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Supplementary Note 1: Density of states 

The energy difference between the ground state and excited state of a chromophore (single mode) is 

denoted by 𝐸
ᇱ. In a system, containing a large number of chromophores (multimode), the density of 

states will follow a distribution with a maximum at the energy difference 𝐸,. For a monoenergetic 

distribution of states we then have: 

𝑔ୈୗ൫𝐸
ᇱ൯ ൌ 𝑛𝛿൫𝐸

ᇱ െ 𝐸,൯,                                                   ሺ1ሻ 

where 𝑔ୈୗ൫𝐸
ᇱ൯ is the density of states (DOS) and 𝑛୨ is the number density of sites with 𝛿 being Dirac 

Delta function. In disordered organic semiconductors, the energetic distribution of 𝐸
ᇱ is often assumed 

to be Gaussian (centred around 𝐸), with a width (Gaussian energetic disorder) 𝜎௦, taking the form 

𝑔ୈୗ൫𝐸
ᇱ൯ ൌ

𝑛

√2𝜋𝜎ଶ
exp൭െ

ൣ𝐸
ᇱ െ 𝐸, ൧

ଶ

2𝜎௦ଶ
൱ .                                     ሺ2ሻ 

In contrast, in (banded) crystalline semiconductors the so-called tail states below the bands, caused by 

static disorder, are often modelled based upon an exponentially distributed density of states according 

to 

𝑔ୈୗ൫𝐸
ᇱ൯ ൌ

𝑛
𝑊

exp ቆ
𝐸
ᇱ െ 𝐸, 

𝑊
ቇ ,                                     ሺ3ሻ 

for 𝐸
ᇱ  𝐸,, where 𝑊 describes the width of the exponential distribution in analogy to 𝜎௦ of the 

Gaussian DOS. 

Supplementary Note 2: Marcus theory 

Rate constant. Marcus theory was originally derived to describe the electron transfer in electrochemical 

reactions. Herein, the energy of the ground state and excited state are approximated by parabolic 

potential energy surfaces that depend on the nuclear coordinates. Apart from describing the electron 

transport in disordered semiconductors, the Marcus theory, in the limit of weak coupling, has been 

successfully used in literature to describe optical transition rates. The rate constant between ground state 

and excited state can be expressed as 

𝜅 ൌ
2𝜋
ℏ

|𝑣|ଶ
1

ඥ4𝜋𝜆,𝑘𝑇
exp ൝െ

൫𝐸
ᇱ െ 𝐸൯

ଶ

4𝜆,𝑘𝑇
ൡ ,                                   ሺ4ሻ 

where 𝐸 is the photon energy, |𝑣|ଶ is the interstate coupling (or transfer integral) that is related to the 

transition dipole moment 𝜇, and 𝜆, is the reorganization energy that takes the polaronic effects into 

account.  
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Singlemode absorption coefficient. From the literature-known relationship between the absorption 

coefficient and rate constant,1,2 the singlemode absorption coefficient from Marcus theory can be 

obtained as  

𝛼൫𝐸,𝐸
ᇱ൯ ൌ

𝑓

𝐸ඥ4𝜋𝑘𝑇𝜆,
exp ൝െ

൫𝐸
ᇱ  𝜆, െ 𝐸൯

ଶ

4𝜆,𝑘𝑇
ൡ ,                         ሺ5ሻ 

where 𝑓 is the oscillator strength that includes the interstate coupling and other energy-independent 

parameters. 

Multimode absorption coefficient with Gaussian DOS. After integrating over all Gaussian 

distributed energy states (DOS from Supplementary Equation (2)) via 

𝛼ሺ𝐸ሻ ൌ න 𝛼൫𝐸,𝐸
ᇱ൯𝑔൫𝐸

ᇱ൯
ஶ


𝑑𝐸

ᇱ ൎ න 𝛼൫𝐸,𝐸
ᇱ൯𝑔൫𝐸

ᇱ൯
ஶ

ିஶ
𝑑𝐸

ᇱ,                           ሺ6ሻ 

the multimode absorption coefficient can be written as  

𝛼ሺ𝐸ሻ ൌ
𝑓

𝐸ඥ4𝜋𝑘𝑇𝜆
exp ൝െ

൫𝐸  𝜆 െ 𝐸൯
ଶ

4𝜆
ᇱ𝑘𝑇

ൡ  .                                         ሺ7ሻ 

where 𝑓 ൌ 𝑛𝑓. The Gaussian spectral shape of the single mode expression from eq. S5 is reobtained 

in Supplementary Equation (7), however, with the parameters 𝐸
ᇱ and 𝜆, from the single mode 

absorption now replaced by 

𝐸 ൌ 𝐸, െ
𝜎௦ଶ

2𝑘𝑇
,                                                                 ሺ8ሻ 

𝜆 ൌ 𝜆, 
𝜎௦ଶ

2𝑘𝑇
.                                                                 ሺ9ሻ 

Note that the result for a monoenergetic DOS, Supplementary Equation (1), is obtained by setting 𝜎௦ ൌ

0. For 𝜎௦ ് 0, the multimode absorption coefficient is redshifted with respect to the singlemode 

absorption coefficient depending on 𝜎௦.  This additional linewidth broadening contribution is sometimes 

also referred to as the inhomogeneous broadening. The origin of linewidth broadness hence can be 

twofold. Recent studies have shown evidence that the linewidth broadening is mainly due to 𝐸, and 

𝜆,, which stem from the coupling of vibrational and electronic states described by Marcus theory.3,4 

Supplementary Equation (7) is often applied to the experimental absorption coefficient or external 

quantum efficiency (EQE) in the spectral range of charge transfer (CT) absorption to extract the 

material-specific parameters 𝐸 and 𝜆, which are then called 𝐸େ and 𝜆େ (𝑗 ൌ CT). By increasing the 

sensitivity limit of the EQE measurement to 10-8 %,5 it was recently shown6 that the EQE in the spectral 

range of mid-gap trap states follows a Gaussian spectral line shape. The material-specific parameters 
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𝐸୲ and 𝜆୲ (Supplementary Equation (7) with 𝑗 ൌ tሻ can be extracted from a fit with Supplementary 

Equation (7) to the experimental EQE spectrum to parametrize the mid-gap trap state absorption.  

Multimode absorption coefficient with Exponential DOS. Under the assumption of an exponential 

tail distribution of energy states and a Marcus derived expression for the optical rate constant, the 

corresponding multimode absorption coefficient for tail state absorption (i.e. 𝐸
ᇱ ൏ 𝐸,) is obtained from 

𝛼ሺ𝐸ሻ ൌ න 𝛼൫𝐸,𝐸
ᇱ൯𝑔ୈୗ൫𝐸

ᇱ൯
ாೕ,బ

ିஶ
𝑑𝐸

ᇱ,                                              ሺ10ሻ 

and thus  

𝛼ሺ𝐸ሻ ൌ
𝑓

2𝐸𝑊
exp൮

𝐸 െ ሺ𝐸,  𝜆, െ
𝜆𝑘𝑇
𝑊 ሻ 

𝑊
൲ൈ൦erf൮

𝐸,  𝜆, െ 𝐸 െ
2𝜆,𝑘𝑇
𝑊

ඥ4𝜆,𝑘𝑇
൲  1൪ .     ሺ11ሻ 

where erfሺ𝑥ሻ is the error function. Importantly, unlike for the integration over the Gaussian distributed 

states, exponential tail states are only defined for energies below the gap. Hence, the upper integration 

bound is given by 𝐸,.  

For photon energies 𝐸 ≪ 𝐸,, the factor comprising the error functions converges to 1 and 𝛼ሺ𝐸ሻ reduces 

to  

𝛼ሺ𝐸ሻ ൌ
𝑓
𝐸𝑊

exp ቆ
𝐸 െ 𝐸

∗

𝑊
ቇ,                                                         ሺ12ሻ 

where 𝐸
∗ ൌ 𝐸,  𝜆, െ

ఒೕ,బ்

ௐ
. In the spectral range, where absorption of organic photodiodes can be 

detected experimentally, Supplementary Equation (12) is dominated by the exponent and hence 𝛼ሺ𝐸ሻ 

follows an Urbach decay, where the width of the DOS is the Urbach energy. 

 

Supplementary Note 3: Miller Abrahams type rate 

Rate constant. The Miller-Abrahams (MA) rate constant is commonly employed to describe the 

charge-transfer rate from site 𝑚 to 𝑛  in disordered semiconductors. This rate is usually of the form: 

𝜅 ൌ 𝑣 ൈ ൝exp ൬െ
Δ𝐸

𝑘𝑇
൰             ∶ Δ𝐸  0 

1                                    ∶ Δ𝐸 ൏ 0
                                   ሺ13ሻ 

where and 𝑣 is a prefactor that is related to the electronic coupling between the sites and depends on 

the inverse localization length, the distance between the localized states and the phonon frequency. 

Here, Δ𝐸 is the energy difference between the two sites. The exponential term is a Boltzmann factor 
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describing the thermal activation of the hopping process. Note that two cases are distinguished: (i) for 

Δ𝐸  0, the rate is thermally activated; and (ii) for Δ𝐸 ൏ 0, the rate is not impeded by the 

additional term.  

As is shown below, under certain conditions Marcus theory can be extended with an energy dependence 

which may be approximated by a MA-type energy dependence. Similar to Marcus theory, the MA 

formalism can then be used to express an absorption rate constant. From this perspective, the absorption 

rate can be expressed as a function of 𝐸
ᇱ and the photon energy 𝐸 according to  

𝜅 ∝ 𝐴 exp ቆെ
𝐸
ᇱ െ 𝐸

𝑘𝑇
ቇ .                                                         ሺ 14ሻ 

for 𝐸 ൏ 𝐸
ᇱ, while 𝜅 ∝ 𝐴 for 𝐸  𝐸

ᇱ. As for Marcus theory, 𝐸
ᇱ describes the energy required for an 

optical transition from the ground state to the excited state. For 𝐸
ᇱ ൌ 𝐸, the maximum rate is obtained. 

In analogy to the oscillator strength form Marcus theory, 𝐴 is assumed to be only weakly dependent on 

the photon energy.  

Singlemode absorption coefficient. Based on the transfer rate described by Supplementary Equation 

(14), we expect for 𝐸
ᇱ  𝐸 

𝛼൫𝐸,𝐸
ᇱ൯ ൌ 𝛼ୱୟ୲ expቆെ

𝐸
ᇱ െ 𝐸

𝑘𝑇
ቇ ,                                              ሺ15ሻ 

where 𝛼௦௧ determines the maximum absorption coefficient in the spectral range where 𝐸
ᇱ ൏ 𝐸. 𝛼௦௧ 

further contains a 1/𝐸-dependence which has negligible effect at energies below the gap and above the 

experimental limit (𝐸  0.5 eV).  

Multimode absorption coefficient with Gaussian DOS. Considering a Gaussian DOS and the single 

mode absorption coefficient from Supplementary Equation (15), the multimode absorption coefficient 

is calculated via  

𝛼ሺ𝐸ሻ ൌ
𝛼ୱୟ୲

ඥ2𝜋𝜎𝑠ଶ
න exp൭െ

ൣ𝐸
ᇱ െ 𝐸,൧

ଶ

2𝜎𝑠ଶ
൱𝑑𝐸

ᇱ  
ா

ିஶ
න expቆ

𝐸 െ 𝐸
ᇱ

𝑘𝑇
ቇ exp൭െ

ൣ𝐸
ᇱ െ 𝐸,൧

ଶ

2𝜎𝑠ଶ
൱𝑑𝐸

ᇱ
ஶ

ா
൩              ሺ16ሻ 

The integration over all sites with the energy 𝐸
ᇱ is split into two parts: (i) െ∞ ൏ 𝐸

ᇱ ൏ 𝐸, where the 

optical transition is not impeded by the Boltzmann term (hence 𝛼 ൌ 𝛼ୱୟ୲) and (ii) for 𝐸 ൏ 𝐸
ᇱ ൏ ∞ 

where 𝛼 ൏ 𝛼ୱୟ୲. Note that the lower integration bound for (i) was taken to be െ∞ instead of 0 (this is 

valid for 𝐸, ≫ 𝑘𝑇). After solving the integral, one obtains 

𝛼ሺ𝐸ሻ ൌ
𝛼ୱୟ୲

2
൞exp൮

𝐸 െ 𝐸, 
𝜎௦ଶ

2𝑘𝑇
𝑘𝑇

൲ ൦1 െ erf൮
𝐸 െ 𝐸, 

𝜎௦ଶ

𝑘𝑇
𝜎௦√2

൲൪  erfቆ
𝐸 െ 𝐸,

𝜎௦√2
ቇ  1ൢ .    ሺ17ሻ 
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Noting that 𝐸 ൌ 𝐸, െ
ఙೞమ

ଶ்
 and that the error functions of Supplementary Equation (17) approach -1 

for 𝐸 ≪ 𝐸, we find 

𝛼ሺ𝐸ሻ ൎ 𝛼ୱୟ୲ exp ൬
𝐸 െ 𝐸
𝑘𝑇

൰ .                                                       ሺ18ሻ 

The energy dependence of 𝛼ሺ𝐸ሻ is dominated by the exponential term in the relevant spectral range of 

sub-gap absorption and therefore ሾ𝑑 lnሺ𝛼ሺ𝐸ሻሻ /𝑑𝐸ሿିଵ ൌ 𝑘𝑇. For 𝐸 ≫ 𝐸, on the other hand, both error 

functions in Supplementary Equation (17) approach 1 and 𝛼ሺ𝐸ሻ → 𝛼ୱୟ୲. 

Multimode absorption coefficient with Exponential DOS. Considering an exponential DOS and 

Supplementary Equation (16) for the single mode absorption, the multimode absorption coefficient 

associated with tail state absorption is calculated according to Supplementary Equation (5). One finds 

𝛼ሺ𝐸ሻ ൌ 𝛼ୱୟ୲ න exp ቆ
𝐸
ᇱ െ 𝐸,

𝑊
ቇ𝑑𝐸

ᇱ
ா

ିஶ
 න exp ቆ

𝐸 െ 𝐸
ᇱ

𝑘𝑇
ቇ expቆ

𝐸
ᇱ െ 𝐸,

𝑊
ቇ𝑑𝐸

ᇱ
ாೕ,బ

ா
             ሺ19ሻ 

Similar to Supplementary Equation (17), the integration over all sites with the energy 𝐸
ᇱ is split into 

two parts: (i) െ∞ ൏ 𝐸
ᇱ ൏ 𝐸, where the optical transition is not impeded by the Boltzmann term (hence 

𝛼 ൌ 𝛼ୱୟ୲) and (ii) for 𝐸 ൏ 𝐸
ᇱ ൏ 𝐸, where 𝛼 ൏ 𝛼ୱୟ୲. Again, for an exponential DOS, it is assumed 

that there are no tail states for 𝐸
ᇱ  𝐸, and hence the upper bound is 𝐸, (instead of ∞ as for the 

Gaussian DOS). Solving the integral of Supplementary Equation (19) leads to  

𝛼ሺ𝐸ሻ ൌ 𝛼ୱୟ୲ exp ൬
𝐸 െ 𝐸,

𝑊
൰൞

1 െ exp ൬
𝐸 െ 𝐸,
𝑘𝑇 െ

𝐸 െ 𝐸,
𝑊 ൰

𝑊
𝑘𝑇 െ 1

 1ൢ .              ሺ20ሻ 

From Supplementary Equation (20), it is clear that ሾ𝑑 lnሺ𝛼ሺ𝐸ሻሻ /𝑑𝐸ሿିଵ will be dominated by 𝑊, i.e. 

the width of the exponential distribution, as expected. 

 

 

 

 

 

 

 

 



7 
 

Supplementary Note 4: Understanding MA type rates in terms of generalized Marcus theory 

 

Supplementary Figure 1. Profile of the potential energy surfaces (PESs) of the ground state and the 
excited state, 𝑈ሺ𝑞ሻ and 𝑈ሺ𝑞

ᇱ ሻ, respectively. a, Equal curvature of the PESs lead to equal reorganization 
energies 𝜆 and 𝜆

ᇱ  for the ground state and the excited state, respectively. b, Broadening of one PES 
with respect to the other leads to unequal reorganization energies.   

 

In Marcus theory, the curvature of the potential energy surfaces (PES) describes the vibrational 

frequency of the modes and is directly related to the reorganization energy. Supplementary Fig. 1 

illustrates the PES as a function of the nuclear coordinate 𝑞, where 𝑈ሺ𝑞ሻ and 𝑈ሺ𝑞
ᇱ ሻ denote the ground 

state and the excited state, respectively. Two cases can be distinguished: a) for the standard Marcus 

theory, the curvatures of the PESs are equal and so are the reorganization energies of the ground state 

𝜆 and the excited states 𝜆
ᇱ . b) In the general case, the curvatures of the PESs are different resulting in 

different reorganization energies for the ground state and the excited state.  

Case b) can be viewed as an extension to the standard Marcus theory with the generalized Marcus 

transfer rate now reading 7,8 

𝜅 ൌ
2𝜋
ℏ

|𝑣|ଶ൫𝑘෨ା  𝑘෨ି൯

ඨ4 𝜆
ᇱ  ൬1 െ

𝜆
ᇱ

𝜆
൰ ሺ𝐸ᇱ െ 𝐸ሻ൨ 𝜋𝑘𝑇

.                                      ሺ21ሻ 

Here, 𝐸ᇱ is the energy difference between the ground state and excited state. For 𝐸 ൏ 𝐸ᇱ 
ఒబఒబ

ᇲ

൫ఒబିఒబ
ᇲ ൯

, 

𝑘෨ା ൌ exp

⎝

⎜
⎛
െ
𝜆
𝑘𝑇

⎣
⎢
⎢
⎡ 𝐸ᇱ െ 𝐸  𝜆

ᇱ

𝜆
ᇱ  ට𝜆

ᇱ ଶ  ሺ𝜆 െ 𝜆
ᇱ ሻሺ𝐸ᇱ െ 𝐸  𝜆

ᇱ ሻ⎦
⎥
⎥
⎤
ଶ

⎠

⎟
⎞

                       ሺ22ሻ 
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𝑘෨ି ൌ exp

⎝

⎜
⎛
െ
𝜆
𝑘𝑇

⎣
⎢
⎢
⎡ 𝐸ᇱ െ 𝐸  𝜆

ᇱ

𝜆
ᇱ െ ට𝜆

ᇱ ଶ  ሺ𝜆 െ 𝜆
ᇱ ሻሺ𝐸ᇱ െ 𝐸  𝜆

ᇱ ሻ⎦
⎥
⎥
⎤
ଶ

⎠

⎟
⎞

                       ሺ23ሻ 

Supplementary Figure 2. a, Generalized Marcus transfer rate simulated for different 𝜆
ᇱ  at room 

temperature assuming 𝜆 = 200 meV and 𝐸ᇱ = 1.7 eV. 𝜅 approaching a Gaussian spectral line-shape 
for  𝜆

ᇱ /𝜆 → 1 and an exponential line-shape for 𝜆
ᇱ /𝜆 → 0. b, Apparent Urbach energy 𝐸

ୟ୮୮ 
approaching 𝑘𝑇 for 𝜆

ᇱ /𝜆 → 0. 

 

Note that the rate reduces back to the standard Marcus charge-transfer rate (i.e. Supplementary Equation 

(4)) for 𝜆
ᇱ → 𝜆, as expected. This is demonstrated in Supplementary Fig. 2, where the full expression 

of 𝜅 from Supplementary Equation (21) is simulated for different ratios of 𝜆
ᇱ /𝜆. Supplementary Fig. 

2a shows that the spectral lineshape of 𝜅 resembles a Gaussian function for 𝜆
ᇱ /𝜆 close to 1, while for 

𝜆
ᇱ /𝜆 → 0, it converges to an exponential function with an inverse logarithmic slope of 𝑘𝑇. As a result, 

the apparent Urbach energy 𝐸
ୟ୮୮ approaches 𝑘𝑇 for 𝜆

ᇱ /𝜆 → 0, as illustrated in Supplementary Fig. 

2b. 

In the case of distribution for 𝐸ᇱ (e.g. Gaussian or exponential DOS), we need to simplify the 

generalized Marcus rate since a direct integration of Supplementary Equation (21) for a given DOS is 

in general analytically intractable. However, for 𝜆  𝜆
ᇱ , the transfer rate at low photon energies, 

corresponding to the absorption tail, can be approximated by  

𝜅 ൎ
2𝜋
ℏ

|𝑣|ଶ

ඨ𝜆
ᇱ  ൬1 െ

𝜆
ᇱ

𝜆
൰ ሺ𝐸ᇱ െ 𝐸ሻ൨ 𝜋𝑘𝑇

expቆെ
ሾ𝐸ᇱ െ 𝐸  𝜆

ᇱ ሿ
𝑘𝑇

𝜆
ሺ𝜆 െ 𝜆

ᇱ ሻ
ቇ          ሺ 24ሻ 

If 𝜆 ≫ 𝜆
ᇱ  (i.e. a more localized ground state and a more diffuse exited state), the dominant photon 

energy dependence of the absorption tail is of the form 
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𝜅 ∝ exp ቆ
𝐸 െ 𝐸ᇱ

𝑘𝑇
ቇ                                                              ሺ25ሻ 

becoming governed by a simple Boltzmann factor. Under such conditions, we may approximate the 

generalized Marcus rate with a simple MA-type expression.  

 

 

 

 

 

 

 

 

 

 

Supplementary Table 1. Parameters extracted from Gaussian fits to the experimental sub-gap EQE in 

the spectral range of CT absorption and mid-gap state absorption spectra for 9 different D:A blends. 

Empty cells indicate the absence of spectral features related to CT or trap state absorption. 

 

 

 

 

 

D:A blend 𝐸େ  

(in eV) 

𝜆େ  

(in meV) 

𝑓େ 

(in eV2) 

𝐸୲ 

(in eV) 

𝜆୲ 

(in meV) 

𝑓୲ 

(in eV2) 

BQR:PC70BM 1.42  233 9.1e-4 0.68 866 1.8e-6 

PCDTBT:PC70BM 1.48 350 5.4e-3 0.74 560 1.2e-7 

PBDB-T:PC70BM 1.40 355 3.0e-3 0.70 610 6.3e-7 

PTB7-Th:ITIC 1.43 451 4.5e-2 0.71 947 1.9e-6 

PBDB-T:ITIC 1.50 287 1.9e-3 0.87 458 2.6e-7 

PBDB-T:IT-4F 1.42 461 2.0e-3 -- -- -- 

PM6:Y6 -- -- -- 0.86 280 2.8e-8 

PM6:ITIC -- -- -- 0.86 464 8.3e-7 

PBDB-T:EH-IDTBR -- -- -- 0.86 583 1.5e-7 
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Supplementary Figure 3. a, Sub-gap EQE of a PC70BM solar cell (black line) and the absorption 

coefficient (α; green line) of a neat PC60BM film measured via photothermal deflection spectroscopy 

(PDS) are compared. The PDS data was taken from the literature.9 b, The corresponding 𝐸
ୟ୮୮ spectra 

calculated from the EQE of a PC70BM solar cell (black line) and from the α of a neat PC60BM film 

(green line) are shown. The EQE and PDS derived 𝐸
ୟ୮୮ spectra show 𝐸

ୟ୮୮ ൎ 𝑘𝑇 at similar energies at 

around 1.70 eV and 1.65 eV, respectively, confirming that the spectral line-shape of EQE can be used 

as an approximation for α in the sub-gap energy range.  

 

Supplementary Note 7: Thickness dependence of the EQE tail 

Optical interference (or cavity) effects modify the EQE of a solar cell, which can be regarded as a low 

finesse cavity with a fully reflective top electrode (for example Ag) and a semi-transparent bottom 

electrode (often ITO). The resonance wavelength 𝜆୰ୣୱ depends on the effective thickness 𝑡ୡୟ୴ of the 

cavity with 𝜆୰ୣୱ ൌ  2𝑛𝑡ୡୟ୴𝑗ିଵ, with 𝑗 being a natural number and 𝑛 is the refractive index. 

Supplementary Fig. 4a and 4b demonstrate the thickness dependence of the photovoltaic EQE above 

and below gap for PM6:ITIC and PM6:Y6 respectively. Note that the effective bandgap for both blends 

corresponds to the energy gap of the neat acceptor and hence the interference effects will strongly 

depend on the refractive index of the acceptor.  

Moreover, the effect of imbalanced charge collection in “thick” organic semiconductor junctions 

(𝑡ୡୟ୴  500 nm) is visible as a decrease in the absolute EQE in the visible part of the EQE spectrum of 

PM6:ITIC as reported earlier for other D:A blends.10 While the sub-gap slope above the spectral range 

seems to be unaffected on a logarithmic scale, the detailed analysis via the inverse slope of the 
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logarithmic EQE (𝐸
ୟ୮୮) reveals thickness-dependent resonance modes. Around the steepest point of 

the sub-gap EQE, 𝐸
ୟ୮୮ deviates from the thermal energy 𝑘𝑇 by no more than 3 meV for PM6:ITIC and 

by maximally 6 meV for PM6:Y6. Such deviations are expected to increase with higher dispersion in 

the refractive index and extinction coefficient. 

The effect of optical interference can be simulated using the well-established transfer-matrix model, 

which requires knowledge of the optical constants of the solar cell stack of interest. As the experimental 

absorption coefficient cannot be determined with sufficient sensitivity, we assume a perfectly 

exponential sub-gap slope with 𝐸
ୟ୮୮ ൌ 𝑘𝑇 for 𝐸 ൏ 1.55 eV. For 𝐸  1.55 eV, the experimental above-

gap absorption coefficient of a 200 nm thick PM6:ITIC film on silicon is used and its refractive index 

as determined from spectroscopic ellipsometry over the entire wavelength range. This fictional 

absorption coefficient normalized to its maximum in the above-gap spectral range is shown in 

Supplementary Fig. 5a. In the absence of any spectral dependence of the internal quantum efficiency, 

the absorptance calculated by the transfer-matrix model equals the EQE of the device. By changing the 

layer thickness of PM6:ITIC in the simulation, the spectral line-shape of the absorptance changes as 

demonstrated by the spectrum of 𝐸
ୟ୮୮ in Supplementary Fig. 5b. In the experiment, 𝐸

ୟ୮୮ ൎ  𝑘𝑇 is 

observed between 1.6 and 1.3 eV. In this spectral range, the simulated 𝐸
ୟ୮୮ shows deviations of +1 to 

-2 meV around 𝑘𝑇, while discontinuities around 1.55 eV are due to the manual stitching of the 

experimental and fictional sub-gap absorption coefficient. As shown earlier, the fluctuation in the 

experimental 𝐸
ୟ୮୮ for PM6:ITIC devices lies in between +3 to -3 meV and are therefore very close to 

the simulated deviations. 
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Supplementary Figure 4. Nearly exponential EQE tails observed for the PM6:ITIC (a,) and PM6:Y6 

(b,) BHJs of different thicknesses in the spectral range below the gap and above the trap state absorption 

(1.4 eV ൏ 𝐸 ൏ 1.6 eV for PM6:ITIC and 1.1 eV ൏ 𝐸 ൏ 1.3 eV for PM6:Y6). In this spectral range, 

𝐸
ୟ୮୮ is close to 𝑘𝑇 for all thicknesses for both PM6:ITIC (c,) and PM6:Y6 (d,) while small deviations 

from 𝑘𝑇 can be attributed to weak optical cavity effects. 
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Supplementary Figure 5. a, Absorption coefficient (α) used in transfer-matrix simulations to calculate 

the absorptance of an active layer (device architecture ITO (100 nm)/ZnO (30 nm)/active layer/MoO3 

(8 nm)/Ag (100 nm)). b, Sub-gap 𝐸
ୟ୮୮ for 5 different active layer thicknesses (50 to 300 nm) showing 

energy and thickness dependence within +1/-2 meV range around 𝑘𝑇 for 1.3 eV ൏ 𝐸 ൏ 1.6 eV. Optical 

cavity effects, included in the transfer-matrix simulation, are thus expected to cause spectral dependence 

of 𝐸
ୟ୮୮ in a real device. 
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 Supplementary Note 8: Temperature dependent EQE measurements and simulations 

 

Supplementary Figure 6. Temperature-dependent EQE and respective apparent Urbach energy spectra 
of neat and blend material systems. 



15 
 

 

Supplementary Figure 7. a, 𝐸
ୟ୮୮ at constant energy for a commercial a-Si:H solar cell and organic 

BHJs and neat layer solar cells as a function of temperature. b, Normalized sub-gap EQE of a 
commercial a-Si:H solar cell at different temperatures. c, Apparent Urbach energy 𝐸

ୟ୮୮ as calculated 

from the sub-gap EQE. The dashed line indicates the energy at which energy 𝐸
ୟ୮୮ was evaluated.  

 

At room temperature, the excitonic absorption coefficient tails of low-offset material systems can be 

approximated with an Urbach energy given by 𝐸
ୟ୮୮ ൎ 𝑘𝑇. To prove the generality of this statement, 

EQE spectra were recorded at different temperatures between 183 to 333 K for three low-offset BHJs 

solar cells and two neat (acceptor-only) material systems. Supplementary Fig. 6 shows EQE spectra 

normalized to the above-gap absorption and the respective 𝐸
ୟ୮୮. To study 𝐸

ୟ୮୮ as a function of 

temperature, 𝐸
ୟ୮୮ is evaluated at a constant energy below the presumed optical gap and above the 

spectral range of deep trap state absorption, as indicated by solid markers or a dashed for each material 

system. The slope of the EQE at this energy decreases as the temperature increases, i.e. 𝐸
ୟ୮୮ increases 

with 𝑇. Supplementary Fig. 7a illustrates 𝐸
ୟ୮୮ as a function of 𝑘𝑇 (and 𝑇). For all tested material 

systems at temperatures above room temperature, 𝐸
ୟ୮୮ converges to a linear function that equals 

𝐸
ୟ୮୮ ൌ 𝑘𝑇 + constant. The constant, i.e. the intercept of the linear function, is no more than േ2.5 meV 

and can be attributed to optical interference as shown earlier.  
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Next, temperature-dependent EQE spectra were recorded for a commercial a-Si:H thin-film solar cell, 

as shown in Supplementary Fig. 7b. Note that due to the junction thickness of 200 to 400 nm, 

interference effects are expected11 to affect 𝐸
ୟ୮୮. Reported Urbach energies are usually 40 meV and 

above depending on the degree of hydrogenation12 and the energy range considered13,14. In literature, 

𝐸 of a-Si:H was previously described as 𝐸ሺ𝑇ሻ ൌ 𝐸,ୈሺ𝑇ሻ  𝐸,ୗ, where 𝐸,ୗ is the 𝑇-independent 

contribution and 𝐸,ୈሺ𝑇ሻ increases with 𝑇.  𝐸,ୗ is hereby the result of imperfections and structural 

disorder in the band structure of Si, while the direct excitation of defect states is usually reported at 

energies below 1.5 eV.12,15 According to the sub-gap 𝐸
ୟ୮୮ of a-Si:H shown in Supplementary Fig. 7c, 

the spectral broadening close to the bandgap shows stronger temperature dependence in comparison to 

organic semiconductors. At the same time, 𝐸
ୟ୮୮ reaches a plateau at 40 meV independent of 

temperature which is 2-3 orders of magnitude below the absorption band edge. For a consistent analysis 

in comparison to organic BHJs, 𝐸
ୟ୮୮ is evaluated at a constant energy above the direct defect 

absorption, here corresponding to 1.65 eV. As displayed in Supplementary Fig. 7a, 𝐸
ୟ୮୮ saturates for 

low temperatures to roughly 40 meV, while the thermal activation at higher temperatures at 1.65 eV 

seems to follow 𝐸
ୟ୮୮(1.65 eV) ൌ 𝑘𝑇  21 meV, which is marked by a line as guide to the eye. 

To model the experimental observation of 𝐸
ୟ୮୮ ൎ 𝑘𝑇 in the spectral range of sub-gap LE absorption, 

it is reasonable to assume a thermally activated rate constant similar to a Miller-Abrahams (MA) type 

charge-transfer. This is also supported by the generalized Marcus theory assuming unequal potentials 

for the ground state and excited state as was shown previously. For the macroscopic description of the 

absorption in a material, one needs to account for the distribution of states which, in the case of organic 

semiconductors, is often considered to be Gaussian (see Supplementary Equation (17)) and sometimes 

exponential (see Supplementary Equation (20)). Hereby, the spectral line-shape of the distribution is 

determined by 𝐸,, i.e. the energy corresponding to the peak value of the distribution, and 𝑊 or 𝜎௦, 

corresponding to the broadening of the exponential or Gaussian distribution, respectively. To simulate 

the sub-gap absorption coefficients, 𝑊 and 𝜎௦ are both assumed to be 70 meV, being within the range 

of previously reported values for static energetic disorder.16–19 Moreover, 𝐸, ൌ 1.7 eV which roughly 

equals the energy gap of a typical BHJ solar cells.  
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Supplementary Figure 8. Calculated absorption coefficient based on MA-type rate constants 
normalized to 𝛼ୱୟ୲. a, 𝛼 derived for exponential DOS (red lines; normalized at 𝐸 ൌ 𝐸,) and for 
Gaussian DOS (black lines) at 𝑘𝑇 between 13 - 30 meV. Green line: Guideline for the eye illustrating 
a function that is proportional to expሺ𝐸/𝑘𝑇ሻ. b, 𝛼 derived from the MA-type rate constant using an 
exponential DOS showing that 𝐸

ୟ୮୮ ൌ 𝑊 in the limit 𝐸 ≪ 𝐸,.  

 

Supplementary Fig. 8 shows the calculated absorption coefficient 𝛼 normalized to 𝛼௦௧ based on 

Supplementary Equation (17) and (20) for an exponential (red lines) and Gaussian (black lines) DOS at 

different temperatures. Note that for the exponential tail DOS, 𝛼 has a maximum at 𝐸୨, and is not 

defined for 𝐸  𝐸,. In the case of a Gaussian DOS, the spectral range around 𝐸୨, is dominated by an 

error function which converges to a constant 𝛼௦௧. Supplementary Fig. 8a illustrates that the 

temperature-dependent sub-gap slope with 𝐸
ୟ୮୮ ൌ 𝑘𝑇 can only be reproduced by a MA-type rate 

function derived for a Gaussian DOS at 𝐸 ≪ 𝐸,. In contrast, an exponential DOS is independent of 

the temperature resulting in 𝐸
ୟ୮୮ ൌ 𝑊 (cf. Supplementary Fig. 8b) and can therefore not explain the 

experimental findings. To conclude, only the result for a Gaussian DOS is consistent with the 

experimental results.  

In the next step, the influence of 𝜎௦ on the sub-gap slope is examined in Supplementary Fig. 9 by 

considering the dominant contributions to Supplementary Equation (17) in the high-energy regime 

(highlighted in blue) and the low-energy regime (highlighted in purple) separately. Importantly, the 

spectral shape of Supplementary Equation (17) in the high-energy limit is determined by 𝜎௦, which 

redshifts the effective bandgap by 𝜎௦ଶ/2𝑘𝑇, causing an overall broadening of the sub-gap absorption 

coefficient. Therefore, the upper limit of the spectral range where 𝐸
ୟ୮୮ ൌ 𝑘𝑇 is determined by 𝜎௦. The 

purple part of the equation dominates the spectral range where 𝐸 ≪ 𝐸, and is independent of 𝜎௦. 
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Measured EQE spectra show that the trap state absorption is typically 6 orders of magnitude weaker 

than above-gap absorption and poses a lower limit to the spectral range where 𝐸
ୟ୮୮ ൌ 𝑘𝑇. Apart from 

the experimental limitation of measuring small EQE signals, it is hence possible that for some organic 

semiconductors 𝐸
ୟ୮୮ ൌ 𝑘𝑇 cannot be observed at room temperature due to large 𝜎ୱ.  

 

Supplementary Figure 9. a, Absorption coefficient derived for MA-type rate and Gaussian DOS. 
Purple and green colours indicate 𝛼 in the limit of 𝐸 ≪ 𝐸, and 𝐸 ≫ 𝐸, respectively. Normalized 𝛼 

for a Gaussian DOS characterized by 𝐸, ൌ 1.7 eV and b, 𝜎ୱ ൌ 0.07 eV and c, 𝜎ୱ ൌ 0.1 eV at room 

temperature. For 𝐸 ≪ 𝐸,, 𝛼 converges to an exponential function with a slope described by 𝐸
ୟ୮୮ ൌ

𝑘𝑇. For 𝐸 ≫ 𝐸,, 𝛼 converges to 1 if normalized to 𝛼ୱୟ୲. The larger 𝜎ୱ, the more sensitive the EQE 

measurement must be to show that 𝐸
ୟ୮୮ ൌ 𝑘𝑇 at low energies. Roughly 6 – 7 orders of magnitude 

below 𝛼ୱୟ୲, deep trap state absorption typically dominates the spectrum as shown experimentally. 
Hence, 𝐸

ୟ୮୮ ൌ 𝑘𝑇 cannot observed experimentally for 𝜎ୱ  0.1 eV.  
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Supplementary Figure 10. Simulation of the absorption coefficient derived for MA-type rate and 

Gaussian DOS at different temperatures for a, 𝜎ୱ ൌ 0.07 eV and b, 𝜎ୱ ൌ 0.1 eV and the respective 𝐸
ୟ୮୮ 

for c, 𝜎ୱ ൌ 0.07 eV and d, 𝜎ୱ ൌ 0.1 eV. By increasing 𝜎௦ and/or decreasing 𝑇, the energy at which 𝐸
ୟ୮୮ 

reaches the plateau where 𝐸
ୟ୮୮ ൌ 𝑘𝑇 is redshifted. For comparison, the point 𝐸 ൌ 𝐸, െ 3𝜎ୱଶ/ሺ2𝑘𝑇ሻ 

has been indicated as marked by the blue spheres. 

 

Supplementary Fig. 10 shows the corresponding absorption coefficients from Supplementary Fig. 9, 

but for different temperatures (at 𝜎ୱ ൌ 70 meV and 𝜎ୱ ൌ 100 meV). The comparison of Supplementary 

Fig. 10a and 10b shows that the spectral range where 𝐸
ୟ୮୮ ൌ 𝑘𝑇 increases with temperature but 

decreases for higher 𝜎ୱ. This may partly also explain the deviation from 𝐸
ୟ୮୮ ൌ 𝑘𝑇 observed for PBDB-

T:EH-IDTBR and PM6:Y6 at low temperatures. In the simulation, a rather high degree of static 

disorder, e.g. 𝜎ୱ ൌ 100 meV, leads to the plateau of 𝐸
ୟ୮୮ ൌ 𝑘𝑇 only being reached at 𝑘𝑇   25.7 meV 

and 𝐸 ൏ 1.2 eV. As shown in the experimental EQE spectra, this energy regime is typically dominated 

by mid-gap trap absorption or the low energy tail of the CT absorption at low temperatures. Therefore, 

in the framework of this theory, it is unlikely to observe 𝐸
ୟ୮୮ ൌ 𝑘𝑇 for a material with a density of LE 

states characterized by 𝜎ୱ ൌ 100 meV when 𝐸, ൌ 1.7 eV. 
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To further validate our model (Supplementary Equation (17)), 𝜎ୱ and 𝐸, are extracted as fit parameters 

for neat IT-4F and Y6 from experimental EQE spectra recorded at different temperatures as shown in 

Supplementary Fig. 11. Herein, the same energy range was chosen for all temperatures when fitting for 

one material system to exclude  

 

Supplementary Figure 11. a, Black lines: Sub-gap EQE of a neat IT-4F solar cells at 183, 213, 263, 
303 and 333 K, and sub-gap EQE of a neat Y6 solar cell at 213, 263, 303 and 333 K. Green lines: 
Simulated sub-gap EQE at different temperatures. b, Static disorder 𝜎ୱ and the exciton band gap energy 
𝐸, obtain as fit parameters of the simulated sub-gap absorption coefficient. 

 

low energy contributions from the trap state absorption. An advantage of neat material systems is that 

charge-transfer absorption is absent. The results for IT-4F and Y6 are shown for a few temperatures in 

Supplementary Fig. 11a, while the fit parameters 𝜎ୱ and E୨, are displayed for all temperatures in 

Supplementary Fig. 11b. 𝐸, shows negligible temperature dependence for both materials as well as 𝜎ୱ 

for Y6. The standard deviations of the experimentally-extracted 𝜎ୱ over all temperatures are indicated 

by error bars in Supplementary Fig. 11b. For IT-4F, 𝜎ୱ decreases with temperature resulting in a 

standard deviation of 2.7 meV. The origin of this apparent trend is beyond the scope of this study. 
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Finally, 𝜎ୱ and 𝐸, are extracted from EQE measurements at 303 K for the three exemplary low-offset 

D:A systems PM6:Y6, PM6:ITIC and PBDB-T:EH-IDTBR. For above gap, the EQE spectra are 

normalized to 1. 

Supplementary Figure 12. Green lines: Normalized experimental EQE spectra measured at 303 K for 
the low-offset system D:A systems PM6:Y6, PM6:ITIC and PBDB-T:EH-IDTBR. Black lines: The 
corresponding simulated sub-gap EQE spectra. Static disorder 𝜎ୱ and the exciton band gap energy 𝐸, 
are obtained as fit parameters. 
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