Fig. 2. The $C_{\rm el}/T$ data are normalised by the Sommerfeld coefficient $\gamma_{\rm n}$. The equal-entropy construction and estimates of $T_{\rm c,min}$ and $T_{\rm c,max}$ result in $T_{\rm c}^{\rm SH} = 0.70(5)$ K.

Note that the 'normalised' data representation allows to make a direct comparison of the specific heat jump at $T_{\rm c}$ $(\Delta C_{\rm el}/T_{\rm c}\gamma_{\rm n})$ for samples with different La-doping level, as they measured in the present study, as well as for strained Sr₂RuO₄ samples from Ref. 1.

Supplementary Note 2: ZF- and TF- μ SR results at p = 0.25 and p = 0.62 GPa

Supplementary Figure 3: (a) Temperature dependence of the Gaussian relaxation rate σ measured at p = 0.25 GPa and the external field $B_{\rm ext} = 3$ mT applied parallel to the crystallographic *c*-axis. (b) The diamagnetic shift of the internal field $B_{\rm int} - B_{\rm ext} \propto M_{\rm FC}$ [2], $M_{\rm FC}$ is the field-cooled magnetization, at p = 0.25 GPa. Arrows in panels (a) and (b) indicate the position of the superconducting transition temperature $T_{\rm c}$. (c) Temperature dependence of the ZF exponential relaxation rate λ induced by spontaneous magnetic fields caused by TRSB effects at p = 0.25 GPa. The initial muon spin polarization $\mathbf{P}_{\mu}(0)$ is parallel to the *ab*-plane. The solid line is the fit by means of Eq. 1 from the main text. Arrow indicate the position of TRSB transition temperature $T_{\rm TRSB}$.

Figures 3 and 4 show the results of TF- and ZF- μ SR measurements on Sr₂RuO₄ at p = 0.25 and 0.62 GPa. Arrows in panels (a) and (b) indicate the position of the superconducting transition temperature $T_{\rm c}$. Arrow in panel (c) indicate the TRSB transition temperature $T_{\rm TRSB}$.

Supplementary Figure 4: The same as in Fig. 3 but for p = 0.62 GPa.

Supplementary Note 3: Extraction of T_c from the TF- μ SR data

The superconducting transition temperature T_c was extracted from temperature dependencies of the Gaussian relaxation rate, σ , and the diamagnetic shift of the internal field, $B_{\rm int} - B_{\rm ext} \propto M_{\rm FC}$, as they obtained in TF- μ SR experiments [see Figs. 2(b,c), 3(a,b) in the main text and Figs. 4(a,b)].

In a case of $\sigma(T)$ data, the transition temperature was defined as a crossing point of linearly extrapolated $\sigma(T)$ curve in the vicinity of $T_{\rm c}$ with $\sigma = \sigma_{\rm nm}$ line. Note that $\sigma_{\rm nm}$ is constant over the entire temperature range and it corresponds to the value reached above $T_{\rm c}$ [see Fig. 3(a)].

From the diamagnetic shift data, the transition temperature was defined as a crossing point of linearly extrapolated $B_{\rm int} - B_{\rm ext}$ vs. T curve in the vicinity of $T_{\rm c}$ with $B_{\rm int} - B_{\rm ext} = 0$ line [see Fig. 3(b)].

^{*} Electronic address: v.grinenko@ifw-dresden.de

[†] Electronic address: mansigri@ethz.ch

[‡] Electronic address: rustem.khasanov@psi.ch

^[1] Li, Y.-S., Kikugawa, N., Sokolov, D. A., Jerzembeck, F.,

Gibbs, A. S., Maeno, Y., Hicks, C. W., Nicklas, M. & Mackenzie, A. P. High sensitivity heat capacity measurements on Sr_2RuO_4 under uniaxial pressure. *PNAS* **118** e2020492118; https://doi.org/10.1073/pnas.2020492118

[2] Weber, M., Amato, A., Gygax, F. N., Schenck, A., Maletta, H., Duginov, V. N., Grebinnik, V. G., Lazarev, A. B., Olshevsky, V. G., Pomjakushin, V. Yu., Shilov, S. N., Zhukov, V. A., Kirillov, B. F., Pirogov, A. V., Ponomarev, A. N., Storchak, V. G., Kapusta, S. & Bock, J. Magnetic-flux distribution and the magnetic penetration depth in superconducting polycrystalline $Bi_2Sr_2Ca_{1-x}Y_xCu_2O_{8+\delta}$ and $Bi_{2-x}Pb_xSr_2CaCu_2O_{8+\delta}$. *Phys. Rev. B* **48**, 13022 (1993).