
Supplementary Information
Spin-valley locking and bulk quantum Hall effect in a noncentrosymmetric Dirac

semimetal BaMnSb2

CONTENTS

I. Supplementary Notes 7
1. Orthorhombic lattice distortion detected by neutron scattering 7
2. SHG polarimetry and Theoretical Modeling 7
3. 2D electronic structure of BaMnSb2 8
4. Tunneling mechanism for interlayer transport 9
5. Transport measurements on sample E#1 10
6. Zeeman Effect of BaMnSb2 11
7. Possible origins of the z-axis resistance plateau in the quantum Hall state 12

II. Supplementary Discussions 13

References 25



2

Lattice constants (Å) a=4.5036 b=4.4701 c=24.6120

Wyckoff positions x y z

Ba:4d 0.0059 0 0.1135
Mn:4d 0.5046 0 0.2501
Sb:2a 0.5172 0 0
Sb:2b 0.9511 0.5 0
Sb:4d 0.5054 0.5 0.1853

Supplementary Table 1. Lattice constants and Wyckoff positions of BaMnSb2 with the space group I2mm derived from the
DFT calculations.

Sample Nominal µc nHall F n2D nSdH ΦB s

label composition (cm2/V s) (1019 cm-3) (T) (1012cm-2) (1019 cm-3)

B#1 BaMnSb2 1645 0.61 18.83 0.91 0.76 0.97π 1.5
E#1 Eu0.1Ba0.9MnSb2 5040 1.4 30.58 1.48 1.24 0.96π 2.3
E#2 Eu0.1Ba0.9MnSb2 - - 34.40 1.65 1.38 0.89π -
E#3 Eu0.1Ba0.9MnSb2 556 0.74 17.90 0.87 0.72 0.91π 2.2
Z#1 BaMn0.9Zn0.1Sb2 580 0.093 8.9 0.43 0.36 0.86π 1.5

Supplementary Table 2. Quantum transport parameters of the five samples in the context. µc, the classical carrier
mobility, and nHall, the carrier density, extracted from the Hall measurement. F is the quantum oscillation frequency. n2D is
the 2D carrier density in each Sb layer, derived by n2D = 2eF/h according to Luttinger’s theorem, where h is Planck’s constant.
The 3D carrier density is derived using nSdH = n2D/(c/2), where c is the lattice parameter. ΦB is the Berry phase and s is the
degeneracy per Sb layer.

(1 1 0) (0 0 6) (2 0 0) (0 2 0)a b c d

Supplementary Figure 1. a-d show the observed single crystal neutron diffraction spots at the detector at the Bragg peak
positions of (1 1 0), (0 0 6), (2 0 0), and (0 2 0), respectively, T = 300K. The detector pixels (256 x 256) are showed for each
plot. The bottom part of each plot shows the integrated intensity over vertical pixels in the range between two white dotted
lines. The peak region framed by the whited dotted lines has the same size for each peak spot as guide for eyes to tell the
peak height and width. One can notice the peak spots (2 0 0) and (0 2 0) are broader than that of (1 1 0) and (0 0 6) in the
horizontal width, indicating that an orthorhombic lattice distortion exists in BaMnSb2.
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Supplementary Figure 2. Schematic of the SHG microscopy setup. For SHG imaging, images of (001) - cleaved BaMnSb2 were
obtained at a resolution of 3 points per micrometer by moving piezostage. For polarimetry measurement, the polarization angle
(θ) of the incident laser was continuously tuned from 0° to 360° by rotating the λ/2 wave plate.
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Supplementary Figure 3. Hall conductivity σyx and longitudinal conductivity σxx for samples E#1 (a), B#1 (b) and Z#1 (c).
Both σyx and σxx are obtained from tensor conversions from ρxx and ρxy.
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Supplementary Figure 4. QHE of sample Z#1. a, Magnetic field dependence of in-plane (ρxx) and Hall (ρxy) resistivity up to
9T at 2K. b, Normalized inverse Hall resistivity (ρ0

xy/ρxy) at 2K
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Supplementary Figure 5. QHE of sample E#3. a, SEM image of the Hall-bar sample E#3 fabricated by FIB. b, Magnetic field
dependence of in-plane (ρxx) and Hall (ρxy) resistivity up to 40T at 3.7 K. c, ρxx and ρxy vs. magnetic field up to 90 T at 3.7K.
d, Normalized inverse Hall resistivity (ρ0

xy/ρxy) at 3.7K.
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Supplementary Figure 6. a, Constant energy contour of Ba(Mn0.9Zn0.1)Sb2 on the kx−ky plane, which is acquired by integrating
from -15 meV to -5 meV. The ARPES data is taken with the photon energy of 25 eV. b, ARPES spectrum along the cut. There
is a hole pocket crossing the Fermi level around the Γ̄ point.

0,𝑲+
0,𝑲+

0,𝑲−

−1,𝑲±

−2,𝑲±

−3,𝑲±

1,𝑲±

−3,𝑲−

−3,𝑲+

−2,𝑲−

−2,𝑲+

−1,𝑲−

−1,𝑲+

0,𝑲−

1,𝑲−

1,𝑲+

𝑞
2

an
d

 Z
ee

m
an

 t
er

m
s

No splitting With Splitting
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I. SUPPLEMENTARY NOTES

1. Orthorhombic lattice distortion detected by neutron scattering

As mentioned in the main text, the crystal structure of BaMnSb2 were reported to be tetragonal with a space group
of I4/mmm in several studies [1–4]. In our previous work, we did neutron scattering measurements to determine the
magnetic structure of BaMnSb2 [1]. Based on 164 nuclear reflection peaks, the refinement of the crystal structure
showed a roughly good fit using the tetragonal structural model. However, after a careful inspection of individual
reflection peaks, we did find broadening in the diffraction spots at (200) and (020). The integrated intensity for (020)
show noticeable peak splitting, as shown in supplementary Fig. 1. This suggests the real structure of BaMnSb2 should
involve an orthorhombic lattice distortion, which is further clarified by our STEM study (see text).

2. SHG polarimetry and Theoretical Modeling

SHG is a nonlinear optical process only shown in materials with non-centrosymmetric point groups, which is widely
used in crystal symmetry study. In the process, light with a frequency of ω is incident on a crystal, inducing an
electromagnetic polarization with a frequency of 2ω. [5] The induced polarization P 2ω can be expressed as,

P 2ω
i = ε0χijkE

ω
j E

ω
k

where χijk is known as the second nonlinear optical susceptibility.
In Voigt notation, χijk can be simplified to a 3× 6 matrix dij (i=1,2,3; l=1,2,3,4,5,6), where the index l=1,2,3,4,5,6

in dij corresponds to jk=11,22,33,23/32,13/31,12/21 in χijk respectively. Therefore, polarization P 2ω can be written as,


P 2ω

1

P 2ω
2

P 2ω
3

 = ε0


d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36





(Eω1 )2

(Eω2 )2

(Eω3 )2

2Eω2 Eω3
2Eω3Eω1
2Eω1 Eω2


From Neumann’s principle, the SHG d matrix for the 2mm symmetry, point group with 2-fold axis along with

crystal a-axis, is

dij =


d11 d12 d13 0 0 0

0 0 0 0 0 d26

0 0 0 0 d35 0


where polar in-plane a-axis is along direction given by subscript 1, in-plane b axis is along direction 2, and out-of-plane

c-axis is 3. If instead, the polar a-axis is along the direction 2, then the dij will transform to

d′ij =


0 0 0 0 0 d26

d12 d11 d13 0 0 0

0 0 0 d35 0 0


For our experimental set up with normal incidence, Eω1 = E cos θ, Eω2 = E sin θ, Eω2 = 0. For simplicity, set E=1,

then the SHG signal from each domain can be described by:
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I2ω
X =

(
P 2ω
X

)2 =
(
P 2ω

1
)2 = |d11|2 cos4 θ + |d12|2 sin4 θ + |d11| |d12| cos2

θsin
2
θ

I2ω
Y =

(
P 2ω
Y

)2 =
(
P 2ω

2
)2 = |d26|2 sin2(2θ)

 I2ω′
X =

(
P 2ω′
X

)2
=
(
P 2ω′

1

)2
= |d26|2 sin2(2θ)

I2ω′
Y =

(
P 2ω′
Y

)2
=
(
P 2ω′

2

)2
= |d12|2 cos4 θ + |d11|2 sin4 θ + |d11| |d12| cos2

θsin
2
θ

In our modeling of the twin domains in the experimental images shown in Figure 1, a simple single domain with
tensor dij, and another adjacent twin domain with a tensor dij’ does not provide the best fit to the polarimetry data
shown in Figure 1. Since the domains are large (microns) relative to the beam size (~180nm), the polarimetry should
have fit with single domain expressions given above. [6] Since they did not, we had to assume the presence of twin
domains underneath the surface domains as follows:

I2ω
X (total) = I2ω

X + k1 · I2ω′
X

I2ω
Y (total) = I2ω

Y + k1 · I2ω′
Y

I2ω
X (total)′ = I2ω′

X + k2 · I2ω
X

I2ω
Y (total)′ = I2ω′

Y + k2 · I2ω
Y

where k1 and k2 is a coefficient described the proportion of intensity comes from the hidden domains. Such domains
beneath the surface in a polar metal was also seen recently in another polar metal, Ca3Ru2O7. [7] The equations above
provided good fits to our experimental polarimetry data in Figure 1. Future cross-sectional TEM study of the exact
area that was optically probed should provide a confirmation of the presence of such domains.

3. 2D electronic structure of BaMnSb2
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Supplementary Figure 8. Large anisotropic ratio in BaMnSb2. (a) Temperature dependence of in-plane (ρxx) and out-of-plane
(ρxy) resistivity. (b) Temperature dependence of anisotropic ratio ρzz/ρxx.
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Supplementary Figure 9. (a) In-plane resistivity ρxx versus 1/B for samples B#1 and (b) Zoom-in view for the low field range
(0.2 T-1 < 1/B <0.55 T-1) in (a).

The small kz-dispersion in electronic band structure (Fig. 2a, main text) suggests a quasi-2D electronic state in
BaMnSb2. This is further supported by the quantum oscillation studies. A perfectly 2D electronic state is characterized
by straight cylindrical Fermi surface, while in a layered material with large anisotropic ratio ρzz/ρxx, which is the
case for BaMnSb2 (supplementary Fig. 8), a quasi-2D state with corrugated cylindrical Fermi surface is expected.
With magnetic field being applied perpendicular to the plane direction (i.e., along the FS cylinder), there exist both
minimum and maximum FS cross-sections perpendicular to magnetic field, leading to multiple frequencies in quantum
oscillations. Given these frequencies are not far from each other, the interference of these oscillation components leads
to oscillation beating like pattern, which has been observed in quantum oscillation of ρxx in sample B#1. As shown in
supplementary Fig. 9, the oscillating amplitude continuously increases as the 1/B decreases in the range of [0.05T-1,
0.5T-1], which indicates the beating frequency is

Fbeating < 1/[2× (0.5− 0.05)] = 1.1T . (1)

Assuming there are two frequency components (F1 and F2) due to FS corrugation, the frequency difference can be
estimated by:

∆F = F1 − F2 = Fbeating < 1.1T . (2)

Compared with the average oscillation frequency of 18.83T obtained from the FFT of the oscillation pattern, the
relative corrugation is as small as ∆F/F < 6%. This indicates that FS is nearly a straight cylinder, demonstrating the
nearly prefect 2D electronic structure of BaMnSb2.

4. Tunneling mechanism for interlayer transport

Institutively, the large anisotropic ratio ρzz/ρxx (supplementary Fig. 8) implies a tunneling mechanism for interlayer
(out-of-plane) transport in layered BaMnSb2. More solid evidence for interlayer tunneling can be found in the in-phase
oscillations of in-plane (σxx) and out-of-plane(σzz) conductivities. supplementary Fig. 10 presents the field dependence
of conductivity for samples B#2 and E#2. σxx was obtained from the 2D resistivity tensor inversion, while σzz should
be derived from the 3D resistivity tensor inversion [8]:

σzz = ρxxρyy − ρxyρyx
ρxxρyyρzz − ρxyρyxρzz − ρxzρzxρyy

. (3)
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Supplementary Figure 10. In-plane (σxx) and out-of-plane (σzz) conductivities for samples B#1 and B#2 (a) and samples E#1
and E#2 (b).

Given ρzz � ρxx = ρyy, and ρxz = ρyz = 0 when magnetic field is along the z-axis, the above equation approximates
to σzz ≈1/ρzz.

In 3D QHE, the in-plane transport exhibits QHE behavior but the out-of-plane transport does not. For the in-plane
transport, the nearly zero σxx plateau at high fields is indeed the signature of non-local transport of QHE, which
corresponds to the situation that the Fermi level (EF) resides in between Landau levels (LLs) (i.e., DOS(EF) achieves
a minimum).

For the out-of-plane transport, if the transport is due to the momentum relaxation (i.e., non-tunneling), σzz should
reach a maximum at a minimum DOS(EF) according to the quantum oscillation theory [9–12]. The earlier transport
theory has established that the scattering probability (1/τ) is proportional to the number of available states that
electron can be scattered into, so 1/τ oscillates in concert with the oscillations of DOS(EF)[9–12]. Hence, σ ∝ τ
∝1/DOS(EF), which has been experimentally observed [13]. This is inconsistent with the observation that σzz reaches
a minimum at the σxx plateau (i.e., at DOS(EF) minimum, supplementary Fig. 10a and 10b). On the other hand, the
tunneling current should be proportional to DOS(EF), so the tunneling conductivity σ ∝ DOS(EF). This is exactly
what have been observed. In the quantum Hall state within the quantum limit, the gap between Landau levels is
significantly increased, which minimizes the interlayer tunneling. In this case, the z-axis transport is dominated by the
2D chiral surface state, which is manifested by the saturation tendency of ρzz below 20K (Fig. 4c in the main text),

5. Transport measurements on sample E#1

The E#1 Hall-bar sample was also prepared through focused ion beam (FIB) cutting. supplementary Fig. 11a shows
the optical image of this sample. During cooling-down for pulse field measurements on this sample, leads #2 and 4
broke, so we had to use leads #3 and #6 to measure both ρxy and ρxx. supplementary Fig. 11b presents the raw data
of the voltage measured between leads #3 and #6, V3,6. Although leads #3 and #6 are significantly misaligned, V3,6
show a remarkable asymmetric feature between positive and negative magnetic fields, indicating V3,6 is dominated
by the Hall voltage Vxy and the longitudinal voltage Vxx is small. supplementary Fig. 11c shows Vxx and Vxy data
obtained through symmetrizing and anti-symmetrizing of the V3,6 data acquired under positive and negative magnetic
fields. The Vxy plateaus are found to be accompanied by the Vxx minima, a typical signature of QHE. The small
negative Vxx above 47.5T can be attributed to the fact that symmetrizing V3,6 between positive and negative fields
cannot completely remove the Hall voltage component, which is often seen in Hall effect measurements where the
longitudinal and Hall resistivities are mixed. The anti-symmetrizing process of V3,6 may also not completely remove
Vxx from Vxy, but the perfect Vxy plateau near 50T (supplementary Fig. 11c) indicates the ρxx at this quantum Hall
state is extremely small. The longitudinal conductivity σxx for this quantum Hall state is indeed close to zero, as
shown in Fig. 4d in the main text. The observations of σyx equal steps in sample E#1 (Fig. S3a), together with its
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very small ρxx (Fig. 4a) and nearly zero σxx at the quantum Hall state within the quantum limit (Fig. 4d), suggests
its stacked QHE is nearly perfect; that is, almost every 2D Sb conducting layer acts as a quantum Hall layer.

Supplementary Figure 11. a, The SEM image of the Eu-doped BaMnSb2 sample (E#1). b, The field dependence of the voltage
between leads 3 and 6 (V3,6) for sample E#1 at 4.5K. c, The Hall voltage Vxy and longitudinal voltage Vxx obtained via
anti-symmetrizing and symmetrizing the V3,6 data respectively.

6. Zeeman Effect of BaMnSb2

To evaluate the Zeeman effect in BaMnSb2, we have recently measured the angular dependence of the Shubnikov-de
Haas (SdH) oscillations in interlayer resistance RZZ for a Eu-doped sample (supplementary Fig. 12a). For such
measurements, if the g-factor of the material is large, we would expect to observe the SdH oscillations are modulated
by the tilt angle θ of magnetic field: the oscillation amplitude varies with θ and decreases to zero at a critical angle
θc, above which the SdH oscillations exhibits a phase inversion. This is an approach often used to determine the
g-factor for layered materials and known as the spin-zero method [14]. For instance, this method was recently used
to determine the g-factor of EuMnBi2 [15]. The critical angle θc was found be ∼ 40◦ for EuMnBi2 and the g-factor
estimated using the relation cos θc = gmc/m0 (mc, cyclotron mass; m0, free electron mass) is 9.8(4).

a b

E#4

E#4

Supplementary Figure 12. (a) The out-of-plane resistance Rzz of a Eu0.1Ba0.9MnSb2 sample (E#4) as a function of magnetic
field under various field orientations. (b) Rzz vs. BF /B⊥ for sample E#4; BF and B⊥ refer to the SdH oscillation frequency
and the perpendicular component of the magnetic field along the z-axis. The data in panel b are offset for clarity.

As shown in supplementary Fig. 12(b) where RZZ is plotted on the scale of BF /B⊥ (BF , the SdH oscillation
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Supplementary Figure 13. a, The z-axis resistance Rzz measured in the up- (red/purple) and down-field (blue) sweeps for
sample E#2 at 0.7 K and 4.1 K. b, The variation of pulse field with time and the derivative (red) of the field relative to time.
t1(t4) represents the time period for the field increasing (decreasing) from 20T (25T) to 25 T (20T). t2 and t3 represent the time
periods of the field sweep from 50T to 60T and then from 60T to 50T respectively.

frequency; B⊥, the perpendicular component of the magnetic field along the z-axis), we do not observe the expected
spin-zero phenomena in BaMnSb2, i.e. zero oscillation amplitude and phase inversion even when the tilt angle is
increased to 45◦. Instead, the oscillation amplitude and phase exhibit very small changes with the increase of θ,
indicating that the g-factor of BaMnSb2 is small, probably close to 2. Considering Sb is much lighter than Bi, it is
reasonable to see BaMnSb2 has a much smaller g factor than EuMnBi2.
If we attributed the observed SdH oscillation peak splitting in ρxx (Fig. 4a in the main text) to the Zeeman effect,

the g-factor would be estimated to ∼12.6 using F ( 1
B+
− 1

B−
) = ( 1

2 )g(mc/m0) (F , oscillation frequency; 1
B+

and 1
B−

refer to the inverse fields of the split peaks) [16]. This is clearly not reasonable, since the g value of 12.6 should lead to
the remarkable variation of oscillation amplitude and phase with the increase of θ, as seen in EuMnBi2, which is not
observed in our experiments. The indicates the observed oscillation peak splitting in ρxx or the valley splitting in ρzz
should mostly originate from the orbital effect.

7. Possible origins of the z-axis resistance plateau in the quantum Hall state

The plateau in the z-axis resistance Rzz near 50T of sample E#2 (Fig. 4b) is a robust feature of the quantum Hall
state within the quantum limit, that does not come from either joule heating or trivial surface states due to band
bending as explained below. We can evaluate the heating effect by comparing the upward and downward field sweep
measurements. supplementary Fig. 13b shows how the pulse field H varies with time t in upward and downward field
sweeps as well as dH/dt (red curve). We present the comparison of Rzz measured in the up- and down-field sweeps
in supplementary Fig. 13a, from which we can see the Rzz peak in the 20-25T range exhibits a striking difference
between up- and down-field sweeps. In the main text, we have shown the γ = 3/2 ρxy plateau occurs within the 20-25T
range (Fig. 4a and 4b). The difference of the Rzz peak height between the up- and down-field sweeps within this
quantum Hall state should arise from heating effect. In the up-field sweep, the field increase from 20T to 25T takes an
extremely short period of time t1 (see supplementary Fig. 13b), such that the heat generated by the field sweep and
measurements cannot be dissipated effectively. In contrast, the field decrease from 25T to 20T in the down-field sweep
takes much longer time (t4 ≈ 5t1, see supplementary Fig. 13b) so that the heating effect can be suppressed, which
explains the enhanced Rzz peak probed in down-field sweep. However, the heating effect for the quantum Hall state
within the quantum limit (B > 50T) becomes much weaker, because the Rzz probed above 50T shows much smaller
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difference between up- and down-field sweeps (supplementary Fig. 13a). The time for the field increasing from 50T to
60T (t2) and the time for the field decreasing from 60T to 50T (t3) are much longer than t1 and t4 (see supplementary
Fig. 13b), thus the heat generated by magnetic field sweeps and measurements within these time periods is expected to
be small. Furthermore, we did similar up- and down-sweep measurements at 4.1 K and found the hysteresis of Rzz
due to the heating effect is significantly suppressed for the quantum Hall state at 20-25T, and extremely small for
the quantum Hall state near 50T. More importantly, the Rzz values at 4.1 K and 0.7K are nearly identical for fields
close to 60T. If the Rzz plateau was due to heating effect, we would expect the Rzz value near 60T to decrease as
the temperature increases to 4.1K, inconsistent with the observation of nearly identical Rzz at 0.7 K and 4.1K for
fields approaching 60T. The evolution trend of the Rzz plateau from 0.7K to 4.1K also implies that the Rzz plateau
should become more flattened as the temperature is further decreased below 0.7K. All these facts indicate that the
Rzz plateau at the quantum Hall state within the quantum limit should be intrinsic and implies the presence of 2D
chiral surface state as discussed in the main text.
Given the Dirac cones near the X point is gapped and the gap magnitude is small (∼50 meV), one may wonder

the Rzz plateau is associated with the surface accumulation layers due to band bending. Such a possibility can be
excluded for the following reasons: If trivial accumulation layers existed in BaMnSb2, they would be present at the top
and bottom surfaces along the z-direction, thus not contributing to the z-axis transport. On the other hand, if we
assume the z-axis transport was associated with the trivial surface state, the SdH oscillations seen in Rzz would not
be coupled to the bulk quantum Hall state, which clearly contradicts our experimental observation of Rzz reaching
a plateau at the ρxy plateaus. As discussed in the main text, the SdH oscillations of Rzz and ρxx have the nearly
same oscillation frequency for the samples taken from the same batch and the carrier densities extracted from the Hall
coefficient and quantum oscillation frequency are consistent. These facts further indicate the trivial surface states due
to band bending are not involved in BaMnSb2.

II. SUPPLEMENTARY DISCUSSIONS

Tight-Binding Models

We first construct the TB models for the Sb layer, and study the evolution of the band in comparison with the
first-principles calculation.
The orbital projection given by the first principles calculation (supplementary Figs. 15, 16 and 17) shows that the

main contributions to the band near the Fermi level (slightly below zero energy) are from px and py orbitals of Sb
atoms on the conducting Sb layers as discussed in the main text. Since the inter-layer tunneling is negligible as shown
by the small bandwidth along Γ− Z near the Fermi energy in Fig. 2(a) of the main text, we can construct the TB
model only for one of the two equivalent conducting Sb layers in the conventional cell without any inter-layer tunneling
along z direction. In the chosen conducting Sb layer (Fig 1(b) of the main text or supplementary Fig. 14), the two Sb
atoms in one unit cell, labeled as Sb1 and Sb2, have sub-lattice vectors τ 1 = (x1a, 0, c/2) and τ 2 = (x2a, b/2, c/2),
respectively, where a, b, c are the lattice constants of the conventional cell in x, y, z direction and x1,2 ∈ [0, 1) and the
values of x1,2 will be given for different symmetry groups (I4/mmm or I2mm). Therefore, the bases of the TB model
are |R+ τ i, α, s〉 with the lattice vector R = (lxa, lyb, lzc) (lx,y,z ∈ Z), the sublattice index i = 1, 2, the orbital index
α = px, py and the spin-z index s =↑, ↓. We include the on-site term H0, the nearest-neighboring (NN) hopping H1
and the next-NN hopping H2 in the TB model, i.e. HTB = H0 +H1 +H2. Specifically, H0 reads

H0 =
∑
R,i

c†R+τ iMicR+τ i , (4)

where c†R+τ i = (c†R+τ i,px,↑, c
†
R+τ i,px,↓, c

†
R+τ i,py,↑, c

†
R+τ i,py,↓). H1 reads

H1 =
∑
R

4∑
n=1

c†R+∆Rn+τ2
TncR+τ1 + h.c. , (5)

where ∆R1 = 0, ∆R2 = (a, 0, 0), ∆R3 = (a,−b, 0) and ∆R4 = (0,−b, 0). H2 reads

H2 =
∑
R,i

∑
n=x,y

c†R+∆Rn+τ iQnicR+τ i + h.c. , (6)
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Supplementary Figure 14. This figure shows the positions of atoms, orbitals and the hopping. The red and orange atoms are
Sb1 and Sb2, respectively, and the dark green dashed circles are the projection of nearby Ba atoms onto the Sb layer. The px

and py orbitals of Sb atoms are labelled with light purple and light green colors, respectively. The black dashed line boxes the
unit cell and the black arrows are the sublattice vectors τ 1 and τ 2. The blue and green arrows show the NN and next-NN
hopping, respectively. a and b are lattice constants along x and y directions, respectively.

where ∆Rx = (a, 0, 0) and ∆Ry = (0, b, 0). (See more details about the hopping in supplementary Fig. 14.) Using
c†R+τ i = 1√

N ′

∑
k e
−ik·(R+τ i)c†k,i with N ′ the number of lattice cites and c†k = (c†k,1, c

†
k,2), we can transform HTB to

the momentum space, which reads

HTB =
∑
k

c†kh(k)ck , (7)

where h(k) = h0(k) + h1(k) + h2(k),

h0(k) =

M1

M2

 , (8)

h1(k) =

 0 0

e−i[kxa(x2−x1)+kyb/2] 0

⊗ [T1 + T2e
−ikxa + T3e

−i(kxa−kyb) + T4e
ikyb] + h.c. , (9)

h2(k) =

Qx1

Qx2

 e−ikxa +

Qy1

Qy2

 e−ikyb + h.c. . (10)

As shown by the above equations, the TB model has no kz dependence, coinciding with the fact that we do not include
any inter-layer tunneling. Therefore, in the following, we only need to consider the kz = 0 plane of the momentum
space and redefine k = (kx, ky).

Before deriving the explicit forms of the terms in HTB , let us first discuss the effect of anti-ferromagnetism (AFM).
BaMnSb2 has AFM with magnetic moments given by Mn atoms; such AFM structure can break some crystalline
symmetries and the time-reversal (TR) symmetry. As discussed in the main text and above, the transport properties
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of BaMnSb2 are given by the conducting Sb layers, and the inter-layer tunneling, which passes through the Mn layer,
is very small, implying the small effect of AFM on the transport. As shown in Fig. 2(a) of the main text, the negligible
AFM effect is also reflected by the approximate 4-fold degeneracy near Fermi energy at X, since if the inter-layer
tunneling and AFM are completely absent, the 4-fold degeneracy would become exact and come from the TR-protected
Kramer’s degeneracy in each of the two equivalent conducting Sb layers in one conventional cell. Therefore, we can
construct the TB model without the AFM effect.

In the following, we first derive the forms of the terms in HTB for the case where the system has no distortion and
its space group is I4/mmm, and then consider the case where the zig-zag distortion reduces the space group to I2mm.
In this part, we first construct the TB model based on the symmetry property of the space group I4/mmm and

then compare the TB model with the first-principles calculations.
Owing to I4/mmm, we have a = b, and (x1, x2) = (1/2, 0) for the chosen Sb layer. The generators of I4/mmm are

the four-fold rotation C4z along z, two-fold rotation C2y along y, inversion P and translation T1/2 along (a/2, b/2, c/2).
As we neglect the AFM effect, we also have TR symmetry T . T1/2 relates the two conducting Sb layers in the
conventional cell and just gives rise to the layer double degeneracy if neglecting the inter-layer tunneling. Therefore,
we only need to consider C4z, C2y, P and T since we only construct the model for one conducting Sb layer in the
conventional cell. The transformations of c†R+τ i under those symmetries are

C4zc
†
R+τ iC

−1
4z = c†C4z(R+τ i)C

OS
4z

C2yc
†
R+τ iC

−1
2y = c†C2y(R+τ i)C

OS
2y

Pc†R+τ iP
−1 = c†−(R+τ i)P

OS

T c†R+τ iT
−1 = c†R+τ iT

OS , (11)

where COS4z = (−iτy)e−iσz2
π
2 , COS2y = iτzσy, POS = −τ0σ0, T OS = iτ0σy, T is anti-linear, OS means the combination

of orbital and spin, and τ ’s and σ’s are Pauli matrices for orbital and spin indexes, respectively. Furthermore, the
transformations of c†k reads

C4zc
†
kC
−1
4z = c†C4zk

ρx(−iτy)e−iσz2
π
2

C2yc
†
kC
−1
2y = c†C2yk

iρ0τzσy

Pc†kP
−1 = c†−k(−ρ0τ0σ0)

T c†kT
−1 = c†−kiρ0τ0σy , (12)

where ρ’s are Pauli matrices for the sublattice index. The TB Hamiltonian HTB must be invariant under C4z, C2y, P
and T , and thus we have the following forms for the terms in HTB according to Eq. (11) (or equivalently Eq. (12)):

M1 = m̃0τ0σ0 + m̃1τzσ0 + λ0τyσz , M2 = COS4z M1(COS4z )† ,
T1 = T3 = t0τ0σ0 + t1τxσ0 + it2τyσ0 , T4 = T2 = τzσyT1τzσy ,

Qx1 = t3τ0σ0 + t4τzσ0 , Qx2 = t5τ0σ0 + t6τzσ0 , Qy1 = COS4z Qx2(COS4z )† , Qy2 = COS4z Qx1(COS4z )† , (13)

where all m̃’s, t’s and λ0 are real and the spin-dependent hopping terms are neglected since they are typically high-order
terms originating from the on-site SOC. Next, we analyze the physical meaning of each term in the above equation.
m̃0,1 indicate the on-site energies, with m̃0 + m̃1 (m̃0 − m̃1) the on-site energy of px (py) orbital of Sb1. λ0 is the
on-site SOC. t0 is the NN hopping between the same orbitals of different Sb atoms, i.e. from Sb1 px to Sb2 px or from
Sb1 py to Sb2 py. t1 + t2 (t1 − t2) is the NN hopping from Sb1 py (px) to Sb2 px (py) for ∆R = 0. t3 + t4 (t3 − t4) is
the next-NN hopping along x between px (py) orbitals of Sb1, while t5 and t6 have the same meaning for Sb2. We
emphasize that the Ba atom in supplementary Fig. 14 is essential for the non-zero values of the parameters m̃1, t2,
t3 − t5 and t4 − t6. Without the effect of Ba atoms, we have m̃1 = t2 = t3 − t5 = t4 − t6 = 0.

Now we discuss how the TB model qualitatively capture the main features of the first-principles calculation in the
absence of SOC. We choose the following values of parameters:

m̃0 = 0 , m̃1 = 0.3eV , λ0 = 0 , t0 = 1eV , t1 = 2eV , t2 = 0 , t3 = 0.1eV ,

t4 = −0.06eV , t5 = 0.15eV and t6 = −0.06eV . (14)

Here m̃0 = 0 means we set the average on-site energy to be the zero of energy, and λ0 = 0 as we consider the case
without SOC. The values of m̃1, t2, t3 − t5 and t4 − t6 are close to zero since they are given by the high-order effects
from Ba atoms, and we choose the NN hopping t0,1 to have larger order of magnitudes than those of the next-NN
hopping t3,4,5,6. With Eq. (14), we plot the band structure and orbital projections of the TB model in supplementary
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Supplementary Figure 15. (a), (c), (e), (g) and (i) are from the first-principles calculation for I4/mmm without SOC, while
the TB model (13) gives (b), (d), (f), (h) and (j) with parameter choice Eq. (14). (a) and (b) show the band structure with insets
the zoom-in versions of the corresponding boxed parts in the main graphs. (c) and (d) show the orbital projection to Sb1 px and
py orbitals at X. (e) and (f) show the orbital projection to Sb1 px and py orbitals at Y . (g) and (h) show the orbital projection
to Sb2 px and py orbitals at X. (i) and (j) show the orbital projection to Sb2 px and py orbitals at Y . In all orbital projection
plots, red (blue) bubbles stand for the px (py) orbital, and the diameters of bubbles are proportional to the projection values, i.e.
larger diameter means larger contribution. For all plots around X (Y), the momentum axis is along Γ−X −M (M − Y − Γ).

Fig. 15(b), (d), (f), (h) and (j). As shown in supplementary Fig. 15(a), (c), (e), (g) and (i), the key qualitative features
of the the first principles calculation for I4/mmm without SOC include (i) the gapless points along X −M −Y formed
by the crossing between px and py orbitals with opposite mx and my parities , (ii) the large gap along Γ −X and
Y − Γ, (iii) Sb2 and Sb1 contribute to the bands closer to the Fermi energy at X and Y , respectively, and (iv) Sb2 py
orbital has higher energy than Sb2 px at X. Here mi means the mirror symmetry with mirror plane perpendicular to
direction i. supplementary Fig. 15(b), (d), (f), (h) and (j) show that all the above qualitative features are captured by
the TB model calculation for the I4/mmm case.
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Supplementary Figure 16. Blue arrows in (a) show the relative shifts of atoms caused by the distortion in one unit cell (black
dashed box). The black arrows are the NN hopping, and the red (orange) dot is Sb2 (Sb1) atom. (b) shows the change of the
gap at X and Y as the distortion parameter α0 increases, given by the distorted TB model (16) without SOC. (c) and (d) ((e)
and (f)) show the evolution of band structure near X (Y) as distortion increases, where the distortion becomes larger from red
to yellow. (g)-(n) show the orbital projection of Sb1 or Sb2 to bands near X or Y with px colored red and py colored blue. Here
(c), (e), (g), (i), (k) and (m) are given by the first-principles calculation without SOC, while all others are given by the distorted
TB model (16) without SOC. For all plots around X (Y), the momentum axis is along Γ−X −M (M − Y − Γ).

In the next part, we add the zig-zag distortion to Eq. (13) to derive a TB model, and compare the model with the
first-principles calculation with distortion.
The zig-zag distortion can be viewed as the shift of Sb1 atoms to the left and the shift of Sb2 atoms to the right,

resulting in a 6= b, x1 = 0.4512 and x2 = 0.01729 as determined by the first-principles calculation. (See supplementary
Fig. 16(a).) This distortion reduces the space group from I4/mmm to I2mm and preserves TR symmetry. The
generators of I2mm besides T1/2 are the 2-fold rotation C2x along x and the mirror operation my with mirror plane
perpendicular to y. The symmetry transformations of c†R+τ i and c

†
k under the two operations read

C2xc
†
R+τ iC

−1
2x = c†C2x(R+τ i)C

OS
2x

myc
†
R+τ im

−1
y = c†my(R+τ i)m

OS
y

C2xc
†
kC
−1
2x = c†C2xk

(−iρ0τzσx)

myc
†
km
−1
y = c†myk(−iρ0τzσy) , (15)

where COS2x = −iτzσx, mOS
y = −iτzσy and TR transformation is shown in Eq. (11) and Eq. (12). In principle, one can

use the above relations to derive all the symmetry allowed terms given by the distortion in HTB , but this method is
too complicated to capture the main physics. Instead, we define a distortion parameter α0 with α0 = 0 and α0 = 1
corresponding to non-distorted and the fully-distorted cases, respectively, where the non-distorted case corresponds
to the I4/mmm case where (x1, x2) = (1

2 , 0) and the fully-distorted case corresponds to the realistic material with
(x1, x2) = (0.4512, 0.01729). Thus, we may include the distortion effect on the relative atom positions by choosing
x1 = 1

2 + (0.4512− 1
2 )α0 and x2 = 0.01729α0. On the other hand, the distortion can change the hopping parameters,

e.g. it can make T1,4 larger than T2,3 as shown in supplementary Fig. 16(a). For simplicity, we include such effect by
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Supplementary Figure 17. (a) is the band structure given by the distorted TB model (16) with SOC, and (b) is the zoom-in
version of the boxed part in (a). (c)-(f) show the orbital projection of Sb1 or Sb2 to bands near X with px colored red and py

colored blue. Here (c) and (e) are given by the first-principles calculation with distortion and SOC, while (d) and (f) are given
by the distorted TB model (16) with SOC. For all plots around X (Y), the momentum axis is along Γ−X −M (M − Y − Γ).

revising Eq. (13) with

T2 = τzσyT1τzσy
f(α0) , T4 = τzσyT1τzσy , T3 = T1

f(α0) , (16)

while keeping all other relations in Eq. (13) unchanged. It means that we simply make T2,3 smaller than T1,4 by a
factor 1/f(α0) < 1, while neglecting other changes of the on-site and hopping energy parameters in HTB caused by
the distortion. By fitting to the first-principles calculation, we get a simple linear form f(α0) = 0.2α0 + 1, and that
Eq. (16) preserves I2mm symmetry can be checked with Eq. (15).
Next, we compare the distorted TB model (16) with the first-principles calculation. We first focus on the case

without SOC, and use the parameter values Eq. (14) to visualize the distortion effect from α0 = 0 to α0 = 1 with the
distorted TB model (16). As shwon in supplementary Fig. 16(b), the gap at X increases as the distortion increases,
while the gap at Y first closes and then reopens. In order to understand such feature, we show the evolution of the
band structure near X and Y with the distortion in supplementary Fig. 16(d) and (f), in which the gapless points near
X are directly gapped out as the mx is broken by the distortion, while those near Y remain for small distortion since
my is preserved. As the distortion increases, two gapless points near Y first move towards Y and then annihilate each
other at Y, and finally a large gap at Y is opened in the fully-distorted case. Such evolution qualitatively matches the
first-principles calculation for I2mm without SOC as shown in supplementary Fig. 16(c) and (e). We further plot the
orbital projection with the distorted TB model for α0 = 1 in supplementary Fig. 16(h), (j), (l) and (n) to compare
with the first-principles calculation for the most energetically favorable distortion strength in supplementary Fig. 16(g),
(i), (k) and (m), from which a qualitative match can be seen. In addition, according to supplementary Fig. 16, the
anti-crossing between px and py is found along X −M . This anti-crossing originates from the gapless points along
X −M in I4/mmm case, and the gap opening is induced by distortion in the I2mm case.
At last, in the fully-distorted case α0 = 1, we add the on-site SOC with λ0 = 0.25eV to the distorted TB model

(16), which removes the spin degeneracy and results in the formation of spin-split gapped Dirac cone as shown in
supplementary Fig. 17(a) and (b), coinciding with Fig. 2(a) of the main text. The orbital projections are shown in
supplementary Fig. 17(c) and (e) for the first-principles calculation and in supplementary Fig. 17(d) and (f) for the
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distorted TB model, which coincide qualitatively.

Effective Models

Next we construct the effective models around X and Y for I4/mmm, around X for I2mm, and the effective
model around the two valleys K±. Before going into the details, let us first discuss the chosen bases. As shown
in supplementary Figs. 15, 16 and 17, the main contribution to the four bands, including the spin index and per
conducting Sb layer, close to the X (Y) is from the px and py orbitals of Sb2 (Sb1). Therefore, the bases should be
chosen as c†

kX+k̃,2,α,s for X and c†
kY +k̃,1,α,s for Y, where kX = (π/a, 0, 0), kY = (0, π/b, 0), k̃ = k − kX for X, and

k̃ = k−kY for Y. In the following, we adopt the labels c†
kX+k̃,2 = (c†

kX+k̃,2,px,↑
, c†
kX+k̃,2,px,↓

, c†
kX+k̃,2,py,↑

, c†
kX+k̃,2,py,↓

)

and c†
kY +k̃,1 = (c†

kY +k̃,1,px,↑
, c†
kY +k̃,1,px,↓

, c†
kY +k̃,1,py,↑

, c†
kY +k̃,1,py,↓

) for convenience.
As discussed above, we need to consider 4 symmetry operations: C4z, C2y, P and T , where the first three span

the point group D4h. [17] Since C4z relates X with Y, we need to construct the effective models around X and Y
simultaneously with both c†

kX+k̃,2 and c†
kY +k̃,1. According to Eq. (12), the transformations of c†

kX+k̃,2 and c†
kY +k̃,1

under those symmetry operations read

C4zc
†
kX+k̃,2C

−1
4z = c†

kY +C4zk̃,1
COS4z , C4zc

†
kY +k̃,1C

−1
4z = c†

kX+C4zk̃,2
COS4z ,

C2yc
†
kX+k̃,2C

−1
2y = c†

kX+C2yk̃,2
COS2y , C2yc

†
kY +k̃,1C

−1
2y = c†

kY +C2yk̃,1
COS2y ,

P c†
kX+k̃,2P

−1 = c†
kX−k̃,2

POS , P c†
kY +k̃,1P

−1 = c†
kY −k̃,1

POS ,

T c†
kX+k̃,2T

−1 = c†
kX−k̃,2

T OS , T c†
kY +k̃,1T

−1 = c†
kY −k̃,1

T OS , (17)

where the expressions of COS4z , COS2y , POS and T OS can be found below Eq. (11). Next, we derive the form of the
effective models around X and Y, i.e. HX =

∑
k̃ c
†
kX+k̃,2hX(k̃)ckX+k̃,2 and HY =

∑
k̃ c
†
kY +k̃,1hY (k̃)ckY +k̃,1, to the

second order of k̃ based on the symmetry properties listed in Eq. (17).
Since the effective models, hX(k̃) and hY (k̃), consist of τ matrices, σ matrices and the momentum k̃ to the

second order, it is convenient to list their symmetry transformations according to Eq. (17), which are summarized in
supplementary Tab. 3.

τ0 τx τy τz σ0 (σx, σy) σz 1, k̃2
x + k̃2

y (k̃x, k̃y) k̃xk̃y k̃2
x − k̃2

y

C4z + − + − +

(
−1

1

)
+ +

(
−1

1

)
− −

C2y + − − + +

(
−1

1

)
− +

(
−1

1

)
− +

P + + + + +

(
1

1

)
+ +

(
−1
−1

)
+ +

T + + − + +

(
−1
−1

)
− +

(
−1
−1

)
+ +

IR A1g B2g A2g B1g A1g Eg A2g A1g Eu B2g B1g

Supplementary Table 3. The symmetry transformations of τ matrices, σ matrices and the momentum k̃ to the second order
under C4z, C2y, P and T operations. Here ± indicate their parities under the corresponding operation, and the transformation
matrix, say R, follows the transformation rule v → vR for a row vector v. The last row shows the irreducible representations
(IRs) of D4h according to the notation in Ref. [17].

From tensor products of elements in supplementary Tab. 3, we can construct the most general symmetry-allowed
forms of hX(k̃) and hY (k̃), which read

hX(k̃) = (m0 +B0xk̃
2
x +B0yk̃

2
y)τ0σ0 + (m+Bxk̃

2
x +Byk̃

2
y)τzσ0 +B2k̃xk̃yτxσ0 + λ0τyσz

hY (k̃) = (m0 +B0yk̃
2
x +B0xk̃

2
y)τ0σ0 + (−m−Byk̃2

x −Bxk̃2
y)τzσ0 +B2k̃xk̃yτxσ0 + λ0τyσz . (18)
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Here we only include the on-site (thus k̃-independent) SOC, i.e. the λ0 term, and neglect third and higher orders of k̃.
To verify Eq. (18), we expand the TB model (13) around X and Y to the second order of the momentum, and project
all terms other than SOC to the corresponding bases with second order perturbation, leading to the same form as
Eq. (18) with the parameters given by

m0 = m̃0 + 2t3 − 2t5, m = −m̃1 − 2(t4 + t6),

B0x = b2
(

2t20
(

1
2(2t3 + t4 − 2t5 + t6)− m̃1

+ 1
m̃1 + 4t3 − 2(t4 + 2t5 + t6)

)
+ t5

)
,

B0y = b2
(
− 2(t1 − t2)2

m̃1 − 2(2t3 + t4 − 2t5 + t6) + 2(t1 + t2)2

m̃1 + 4t3 − 2(t4 + 2t5 + t6) − t3
)
,

Bx = b2
(

2t20
(

1
2(2t3 + t4 − 2t5 + t6)− m̃1

− 1
m̃1 + 4t3 − 2(t4 + 2t5 + t6)

)
+ t6

)
,

By = b2
(

2(t1 − t2)2

m̃1 − 2(2t3 + t4 − 2t5 + t6) + 2(t1 + t2)2

m̃1 + 4t3 − 2(t4 + 2t5 + t6) + t4

)
,

B2 = − 8b2t0(m̃1t2 + 4t1(t5 − t3)− 2t2(t4 + t6))
(m̃1 − 2(2t3 + t4 − 2t5 + t6))(m̃1 + 4t3 − 2(t4 + 2t5 + t6)) , (19)

implying that all terms in Eq. (18) can naturally exist. As a = b in this I4/mmm case, all b’s in the above relations
can be replaced by a.

Before moving on to the case with distortion, let us discuss the signs of m,Bx, By in Eq. (18) according to the orbital
projection shown in supplementary Fig. 15. Since supplementary Fig. 15 is done without SOC, we consider Eq. (18)
without SOC, i.e. λ0 = 0. At X, the energies of Sb2 px and py are m0 +m and m0 −m, respectively, according to
Eq. (18). Since the energy of Sb2 py is larger than that of Sb2 px at X as shown in supplementary Fig. 15, we have
m < 0. Along Γ−X, the gap between Sb2 px and py bands reads Epx −Epy = 2(m+Bxk̃

2
x) according to Eq. (18), and

thus the large gap along Γ−X in supplementary Fig. 15 gives Bx < 0. Along X-M, the gap between Sb2 px and py
bands reads Epx − Epy = 2(m+Byk̃

2
y) according to Eq. (18), and thus the gapless point along X-M in supplementary

Fig. 15 means By > 0. As a result, the positions of the two gapless points along X-M are

K± = (π/a,±
√
−m/By) (20)

according to Eq. (18), corresponding to the two valleys defined in the main text.
As discussed above, the space group becomes I2mm in the presence of the zig-zag distortion, and we only need

to consider C2x, my and T operations, where the first two span the point group C2v. [17] As suggested by the
first-principles and TB calculations (supplementary Figs. 16 and 17), we only need to consider the effective model
around X with the bases c†

kX+k̃,2, which have the following transformations according to Eq. (15).

C2xc
†
kX+k̃,2C

−1
2x = c†

kX+C2xk̃,2
COS2x ,

myc
†
kX+k̃,2m

−1
y = c†

kX+myk̃,2
mOS
y ,

T c†
kX+k̃,2T

−1 = c†
kX−k̃,2

T OS , (21)

where COS2x , mOS
y and T OS are listed below Eq. (15) and Eq. (11). Similar as supplementary Tab. 3, the matrices and

momentum in hX(k̃) in this case can be classified based on their symmetry properties, as summarized in supplementary
Tab. 4.

τ0 τx τy τz σ0 σx σy σz 1, k̃2
x ,k̃2

y k̃x k̃y k̃xk̃y

C2x + − − + + + − − + + − −

my + − − + + − + − + + − −

T + + − + + − − − + − − +

IR A1 B1 B1 A1 A1 A2 B2 B1 A1 A1 B1 B1

Supplementary Table 4. The transformations of τ matrices, σ matrices and the momentum k̃ to the second order under C2x,
my and T operations. Here ± indicate the parity under the corresponding operation. The last row shows the IRs of point group
C2v according to the notation in Ref. [17].
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With on-site SOC and the spin-independent terms up to second order of momenta, the most general symmetry-allowed
form of hX(k̃) for I2mm can be derived from supplementary Tab. 4, and reads

hX(k̃) = (m0 +B0xk̃
2
x +B0yk̃

2
y)τ0σ0 + (m+Bxk̃

2
x +Byk̃

2
y)τzσ0 +B2k̃xk̃yτxσ0 +A0k̃yτyσ0 + λ0τyσz , (22)

where A0 is the extra term brought by the distortion as compared with Eq. (18). To check the above equation, we can
re-derive the effective model (22) from Eq. (16) in the same way as above. As a result, the values of parameters in
Eq. (22) can be determined by Eq. (14) and α0 = 1, which read

m0 = −0.0116764eV,m = −0.298474eV, B0x = 2.88066a2eV, B0y = 10.5005b2eV, Bx = −7.28705a2eV,
By = 28.8769b2eV, B2 = −10.5988abeV, A0 = 5.24642beV . (23)

At the end of this part, we discuss the effect of distortion based on Eq. (22) and supplementary Fig. 16. As
supplementary Fig. 16 is done without SOC, we discuss Eq. (22) without SOC, i.e. λ0 = 0. The larger Sb2 py energy
indicates m < 0, and the large gap along Γ − X shows Bx < 0. The band dispersion along X −M is given by
m0 + B0yk̃

2
y ±

√
(m+Byk̃2

y)2 + (A0k̃y)2 according to Eq. (22), and a clear band inversion signature along X −M
between Sb2 px and py is shown in supplementary Fig. 16(k) and (l). It indicates that By > 0, that gives rise to the
gapless points at positions (20) for A0 = 0. A0 6= 0 opens the gap and leads to the inverted band structure. Therefore,
the distortion does not change the sign of m,Bx, By, and its main effect is introducing a non-zero A0 to open the gap
along X −M .
In this part, we try to capture the gapped Dirac cone feature in supplementary Fig. 17, which is plotted with

distortion and SOC, by constructing the effective models around the two valleys. Now the bases should be chosen
as c†K±+q,2 = (c†K±+q,2,px,↑, c

†
K±+q,2,px,↓, c

†
K±+q,2,py,↑, c

†
K±+q,2,py,↓), where q = k −K±, K± = (π/a,±ky0) and

ky0 > 0, and the effective Hamiltonian reads HDC =
∑
q

∑
β=± c

†
Kβ+q,2hβ(q)cKβ+q,2 with “DC” short for “Dirac

cone”. Although ky0 =
√
−m/By according to Eq. (20) for the I4/mmm case, in general it can be shifted by the

distortion and terms with higher-order momenta. As the last part, we still only need to consider C2x, my and T
operations and the corresponding transformations according to Eq. (15) read

C2xc
†
Kβ+q,2C

−1
2x = c†K−β+C2xq,2C

OS
2x ,

myc
†
Kβ+q,2m

−1
y = c†K−β+myq,2m

OS
y ,

T c†Kβ+q,2T
−1 = c†K−β−q,2T

OS , (24)

where COS2x , mOS
y and T OS are listed below Eq. (15) and Eq. (11). As the above transformations are similar as Eq. (21),

the table of the symmetry properties of matrices and q in hβ(q) is the same as supplementary Tab. 4 if replacing k̃ by
q. As a result, the effective model around K± to the leading order of q has the form

h±(q) = (E0 ± v0qy)τ0σ0 ± v2qyτzσ0 ± v1qxτxσ0 + (v3qy ± E1)τyσ0 + λ0τyσz , (25)

where we set the constant coefficient coupled to τzσ0 to zero by shifting the valley position, and we only include the
on-site SOC that has the form τyσz. The relation between Eq. (25) and Eq. (22) can be derived by choosing K± as
Eq. (20) and expanding Eq. (22) around K± to the first order of q, and reads

E0 = −B0ym−Bym0

By
, E1 = A0

√
− m

By
, v0 = 2B0y

√
− m

By
, v1 = B2

√
− m

By
, v2 = 2By

√
− m

By
, v3 = A0 . (26)

Although the above relation cannot restrict the specific values of parameters in Eq. (25) since terms with higher order
momenta in Eq. (22) may change the relation, it does indicate the main contribution and provides the following two
points: (I) v2 < 0 given by By < 0 discussed in the last part and (ii) E1 and v3 originate from the distortion as they
are related with A0. We next add a q-quadratic term ±b0(v2

1q
2
x + v2

2q
2
y)τyσ0 to Eq. (25) in order to explain the LL

splitting in the next section, and Eq. (25) becomes

h±(q) = (E0 ± v0qy)τ0σ0 ± v2qyτzσ0 ± v1qxτxσ0 + [v3qy ± E1 ± b0(v2
1q

2
x + v2

2q
2
y)]τyσ0 + λ0τyσz . (27)

We would like to emphasize that the q-quadratic term that we add is just one of the symmetry-allowed q-quadratic
terms, and we neglect other terms since that one is enough to account for the LL splitting as discussed in the following
and it simplifies the procedure of analytically solving the LL.
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With v2 < 0, we choose λ0 > 0 and E1 < 0 without loss of generality, and fit the Eq. (27) to the first-principles data,
resulting in

E0 = −0.0159125eV, E1 = −0.12955eV, v0 = −0.770856ÅeV, v1 = 1.70245ÅeV,
v2 = 7.9056ÅeV, v3 = −0.000840073ÅeV, λ0 = 0.1531eV, b0 = 1.5eV−1 . (28)

The comparison between the fitted effective model and the first-principles data is shown in Fig. 18(b). As shown by
Eq. (28), v3 can be neglected, meaning that E1 is the main effect of the distortion in Eq. (25).

At last, we discuss the spin-valley locking according to Eq. (27). From hβ(0) = E0τ0σ0 +βE1τyσ0 +λ0τyσz, we know
the eigenvalues of hβ(0) are E0 + βE1 + λ0, E0 + βE1 − λ0, E0 − βE1 − λ0 and E0 − βE1 + λ0 with corresponding
eigenstates |p+, ↑〉, |p+, ↓〉, |p−, ↑〉 and |p−, ↓〉, respectively. Here p± = (px ± ipy)/

√
2. The expressions of eigenvalues

indicate that the appearance of SOC λ0 in the presence of distortion E1 always brings two bands closer with gap
2 ||E1| − |λ0|| and takes the other two further apart with gap 2(|E1|+ |λ0|). The gapped Dirac cone is naturally formed
by the two closer bands as long as |E1| 6= |λ0| with v1 and v2 terms in Eq. (27) giving the linear dispersion in the
gapless case. Combing the eigenvalue expressions with the eigenstates, we find that the two bases that form the Dirac
cone must have the same spin, and the spins at opposite valleys are opposite, resulting in the spin-valley locking. Such
feature physically originates from the opposite on-site SOC for p±, and thus the bands with the same spin always get
pushed either closer or further apart by the SOC. As E1 < 0 and λ0 > 0 are chosen, the two bases that form the Dirac
cone at K+ (K−) have spin up (down). It means that the spin up sector of h+ and spin down sector of h− in Eq. (25)
account for the low-energy physics, which read

h+,↑(q) = (E0 + v0qy)τ0 + v2qyτz + v1qxτx + (v3qy + E1 + b0(v2
1q

2
x + v2

2q
2
y))τy + λ0τy

h−,↓(q) = (E0 − v0qy)τ0 − v2qyτz − v1qxτx + (v3qy − E1 − b0(v2
1q

2
x + v2

2q
2
y))τy − λ0τy . (29)

Landau Levels

Next, we solve for the LLs of Eq. (29) in the presence of a uniform magnetic field along z, i.e. B = (0, 0, B). We
denote the vector potential for the magnetic field as A, i.e. B = ∇×A.
We first discuss the modification of the models in Eq. (29) in order to solve for the LLs. The magnetic field can

introduce the Zeeman term as µBB in h+,↑(q) and as −µBB in h−,↓(q) with µB the Bohr magneton, since the two
Hamiltonians are in opposite spin sectors. As discussed in the main text, the Zeeman term is estimated to have smaller
order of magnitude than the q-quadratic term. We estimate the order of magnitude of the q-quadratic term as follows.
As the coefficients of the q-quadratic term are b0v2

1 and b0v2
2 , we may take the average of them κ =

√
(b0v2

1)(b0v2
2) as

their order of magnitude, and then the energy scale of the contribution of q-quadratic terms to LLs can be estimated
by κ/l2B ∼ 0.3meV(B/Tesla), which is much larger than the order of Zeeman term as discussed in the main text.
Here lB =

√
~/(eB) is the magnetic length and e > 0 is the elementary charge. The magnetic field also introduces

the Peierls substitution q → q + eA/~ to both h+,↑(q) and h−,↓(q) as the orbital effect. In addition, we want to
transformation the bases from px,y to p± with the unitary transformation

U =

 1√
2

1√
2

i√
2 −

i√
2

 . (30)

With all the above three modifications, h+,↑(q) turns into

h̃+,↑ = h0 + h1 + h2 ,

h0 = (E0 + µBB)τ0 + sgn(v2)Dyτx + sgn(v1)Dxτy,

h1 = [E1 + λ0 + b0(D2
x +D2

y)]τz ,

h2 = v0

|v2|
Dyτ0 + v3

|v2|
Dyτz , (31)

where τ matrices are for p± now, Dx = |v1|(qx + eAx/~) and Dy = |v2|(qy + eAy/~). The modified h−,↓, noted as
h̃−,↓, can be derived by flipping the sign of v0, v1, E1, v2, λ0, b0, µB in h̃+,↑, and thus we solve for the LLs of h̃+,↑ in
the following and derive the LLs of h̃−,↓ by the sign flipping.
To solve for the LLs of h̃+,↑, we first address h0, and then take h1 and h2 into account by representing them with

eigenstates of h0. As suggested by Eq. (28), we choose v1 > 0 and v2 > 0. Since [Dx, Dy] = −i|v1v2|eB/~, we can
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Supplementary Figure 18. (a) schematically shows the spin-valley locking of the gapped Dirac cone for E1 < 0 and λ0 ≥ 0.
The blue (red) bands have up (down) spin. The bands that form the gapped Direc cone are boxed by the black dashed line. (b)
is the comparison of the band structures from the first-principles calculation (blue) and the effective model (red dashed) around
K+. The black line shows EF . (c) and (d) compare the LLs (red solid lines) calculated numerically from h̃+,↑ and h̃−,↓, and the
LLs (blue dashed lines) given by Eq. (35) and Eq. (36). (c) and (d) correspond to h̃+,↑ and h̃−,↓, respectively.

define â = (Dx − iDy) lB√
2|v1v2|

, and have [â, â†] = 1. As a result, h0 can be re-written as

h0 = (E0 + µBB)τ0 +
√

2|v1v2|
lB

i

0 −â†

â 0

 , (32)

and its eigenvalues and eigenstates read

h0|ψ0〉 = (E0 + µBB)|ψ0〉 , h0|ψ±l 〉 =
(
E0 + µBB ±

√
2|v1v2|l
lB

)
|ψ±l 〉 , (33)

where |ψ0〉 = (|0〉, 0)T , l = 1, 2, 3, ..., |ψ±l 〉 = (|l〉,±i|l − 1〉)T /
√

2, â†â|0〉 = 0 and â†â|l〉 = l|l〉.
Now we include h1 and h2. Although each LL of h0 has degeneracy 1/(2πl2B), h1 and h2 do not break such degeneracy

since they only depend on â, â†, and thus we can only focus on one degenerate subspace or equivalently omit the
degenerate index. Within {|φ0〉, |φ±l 〉} bases, the matrix element of h1 has the form

[h1]00 = E1 +λ0 + b0|v1v2|
l2B

, [h1]l′γ′,lγ =
(
E1 + λ0 + b0|v1v2|2l

l2B

)
δl′lδγ′,−γ + b0|v1v2|

l2B
δl′lδγ′,γ , [h1]lγ,0 = [h1]0,lγ = 0 ,

(34)
where γ, γ′ = ±. On the other hand, h2 couples LLs of h0 with different energies since h2 is linear in Dx and Dy.

When the l is not too large, the inter-LL coupling given by h2 is of order
√
|v1v2|
lB

v3
|v2| or

√
|v1v2|
lB

v0
|v2| , while the LL

spacing of h0 is of order
√
|v1v2|
lB

. According to Eq. (28), we have |v0/v2| ∼ |v3/v2| � 1, suggesting h2 can be neglected
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for relatively low l. With this approximation, the LLs of h̃+,↑ reads

ε
K+,↑
0 = E0+µBB+E1+λ0+b0

|v1v2|
l2B

and εK+,↑
l,± = E0+µBB+b0

|v1v2|
l2B
±

√
2|v1v2|l
l2B

+ (E1 + λ0 + b0
|v1v2|
l2B

2l)2 . (35)

By flipping the sign of v0, v1, E1, v2, λ0, b0, µB in the above equation, the LLs of h̃−,↑ should have energies

ε
K−,↓
0 = E0−µBB−E1−λ0− b0

|v1v2|
l2B

and εK−,↓l,± = E0−µBB− b0
|v1v2|
l2B
±

√
2|v1v2|l
l2B

+ (−E1 − λ0 − b0
|v1v2|
l2B

2l)2 .

(36)
Eq. (35) and Eq. (36) together give the LLs relevent to the experiment, and it is clearly shown that the valley spltting
is given by the Zeeman term µB and the q-quadratic terms b0. In order to verify the Eq. (35) and Eq. (36), we
numerically solve the LLs with a cutoff on l: l ≤ 50. The parameter choice is given by Eq. (28) and b0 = 1.5eV−1.
During the procedure, we also represent the h2 in {|φ0〉, |φ±l 〉} bases using the fact that [â†τ0]l′γ′,lγ =

√
l+1+γγ′

√
l

2 δl′,l+1,
[â†τ0]1γ′,0 = 1√

2 , [â†τz]l′γ′,lγ =
√
l+1−γγ′

√
l

2 δl′,l+1,[â†τz]1γ′,0 = 1√
2 and the matrix elements of â†τ0 and â†τz are zero

otherwise. As shown in supplementary Fig. 18, the match is quite good.
At the end of this part, we discuss the Shubnikov-de Haas oscillation in the presence of disorder. The disorder effect

to the LLs can be included by introducing a Gaussian disorder broadening to the density of states (DOS):

DOS(E) = 1
2πl2B

∑
n

1√
πΓ2

exp(− (E − En)2

Γ2 ) , (37)

where Γ = Γ0
√
B/Tesla, Γ0 is the disorder broadening parameter, and n sums over all the LLs in Eq. (35) and

Eq. (36). [18] From the above equation, we can determine the Fermi energy in presence of the disorder broadening by∫ EF
E0

DOS(E)dE = −n0, where the minus sign is due to the hole doping of the material. With the determined Fermi
energy, we can then plot Fig. 4(f) of the main text with parameter choices Eq. (28), and Γ0 = 2 or 3meV.
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