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Supplementary Note 1:
Specific heat of Sr2−yLayRuO4 at ambient pressure

The specific heat measurements were performed at am-
bient pressure for several pieces of Sr2−yLayRuO4 single
crystals.
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Supplementary Figure 1: Specific heat curves taken for four
ending pieces of C140 and C171 Sr2RuO4 rods. The mean
value of the ’specific-heat’ superconducting transition tem-
perature T SH

c is obtained by an equal-entropy construction of
the idealized specific heat jump [panel (a)]. The minimum
and maximum values of the transition temperature (Tc,min

and Tc,max) are determined from the crossing points of lin-
early extrapolated Cel/T vs. T curves in the vicinity of Tc

[panel (b)].

For Sr2RuO4 used in hydrostatic pressure measure-
ments, the electronic specific heat capacity Cel/T was
measured for four samples: one sample cut from each
end of both the C140 and C171 sections. Results are
presented in Fig. 1. The specific-heat critical temper-
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Supplementary Figure 2: Temperature dependence of the nor-
malized electronic specific heat Cel/Tγn measured on a small
piece cut from the Sr1.98La0.02RuO4 µSR sample (blue open
circles). Open squares correspond to the Cel/Tγn vs. T data
for one of Sr2RuO4 samples [C171, end 1; Fig. 1(c)]. Solid
lines represent an equal-entropy construction used to deter-
mine the superconducting transition temperature Tc. The
double-sided arrow represent the way of determination of the
specific heat jump at Tc (∆Cel/Tcγn).

ature Tc of each sample was obtained by an equal-
entropy construction, illustrated in panel (a). The spread
on the critical temperature of each sample is taken as
Tc, max − Tc, min, where Tc, max and Tc, min are deter-
mined for each transition as illustrated in panel (b). Tc
was found to be 1.35(3) and 1.34(3) K for the two sam-
ples from rod C140, and 1.27(4) and 1.26(3) for those
from C171. Because both rods were used in the hydro-
static pressure measurements, we take a combined value
T SH
c = 1.30(6) K for the specific-heat critical tempera-

ture of these samples together.
The temperature dependence of Cel/T for a small piece

cut from the Sr1.98La0.02RuO4 µSR sample is presented
in Fig. 2. The Cel/T data are normalised by the Sommer-
feld coefficient γn. The equal-entropy construction and
estimates of Tc,min and Tc,max result in T SH

c = 0.70(5) K.
Note that the ’normalised’ data representation allows

to make a direct comparison of the specific heat jump
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at Tc (∆Cel/Tcγn) for samples with different La-doping
level, as they measured in the present study, as well as
for strained Sr2RuO4 samples from Ref. 1.

Supplementary Note 2:
ZF- and TF-µSR results at p = 0.25 and p = 0.62 GPa
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Supplementary Figure 3: (a) Temperature dependence of the
Gaussian relaxation rate σ measured at p = 0.25 GPa and the
external field Bext = 3 mT applied parallel to the crystallo-
graphic c-axis. (b) The diamagnetic shift of the internal field
Bint − Bext ∝ MFC [2], MFC is the field-cooled magnetiza-
tion, at p = 0.25 GPa. Arrows in panels (a) and (b) indicate
the position of the superconducting transition temperature
Tc. (c) Temperature dependence of the ZF exponential relax-
ation rate λ induced by spontaneous magnetic fields caused
by TRSB effects at p = 0.25 GPa. The initial muon spin po-
larization Pµ(0) is parallel to the ab-plane. The solid line is
the fit by means of Eq. 1 from the main text. Arrow indicate
the position of TRSB transition temperature TTRSB.

Figures 3 and 4 show the results of TF- and ZF-µSR
measurements on Sr2RuO4 at p = 0.25 and 0.62 GPa.
Arrows in panels (a) and (b) indicate the position of
the superconducting transition temperature Tc. Arrow
in panel (c) indicate the TRSB transition temperature
TTRSB.
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Supplementary Figure 4: The same as in Fig. 3 but for p =
0.62 GPa.

Supplementary Note 3:
Extraction of Tc from the TF-µSR data

The superconducting transition temperature Tc was
extracted from temperature dependencies of the Gaus-
sian relaxation rate, σ, and the diamagnetic shift of the
internal field, Bint − Bext ∝ MFC, as they obtained in
TF-µSR experiments [see Figs. 2(b,c), 3(a,b) in the main
text and Figs. 4(a,b)].

In a case of σ(T ) data, the transition temperature was
defined as a crossing point of linearly extrapolated σ(T )
curve in the vicinity of Tc with σ = σnm line. Note that
σnm is constant over the entire temperature range and it
corresponds to the value reached above Tc [see Fig. 3(a)].

From the diamagnetic shift data, the transition tem-
perature was defined as a crossing point of linearly ex-
trapolated Bint − Bext vs. T curve in the vicinity of Tc
with Bint −Bext = 0 line [see Fig. 3(b)].
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