
REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

The results presented in this paper are very similar to those published in Ref. 42 [Phys. Rev. B 101, 

081104(R), (2020)]. The authors’ claim that spin-valley locking occurs in BaMnSb2 is relatively well 

justified by the filling factor observed in the 3D quantum Hall effect. The arguments presented here 

are in fact identical to those used in Ref. 42. The material under discussion has a high mobility, and 

the spin splitting is well resolved. Up to this point, the paper is quite solid. 

This reviewer is, however, somewhat skeptical about how the authors come to the conclusion that the 

saturation of the out-of-plane resistance Rzz indicates the presence of a chiral surface state. 

Here are some of the questions (and related comments) that come to mind as one considers this 

manuscript. 

1. The strength of the spin splitting seems to depend on the position of the Fermi energy in the 

theoretical simulations. After the valleys merge at high Fermi energy, one ends up with a single spin-

degenerate valley. Since the authors have studied a number of samples with different carrier densities, 

it would be interesting to know whether any of the samples studied have a sufficiently high Fermi 

energy to be in this regime? 

2. Does the carrier density extracted from quantum oscillations, including the 2-fold degeneracy (1 

spin, 2 valleys), agree with the Hall density? 

3. The evidence used to demonstrate the presence of chiral surface states is in my view insufficient. 

Earlier in the manuscript, the authors mention that a band at the gamma point is partially occupied, 

yielding additional conduction channels. Couldn’t that explain the saturation of Rzz and the absence of 

localization at high field? Additionally, given that the material behaves essentially like a narrow-gap 

semiconductor near the X point, even a slight amount of band bending should lead to surface 

accumulation layers, giving rise to trivial surface states. These trivial accumulation layers are 

commonly observed in narrow gap semiconductors, and were recently considered for explaining 

similar behavior in InAs [ArXiv Jaoui et al., 

2008.06356] and SmB6 [Hlawenka et al., Nat. Comm. 9, 517 (2018)]. 

Additionally, the authors should define ρ_xy^0 as soon as it comes up in the text. And in the author 

list, should the name Mcdonald be spelled McDonald? 

The authors should address the points raised above (and particularly item 3) before the paper can be 

considered for publication in Nature Communications. 

Reviewer #2 (Remarks to the Author): 

This work reports a comprehensive study of BaMnSb2. Based on theoretical calculations, angle-

resolved photoemission spectroscopy and quantum transport measurements, the authors claim that 

the energy bands around the Fermi level are dominated by a pair of symmetric spin-split bands, 

following a gapped Dirac dispersion. The splitting is of similar strength in both the valence band and 
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the conduction band. I find that the arguments are convincing and the material is interesting in some 

aspects in comparison with thin CMD films. I recommend publication of the manuscript. 

I have a few comments to be addressed by the authors. 

In this work, the key evidence of spin-valley locking, although probably not a direct one, is the 

degeneracy of the Dirac band being 2 instead of 4. The degeneracy is estimated from the value of the 

last Hall plateau. Unlike the quantum Hall effect in 2D, where the quantized resistance does not 

depend on the geometry, such an estimation in 3D is prone to error. The problem is particularly 

severe when the longitudinal resistance does not go to zero, as one has a freedom to choose between 

the conductance and resistance. So, it often raises concerns. Therefore, it is necessary to be thorough. 

For instance, can equal steps be observed if the Hall conductivity is presented in Fig. 3b? What would 

be the degeneracy if the conductivity is used for Z#1, which has a large longitudinal resistivity? Why 

does the longitudinal resistivity become negative at high fields, as seen in Fig. 4a? Will it have any 

effect on obtaining the correct Hall resistivity? 

I would like to point out that the degeneracy can be obtained by comparing the Hall resistivity, which 

gives the carrier density, with Bf, which tells the size of the Fermi surface. This is not entirely an 

independent method, still it is good to show, as it does not have the dilemma of which to choose 

between resistivity or conductivity. 

As for the plateau in sigma_zz(Fig. 4b), is it possible that this is due to joule heating when the 

resistance is strongly enhanced?



We thank both referees for reviewing our manuscript. We appreciate their comments and 

suggestions, which have been very helpful in improving our manuscript. In the following, we 

provide a point-to-point response (shown in blue) to all comments raised by the two referees 

(shown in black). 

Response to Reviewer #1 

The results presented in this paper are very similar to those published in Ref. 42 [Phys. Rev. B 

101, 081104(R), (2020)]. The authors’ claim that spin-valley locking occurs in BaMnSb2 is 

relatively well justified by the filling factor observed in the 3D quantum Hall effect. The 

arguments presented here are in fact identical to those used in Ref. 42. The material under 

discussion has a high mobility, and the spin splitting is well resolved. Up to this point, the paper 

is quite solid. 

Response: We appreciate the referee’s judgment: “the paper is quite solid”. While we 

acknowledge the main argument made in our manuscript seems similar to that of Ref. 42, we 

must point out our work has several aspects distinct from Ref. 42, which makes our arguments 

solid, as discussed below. 

First, the determination of the non-centrosymmetric orthorhombic I2mm structure plays a critical 

role in establishing the spin-valley locked Dirac state of BaMnSb2. This material was previously 

reported to be tetragonal with the space group of I4/mmm (Z. Naturforsch. 32b, 383 (1977)). The 

neutron scattering data obtained in our previous work (Scientific Reports 6, 30525 (2016)) can 

also be refined using the reported tetragonal structure. These facts imply that either X-ray or 

neutron diffraction is hard to resolve the I2mm orthorhombic structure of BaMnSb2, which is 

indeed reflected in our significant efforts made to the structure determination of BaMnSb2.  

Although we observed bulk quantum Hall effect (QHE) of BaMnSb2 in 2016, we did not rush to 

publish this data, since we encountered a challenging problem: the spin-valley degeneracy 

extracted from the QHE is 2, which contradicts the reported I4/mmm tetragonal structure. This is 

because the tetragonal structure should come with four Dirac nodes, with the spin-valley 

degeneracy of 8 according to a previous prediction (J. Phys. Condens. Matter 26, 042201 

(2014)). This inconsistency motivated us to carefully reexamine the crystal structure. Since the 

orthorhombic distortion of BaMnSb2 is very small, it is extremely difficult to determine its 

orthorhombic space group using either neutron scattering or single crystal X-ray diffraction. Two 

of the co-authors of our manuscript, Dr. Huibo Cao and Dr. Bryan Chakoumakos at the Oak 

Ridge National lab, are the leading experts in determining crystal structures using neutron 

scattering and single crystal X-ray diffractions. They did both neutron diffraction and single 

crystal X-ray diffraction measurements on BaMnSb2 and found the diffraction data can be 

refined using either the reported I4/mmm tetragonal structure (Scientific Reports 6, 30525 

(2016)) without considering a few observed weak forbidden peaks in x-ray diffraction or 

orthorhombic structures with various space groups (including I2mm, Pmmm, Cmmm) with those 

few peaks considered. Since they could not finalize the structure from the diffraction data, they 

suggested us to use other techniques to examine the structure of this material. As shown in the 

manuscript, we used scanning transmission electron microscopy (STEM) and optical second 



harmonic generation (SHG) measurements to finalize the I2mm structure of BaMnSb2. Our 

STEM analyses reveal direct evidence of orthorhombic distortion (Fig. 1c and 1d in the 

manuscript). However, we were still unable to determine the space group based on the STEM 

images alone. Since there are several possible orthorhombic space groups as noted above, we 

performed first principles calculations, from which we found the I2mm orthorhombic structure is 

the most stable. The I2mm structure is non-centrosymmetric. If this is correct, it should generate 

SHG response. To verify that, we conducted SHG measurements and indeed observed strong 

SHG signal (Fig. 1e and 1f); further we also found the SHG polarimetry can be modeled with the  

2mm point group (Fig. 1f). These results provide solid evidence for the non-centrosymmetric 

I2mm orthorhombic structure of BaMnSb2. The spin-valley locked band structure predicted 

by first principles calculations is built on this determined structure. Given the critical role 

played by our structure determination, we have included one section “Structure determination” in 

the main text to show how the I2mm structure of BaMnSb2 is determined and why this 

determined structure is different from the previously reported tetragonal structure.  

In contrast, the I2mm structure reported in Ref. 42 was determined only based on single-crystal 

X-ray diffraction refinement. Given the neutron and X-ray diffraction data can also be refined 

with other orthorhombic space groups such as Pmmm and Cmmm as noted above, it is clearly 

risky to claim the I2mm structure for BaMnSb2 based on the X-ray diffraction structure 

refinement alone.  Without solid evidence for the I2mm non-centrosymmetric orthorhombic 

structure, their claim of spin-valley locking based on first principles calculations is clearly 

skeptical. We note that our original manuscript (arXiv:1907.06318) was posted in arXiv six 

months earlier than ref. 42 (arXiv:2001.08683) as mentioned in the Note at the end of manuscript, 

which means our structure determination work was fully independent.  

Second, to reveal experimental evidence for the spin-valley locked Dirac state, it is critical to 

show there are two gapped Dirac cones symmetrically located near Y point along the YM line 

(see the calculated Fermi surface in Fig. 1e in Ref.42). However, this is not resolved in the 

ARPES measurements reported in ref. 42. To observe these two Dirac crossing points, the band 

dispersion along the MY line must be shown (see Fig. 1e in Ref. 42). However, Ref.42 did not 

show this data. Instead, they presented the band dispersion data only along the -Y line, which 

cannot reveal two Dirac cones along the MY line. Although their constant energy map (Fig. 1d in 

Ref. 42) appears to show two spots near Y, it is hard to claim they correspond to two Dirac band 

crossing points without showing the band dispersion along the YM line.  

In sharp contrast, in our ARPES measurements, we clearly observed two Dirac crossing points 

symmetrically residing near X/Y point along the M-X/Y line (Fig.2f in our manuscript). Our 

constant energy map shown in Fig. 2d clearly demonstrates two point-like hole pockets 

comprised of linear bands near X/Y point, which is a clear evidence of a paired Dirac cones near 

X/Y point (Note that X/Y points cannot be distinguished due to the coexistence of twin domains 

in the orthorhombic structure). Then, through the bulk quantum Hall effect (QHE) observed in 

BaMnSb2, we demonstrate the total spin-valley degeneracy of this Dirac state per Sb layer is 

two, indicating the spin degeneracy is lifted for both Dirac cones, thus resulting in spin valley 

locking as shown in Fig. 2b. Without clear ARPES evidence for the paired Dirac cones, it would 

be difficult to claim the spin-valley coupled Dirac state.  

https://arxiv.org/abs/1907.06318
https://arxiv.org/abs/2001.08683


Third, the claim of QHE in Ref. 42 is not well justified for two reasons: (a) the normalized 

inverse Hall resistivity 
𝑥𝑦
0 /

𝑥𝑦
(see Fig. 3a in Ref. 42) is not equally spaced and 

𝑥𝑦
0 /

𝑥𝑦
 

deviates from half integer numbers 5/2 and 7/2 for BF/B =5/2 and 7/2. In contrast, in our work, 


𝑥𝑦
0 /

𝑥𝑦
 is quantized to 1/2, 3/2, 5/2 and 7/2, respectively, for BF/B =1/2, 3/2, 5/2 and 7/2 (Fig. 

3b in our manuscript). (b) Ref. 42 did not demonstrate the longitudinal resistivity xx reaches a 

minimum or is close to zero at quantum Hall states, since they were not able to measure xx due 

to its mixing with the z-axis resistivity zz. In contrast, in our work, we succeeded in measuring 

xx without a zz component using samples prepared through focused ion beam (FIB) cutting. We 

indeed find xx reaches a minimum at the quantum Hall states and is very small for the high 

mobility sample E#1 (see our response to referee 2, page 9-11). Moreover, we also find the SdH 

oscillations in xx and zz are out-of-phase, indicating the z-axis transport is dominated by 

tunneling (see section I.4 in supplementary materials). This is not mentioned in Ref. 42. 

Finally, we would like to emphasize that we also theoretically corroborated the spin-valley 

locked Dirac state in BaMnSb2.  Our effective Hamiltonian analyses explicitly demonstrate the 

existence of spin-valley locked Dirac cones near X. To compare with the QHE observed in 

experiments, we have also calculated Landau level (LL) spectra and successfully predicted the 

LL splitting due to the lifted spin-valley degeneracy. These theoretical investigations, which are 

not included in Ref. 42, deepen our understanding of the physics of the spin-valley locked Dirac 

state. 

This reviewer is, however, somewhat skeptical about how the authors come to the conclusion 

that the saturation of the out-of-plane resistance Rzz indicates the presence of a chiral surface 

state. 

Response: For a stacked quantum Hall system, previous theoretical studies by Balents and Fisher 

(PRL 76, 2782 (96))  predicted that if the interlayer tunneling amplitude is small compared to the 

quantum Hall gap, coupling the edge states by interlayer tunneling leads to a 2D gapless chiral 

surface state  on the sidewalls as illustrated in Fig. R1(a) attached below, which is 2D analog of 

the 1D chiral edge state of a single quantum Hall layer. Such a 2D chiral surface state dominates 

the z-axis transport within the quantum Hall states, resulting in plateaus in the z-axis 

conductivity (zz) or resistivity (zz). In contrast, between quantum Hall transitions, the z-axis 

transport is through bulk due to the bulk extended states, resulting in peaks between the zz 

plateaus (see the dashed curve in Fig. R1(b)).  

According to this theory, the zz plateaus due to the 2D chiral surface state are unquantized, but 

much less than e2/h and independent of temperature. These predictions were first demonstrated in 

the stacked quantum Hall states of the semiconductor superlattices, as shown in Fig. R1(c). In 

our experiment, we did observe a plateau in the z-axis resistance Rzz in the field range where the 

Hall resistivity plateau with the filling factor of  = ½ is present at 0.7K (see the red curve in Fig. 

4b in the manuscript). Further, we find the Rzz value near 60T tends to saturate when the 

temperature is lowered below 20K (Fig. 4b and 4e). Given we have demonstrated BaMnSb2 is a 

stacked quantum Hall system and its z-axis transport is dominated by the bulk Dirac bands via a 

tunneling process (see section I.4 in SM), the observation of the Rzz plateau within the quantum 

Hall state near 60T, together with the saturation behavior of Rzz below 20K, are consistent with 



the expectation of a 2D chiral surface state in stacked quantum Hall systems. Nevertheless, we 

agree with the referee that further experiments are needed to verify the chiral surface state in 

BaMnSb2, which is the goal of our future work. What we want to emphasize here is that our 

current z-axis transport data give a strong hint for the presence of chiral surface states. We have 

revised the manuscript to reflect that and remove “chiral surface state” from the title. Since the 

major finding of this manuscript is the spin-valley locked Dirac state and quantum Hall state in 

bulk single crystals, this revision does not change the major significance of this work.  

 

Figure R1. (a) Schematic of the 2D chiral surface state for a stacked quantum Hall sample. The chiral 

surface state dominates the z-axis transport, which occurs via tunneling; t represents tunneling magnitude. 

V(x,z) represents the random potential. (b) Predicted behavior of the z-axis conductivity in stacked 

quantum Hall systems for an isolated transition (solid line) and with an intervening metallic phase 

(dashed curve). Panel (a) and (b) are adopted from the paper by Balents and Fisher (PRL 76, 2782 (96)). 

(c) The magnetic field dependence of in-plane longitudinal and Hall resistance (upper panel) and z-axis 

conductivity of a stacked quantum Hall system composed of semiconductor superlattice, adopted from the 

paper by Druist et al., (PRL 80, 365(1998)). 

Here are some of the questions (and related comments) that come to mind as one considers this 

manuscript. 

 

1. The strength of the spin splitting seems to depend on the position of the Fermi energy in the 

theoretical simulations. After the valleys merge at high Fermi energy, one ends up with a single 

spin-degenerate valley. Since the authors have studied a number of samples with different 

carrier densities, it would be interesting to know whether any of the samples studied have a 

sufficiently high Fermi energy to be in this regime? 

Response: Although the samples used in this study indeed show a large variation in carrier 

density, as summarized in Table S1 in Supplementary Materials, none of them has high enough 

Fermi energy for the valleys to merge. Among the samples listed in Table S1, sample E#2 has 

the largest quantum oscillation frequency F(=34.4T), indicating this sample should have the 

highest Fermi energy. Given that F is directly linked to the extremal Fermi surface cross-section 

area AF by the Onsager relation F = (Φ0/2π2)AF, we can estimate the Fermi wavevector kF from F 

[Redacted]



using AF = kF
2. The estimated kF is 0.039 Å-1 for sample E#2. Fig. R2 attached below shows the 

ARPES spectra probed on the 10%-Zn doped sample which has the lowest Fermi energy. 

According to the estimated kF, we can see the Fermi energy of sample E#2 is ~0.14 eV below 

that of sample Z#1 and the valleys do not merge at this energy. We have added this information 

to the revised manuscript (page 7).   

 
Figure. R2: ARPES spectrum along M̅X̅ for the 10% Zn doped sample (i.e. Fig. 2g in the 

manuscript). The Fermi energy of sample E#2, EF,E#2, is denoted by the dashed green line in this 

figure.  

 

2. Does the carrier density extracted from quantum oscillations, including the 2-fold degeneracy 

(1 spin, 2 valleys), agree with the Hall density? 

Response: We have estimated the carrier density from the quantum oscillation frequency F and 

compared it with transport carrier density extracted from the Hall coefficient. According to 

Luttinger’s theorem, the carrier density of a 2D system with a degeneracy of 2 can be expressed 

as 𝑛2𝐷 = 2eF/h where e is the elemental charge and h is the Planck’s constant. Since one-unit cell 

in BaMnSb2 contains two conducting Sb layers (Fig. 1a), the 3D carrier density can be expressed 

as  𝑛𝑆𝑑𝐻 = n2D/(c/2), where c is the lattice parameter. As shown in Table S1, the estimated 𝑛𝑆𝑑𝐻 

is close to the carrier density extracted from Hall coefficients (𝑛𝐻𝑎𝑙𝑙) for samples E#1, E#3 and 

B#1. For instance,  𝑛𝐻𝑎𝑙𝑙 for sample E#1 is 1.41019cm-3, while its 𝑛𝑆𝑑𝐻 is 1.241019 cm-3. Such 

a consistency between  𝑛𝑆𝑑𝐻 and 𝑛𝐻𝑎𝑙𝑙 gives additional support for the degeneracy of 2. For 

sample Z#1, we note the difference between 𝑛𝑆𝑑𝐻 and 𝑛𝐻𝑎𝑙𝑙 is relatively large (𝑛𝑆𝑑𝐻 = 0.361019 

cm-3 vs. 𝑛𝐻𝑎𝑙𝑙 = 0.093 1019 cm-3), which can be attributed to inhomogeneous transport caused 

by Zn-doping; that is, those Sb layers exhibiting SdH oscillations and QHE have different carrier 

density from those layers without showing the SdH oscillations and QHE. 𝑛𝑆𝑑𝐻 represents only 

the carrier density of those layers showing SdH oscillations, while 𝑛𝐻𝑎𝑙𝑙 is the average carrier 

density of all layers. We have added these discussions to the revised manuscript on page 11-12.  

3. The evidence used to demonstrate the presence of chiral surface states is in my view 

insufficient. Earlier in the manuscript, the authors mention that a band at the gamma point is 

partially occupied, yielding additional conduction channels. Couldn’t that explain the saturation 

of Rzz and the absence of localization at high field?  



Response: We have partially addressed this issue on pages 3-4.  We agree with the referee that 

more experiments are needed to verify the chiral surface state. The Rzz plateau in the quantum 

Hall state as well as its saturation behavior below 20K observed in our current experiment are 

only suggestive of the 2D chiral surface state of a stacked quantum Hall system. Nevertheless, 

although the band at the  point has small contribution to transport, the saturation of Rzz cannot 

be explained by the band near the  point for the following reasons:   

First, we measured Hall resistivity xy as a function of magnetic field at various temperatures for 

sample B#1 and found the background of the field dependence of xy nearly shows temperature 

independent linear behavior if we do not consider the xy plateau above 20T (see Fig. 3f in the 

manuscript),  indicating the in-plane transport is dominated by a single band despite the 

existence of the band near the  point. Second, if the band near the  point made observable 

contribution to the z-axis transport, 
𝑥𝑦
0 /

𝑥𝑦
 (Fig 4c) and Hall conductivity yx (Fig. 4d) would 

not show quantization, since its contribution to the Hall effect has no reason to be quantized. In 

other words, the quantization of 
𝑥𝑦
0 /

𝑥𝑦
 (Fig 4c) and yx (Fig. 4d) seen in sample E#1is strongly 

suggestive of the negligible contribution of the band near the  point to the z-axis transport.  

Third, the carrier density extracted from the Hall efficient for sample E#1 is 1.41019 cm-3, 

comparable to the carrier density estimated from the quantum oscillation frequency 1.241019 

cm-3. Given we have demonstrated that both the SdH oscillations and QHE observed in our 

experiments originate from the linear Dirac band near the X point, the consistency of carrier 

densities extracted from the SdH oscillations and Hall coefficient indicates that it is the Dirac 

band near the X point that dominates the transport properties. Additionally, we note the SdH 

oscillations of xx and Rzz (Fig. 4a and 4b) have the nearly same frequency, but out-of-phase, 

indicating the transport along the z-axis is through a tunneling process. This is because that in the 

high field region, the xx valleys occur at the quantum Hall states where the density of state 

reaches a minimum; if tunneling dominates the z-axis transport, the interlayer tunneling 

conductance should reach a minimum at the quantum Hall state, i.e. a maximum in Rzz. This is 

exactly what we have observed. The detailed discussions on the z-axis tunneling are presented in 

section I.4 in SM. 

From the temperature dependences of xx and xy for sample B#1 (Fig. 3e and 3f), we can see the 

xy plateau near 40T (Fig. 3f) as well as the corresponding xx minimum (Fig. 3e) are nearly 

temperature independent below 20K, which are typical signatures of a quantum Hall state. The 

Rzz saturation behavior below 20K occurs concomitantly with the insensitive temperature 

dependences of xx and xy. This further indicates the z-axis transport is dominated by the Dirac 

band near the X point and occurs via tunneling process. Therefore, it is less likely that the Rzz 

saturation behavior below 20K (Fig. 4c) is caused by the band near the  point. We have added 

some of the above discussions to the revised manuscript on page 15.  

Additionally, given that the material behaves essentially like a narrow-gap semiconductor near 

the X point, even a slight amount of band bending should lead to surface accumulation layers, 

giving rise to trivial surface states. These trivial accumulation layers are commonly observed in 

narrow gap semiconductors, and were recently considered for explaining similar behavior in 

InAs [ArXiv Jaoui et al., 2008.06356] and SmB6 [Hlawenka et al., Nat. Comm. 9, 517 (2018)]. 



Response: we thank the referee for bringing these two papers to our attention. Our discussions 

presented above have shown the z-axis transport is dominated by the bulk Dirac band near the X 

point and occurs via a tunneling process. If trivial accumulation layers due to band bending 

existed in BaMnSb2, they would be present at the top and bottom surfaces along the z-direction, 

thus not contributing to the z-axis transport. On the other hand, if we assume the z-axis transport 

was associated with the trivial surface state, the SdH oscillations seen in Rzz would not be 

coupled to the bulk quantum Hall state, which clearly contradicts our experimental observation 

of Rzz reaching maxima at the xy plateaus. As mentioned above, the SdH oscillations of Rzz and 

xx have the nearly same oscillation frequency for the samples taken from the same batch and the 

carrier densities extracted from the Hall coefficient and quantum oscillation frequency are 

consistent. These facts further indicate the trivial surface states due to band bending are not 

involved in BaMnSb2. In the revised manuscript, we have added more discussions to page15 in 

the main text and Section I. 7 in SM to exclude the possibility of the band-bending induced 

surface accumulation layers.  

Additionally, the authors should define _xy^0 as soon as it comes up in the text. And in the 

author list, should the name Mcdonald be spelled McDonald? 

Response: To make the definition of 
𝑥𝑦
0 clear, we have moved Fig. S3 to Fig. 3d as an inset, 

frow which the definition of 1/
𝑥𝑦
0  can be seen clearly. We also corrected the typo in the author 

list.  

The authors should address the points raised above (and particularly item 3) before the paper 

can be considered for publication in Nature Communications.  

Response: We hope we have satisfactorily addressed all the issues raised by the referee. Again, 

we thank the referee for insightful comments, which have been very helpful in improving our 

manuscript.  

 

 

 

Response to Reviewer #2  

 

This work reports a comprehensive study of BaMnSb2. Based on theoretical calculations, angle-

resolved photoemission spectroscopy and quantum transport measurements, the authors claim 

that the energy bands around the Fermi level are dominated by a pair of symmetric spin-split 

bands, following a gapped Dirac dispersion. The splitting is of similar strength in both the 

valence band and the conduction band. I find that the arguments are convincing and the material 

is interesting in some aspects in comparison with thin CMD films. I recommend publication of 

the manuscript. 

Response: We thank the referee for the concise summary of our work and the positive  

assessment of our work. We also appreciate the referee’s questions, which have been extremely 

helpful in improving the manuscript.  



 

I have a few comments to be addressed by the authors. 

 

In this work, the key evidence of spin-valley locking, although probably not a direct one, is the 

degeneracy of the Dirac band being 2 instead of 4. The degeneracy is estimated from the value of 

the last Hall plateau. Unlike the quantum Hall effect in 2D, where the quantized resistance does 

not depend on the geometry, such an estimation in 3D is prone to error. The problem is 

particularly severe when the longitudinal resistance does not go to zero, as one has a freedom to 

choose between the conductance and resistance. So, it often raises concerns. Therefore, it is 

necessary to be thorough. 

Response: We agree with the referee that the spin-valley degeneracy s estimated from the 3D 

stacked quantum Hall effect (QHE) has error, since the estimated s depends on not only the 

errors in sample dimension measurements, but also the homogeneity of transport. If a certain 

number of Sb layers do not show QHE (i.e. dead layer) due to disorders/defects and/or imperfect 

contact, QHE would be imperfect and s would be underestimated. Because of this, we performed 

QHE measurements on multiple samples with various mobilities and found the errors could lead 

s to vary in the 1.5-2.3 range, which points to the intrinsic degeneracy of 2 rather than 4.   

Among the samples we measured, we also found a high-mobility sample (E#1) which exhibits a 

nearly perfect QHE with both xx and xx being close to zero in the quantum Hall state within the 

quantum limit. The s value of this sample is indeed close to 2, as discussed below.    

As shown in the manuscript, we have estimated s using 1/
𝑥𝑦
0  = sZ*(e2/h), where Z* = 1/(c/2) 

represents the number of quantum Hall layers per unit length and 1/
𝑥𝑦
0  is the step size between 

the successive 1/xy plateaus (see the inset to Fig. 3d). Given the lattice parameter c can be 

precisely measured, the error of the estimated s is mainly determined by the measurement error 

of the sample thickness. We measured the thicknesses of samples using an optical microscope 

equipped with a precision ruler. If sample surface is flat enough, the measurement error bar is ~ 

6m. We made best efforts to choose samples with the (001) surfaces being as flat as possible 

for Hall measurements. From the device images shown in the inset of Fig. 3e and Fig. S5a and 

S11a, no clear terraces can be seen on the surfaces of the samples. Of course, we could not 

exclude small thickness inhomogeneity. The thickness variation less than 6 m is not discernable 

in the microscope.  If we take this into account, the measurement error bar of sample thickness 

should be between   6m and   12m. As such, for a sample with the thickness of ~100 m, 

the sample thickness measurement error should be    12%. As a result, the s value extracted 

from the QHE could have ~ 12% error at most due to the measurement error of sample 

thickness. This explains why the s values of samples E#1 (s = 2.3) and E#3(s =2.2) are slightly 

larger than the expected value of 2 (see supplementary Table. S1).  Note that our estimate of s is 

based on the assumption that all the conducting Sb layers act as quantum Hall layers. However, 

some Sb layers may not show QHE due to disorders/defects and/or imperfect contact. If this 

occurs, it may lead the value of s to be less than 2. We indeed observed this scenario in samples 

B#1 (s = 1.5) and Z#1 (s = 1.5). Inhomogeneous transport due to dead layers is often seen in 

stacked quantum Hall systems such as EuMnBi2 (Masuda et al., Science Advances 2, e1501117 

(2016)). In EuMnBi2, the s value extracted from the QHE is ~5-6, much less than the 

theoretically predicted value of 8. We have added more discussions on the error of the estimated 

s to the revised manuscript on page 11 and the thickness measurement information to Methods.   



 For instance, can equal steps be observed if the Hall conductivity is presented in Fig. 3b? What 

would be the degeneracy if the conductivity is used for Z#1, which has a large longitudinal 

resistivity? Why does the longitudinal resistivity become negative at high fields, as seen in Fig. 

4a? Will it have any effect on obtaining the correct Hall resistivity? 

Response: We present the Hall conductivity yx of sample B#1 in Fig. R3b attached below, from 

which we do not see equal steps, but only one plateau near BF/B =1/2. However, as shown in Fig. 

3b in the manuscript, the inverse Hall resistivity 1/xy of this sample, when scaled by the step 

size of the successive 1/xy plateaus (i.e.1/
𝑥𝑦
0 , see the inset to Fig. 3d), i.e.  

𝑥𝑦
0 /xy exhibits 

equal steps and is quantized to half-integer numbers for BF/B = 1/2, 3/2, 5/2 and 7/2 (Fig. 3b), 

indicating QHE. The reason why its yx does not display equal steps is that this sample shows an 

imperfect QHE, as manifested by the non-zero xx at the quantum Hall states. Such an imperfect 

QHE can be mostly attributed to inhomogeneous transport, as reflected by its smaller degeneracy 

s (=1.5) estimated from 1/
𝑥𝑦
0 .   

Nevertheless, we find the sample with higher mobility (E#1) exhibits equal steps in yx, as shown 

in Fig. R3a. This is because that the xx of this sample at the quantum Hall state is very small. 

For instance, xx is ~ 0.025 m.cm for the xy plateau near 20T (Fig. 4a), which corresponds to 

the quantum Hall state with the filling factor of =3/2 (Fig. 4c). Such a xx value is one order of 

magnitude smaller than that of the corresponding =3/2 quantum Hall state of sample B#1 which 

occurs near 12.5T (see Fig. 3a and 3b in the manuscript). At the quantum state within the 

quantum limit (=1/2), the xx of sample E#1 becomes much smaller, dropping to zero at about 

47.5 T, but turning to slightly negative (~ -0.015 m.cm) above 47.5T (Fig. 4a), as pointed out 

by the referee. 

                   

Fig. R3. Hall conductivity yx and longitudinal conductivity xx for samples E#1 (a), B#1 (b) and 

Z#1 (c). Both yx and xx are obtained from tensor conversions from xx and xy. 

Such a negative value is generated by the data symmetrizing, as explained below. The E#1 Hall-

bar sample was also prepared through focused ion beam (FIB) cutting. Fig. R4a shows the 

optical image of this sample. During cooling-down for pulse field measurements on this sample, 

leads #2 and 4 broke, so we had to use leads # 3 and #6 to measure both xy and xx. Fig. R4b 

presents the raw data of the voltage measured between leads #3 and #6, V3,6. Although leads #3 

and #6 are significantly misaligned, V3,6 show a remarkable asymmetric feature between positive 

and negative magnetic fields, indicating V3,6 is dominated by the Hall voltage Vyx and the 

longitudinal voltage Vxx is small. Fig. R4c shows Vxx and Vyx data obtained through symmetrizing 



and anti-symmetrizing of the V3,6 data acquired under positive and negative magnetic fields. The 

Vyx plateaus are found to be accompanied by the Vxx minima, a typical signature of QHE.  The 

small negative Vxx above 47.5T can be attributed to the fact that symmetrizing V3,6 between 

positive and negative fields cannot completely remove the Hall voltage component, which is 

often seen in Hall effect measurements where the longitudinal and Hall resistivities are mixed. 

The anti-symmetrizing process of V3,6 may also not completely remove Vxx from Vyx, but the 

perfect xy plateau near 50T (Fig. 4a) indicates the xx at this quantum Hall state is extremely 

small. The longitudinal conductivity xx for this quantum Hall state is indeed close to zero, as 

shown in Fig. R3a.  

The observations of yx equal steps in sample E#1 (Fig. R3a), together with its very small xx and 

nearly zero xx at the quantum Hall state within the quantum limit, suggests its stacked QHE is 

nearly perfect; that is, almost every 2D Sb conducting layer acts as a quantum Hall layer. Further, 

we have estimated the degeneracy s from the yx plateau at the quantum limit with BF/B = ½ using 

yx per Sb layer  = (1/2)s(e2/h); yx per Sb layer is derived by dividing the total Hall conductivity 

yx by the sample thickness. The s value obtained through this approach is 2.2, consistent with that 

estimated from 1/
𝑥𝑦
0  (s=2.3); its deviation from the expected value of 2 is apparently due to the 

errors in the measurements of sample dimensions as explained above. If we take s=2 and normalize 

yx per Sb layer by 2e2/h, the quantized Hall conductivity plateaus can be seen clearly for  = BF/B 

= 1/2, 3/2, 5/2 and 7/2, as shown in Fig. R4d. To clearly demonstrate the nearly perfect QHE of 

sample E#1, we have added Fig. R4d to Fig. 4d in the main text.  

 

Fig. R4. (a) Optical image of the Hall-bar sample E#1 prepared using FIB. (b) Field dependence 

of voltage measured between leads #3 and #6, V3,6 (see panel a). (c) Hall voltage Vyx and 

longitudinal voltage Vxx obtained through anti-symmetrizing and symmetrizing V3,6 respectively. 



(d) Hall conductivity yx per Sb layer, scaled by 0=2e2/h, as a function of BF/B for sample 

E#1(BF, the SdH oscillation frequency). 

 

As compared to the QHE of sample E#1, the QHE observed in the 10% Zn-doped sample (Z#1) is 

also imperfect, which is reflected in its large xx values at the quantum Hall states: the minimal xx 

corresponding to the =3/2 xy plateau near 7.5T is ~ 13.5 m.cm (see Fig. S4a). Such a large xx 

value leads to absence of plateau in its yx (Fig. R3c) despite the presence of xy Hall plateau (Fig. 

S4b). This result is consistent with the small s value (s=1.5) extracted from 1/
𝑥𝑦
0 (Table S1) for 

this sample, indicating Zn-doping results in the presence of many dead quantum Hall layers. 

Owing to the absence of yx plateau, we could not estimate its s from yx. For sample B#1, since 

we observed one yx plateau corresponding to the =1/2 quantum Hall state (Fig. R3b), its s value 

estimated from the yx plateau is 1.6, consistent with that estimated from 1/
𝑥𝑦
0 (s=1.5). In the 

revised manuscript, we have added discussions on the difference of the QHE among samples E#1, 

B#1 and Z#1 on page 9-10 and added Fig.R3a-3c to the SM (Fig. S3).   

I would like to point out that the degeneracy can be obtained by comparing the Hall resistivity, 

which gives the carrier density, with Bf, which tells the size of the Fermi surface. This is not 

entirely an independent method, still it is good to show, as it does not have the dilemma of which 

to choose between resistivity or conductivity. 

Response: We thank the referee for this suggestion. We have estimated the carrier density from 

the quantum oscillation frequency F and compared it with transport carrier density extracted 

from the Hall coefficient. According to Luttinger’s theorem, the carrier density of a 2D system 

with a degeneracy of 2 can be expressed as 𝑛2𝐷 = 2eF/h where e is the elemental charge and h is 

the Planck’s constant. Since one-unit cell in BaMnSb2 contains two conducting Sb layers (Fig. 

1a), the 3D carrier density can be expressed as  𝑛𝑆𝑑𝐻 = n2D/(c/2), where c is the lattice parameter. 

As shown in Table S1, the estimated 𝑛𝑆𝑑𝐻 is close to the carrier density extracted from Hall 

coefficients (𝑛𝐻𝑎𝑙𝑙) for samples E#1, E#3 and B#1 by assuming the degeneracy of 2. For 

instance,  𝑛𝐻𝑎𝑙𝑙 for sample E#1 is 1.41019cm-3, and its 𝑛𝑆𝑑𝐻 is 1.241019 cm-3. Such a 

consistency between  𝑛𝑆𝑑𝐻 and 𝑛𝐻𝑎𝑙𝑙 gives additional support for the degeneracy of 2. For 

sample Z#1, we note the difference between 𝑛𝑆𝑑𝐻 and 𝑛𝐻𝑎𝑙𝑙 is relatively large (𝑛𝑆𝑑𝐻 = 0.361019 

cm-3 vs. 𝑛𝐻𝑎𝑙𝑙 = 0.093 1019 cm-3), which can be attributed to inhomogeneous transport caused 

by Zn doping; that is, those Sb layers exhibiting SdH oscillations and QHE have different carrier 

density from those layers without showing the SdH oscillations and QHE. 𝑛𝑆𝑑𝐻 represents only 

the carrier density of those layers showing SdH oscillations, while 𝑛𝐻𝑎𝑙𝑙 is the average carrier 

density of all layers. We have added these discussions to the revised manuscript on pages 11-12.  

As for the plateau in sigma_zz(Fig. 4b), is it possible that this is due to joule heating when the 

resistance is strongly enhanced? 

Response: The plateau in the z-axis resistance Rzz (or conductivity zz) near 50T of sample E#2 

(Fig. 4b) is a robust feature of the quantum Hall state within the quantum limit, that does not 

come from joule heating as explained below. We can evaluate the heating effect by comparing 

the upward and downward field sweep measurements. Fig. R5b attached below shows how the 

pulse field H varies with time t in upward and downward field sweeps as well as dH/dt (red 

curve).  We present the comparison of Rzz measured in the up- and down-field sweeps in Fig. 



R5a, from which we can see the Rzz peak in the 20-25T range exhibits a striking difference 

between up- and down-field sweeps. In the main text, we have shown the  =3/2 xy plateau 

occurs within the 20-25T range (Fig. 4a and 4b). The difference of the Rzz peak height between 

the up- and down-field sweeps within this quantum Hall state should arise from heating effect. In 

the up-field sweep, the field increase from 20T to 25T takes an extremely short period of time t1, 

such that the heat generated by the field sweep and measurements cannot be dissipated 

effectively. In contrast, the field decrease from 25T to 20T in the down-field sweep takes much 

longer time (t4 5t1, see Fig. R5b) so that the heating effect can be suppressed, which explains 

the enhanced Rzz peak probed in down-field sweep.  

However, the heating effect for the quantum Hall state within the quantum limit (B>50T) 

becomes much weaker, because the Rzz probed above 50T shows much smaller difference 

between up- and down-field sweeps (Fig. R5a). The time for the field increasing from 50T to 

60T (t2) and the time for the field decreasing from 60T to 50T (t3) are much longer than t1 and t4 

(see Fig. R5b), thus the heat generated by magnetic field sweeps and measurements within these 

time periods is expected to be small.  

Furthermore, we did similar up- and down-sweep measurements at 4.1 K and find the hysteresis 

of Rzz due to the heating effect is significantly suppressed for the quantum Hall state at 20-25T, 

and extremely small for the quantum Hall state near 50T. More importantly, the Rzz values at 4.1 

K and 0.7K are nearly identical for fields close to 60T. If the Rzz plateau was due to heating 

effect, we would expect the Rzz value near 60T to decrease as the temperature increases to 4.1K, 

inconsistent with the observation of nearly identical Rzz at 0.7 K and 4.1K for fields approaching 

60T. The evolution trend of the Rzz plateau from 0.7K to 4.1K also implies that the Rzz plateau 

should become more flattened as the temperature is further decreased below 0.7K. All these facts 

indicate that the Rzz plateau at the quantum Hall state within the quantum limit should be intrinsic 

and implies the presence of 2D chiral surface state as discussed in the manuscript. We have 

added these discussions as well as Fig. R5 into the SM (section I.7 in SM).   

 

Fig. R5: (a) The z-axis resistance Rzz measured in the up- (red/purple) and down-field (blue) 

sweeps for sample E#2 at 0.7 K and 4.1 K. (b) The variation of pulse field with time and the 

derivative (red) of the field relative to time. t1(t4) represents the time period for the field 

increasing (decreasing) from 20T (25T) to 25 T (20T). t2 and t3 represent the time periods of the 

field sweep from 50T to 60T and then from 60T to 50T respectively.  



REVIEWER COMMENTS 

Reviewer #2 (Remarks to the Author): 

The authors have carefully addressed the comments made by referees. The main concern I had is the 

reliability of the estimation of the Landau level degeneracy. In the reply and revision, more data are 

provided, showing additional evidence and the consistency among samples. They have carried out 

corresponding discussions, which I find are convincing. I support its publication in Nature 

Communications. 

Reviewer #3 (Remarks to the Author): 

This work reports the observation of a 3D quantum Hall effect in BaMnSb2 resulting from a spin-valley 

locked band dispersion. The work additionally argues that chiral side-surface states are observed in 

the quantum limit, as has been reported in the past in III-V superlattices. Novelty issues were raised 

by previous referees given that a prior work submitted in March 2019 demonstrated similar results 

[Phys. Rev. B 101, 081104(R), (2020)]. However, by the editor's request, I will overlook this concern. 

In their response to other referees, the authors do highlight additional characterization beyond what 

was shown in [Phys. Rev. B 101, 081104(R), (2020)], which further justifies the novelty of the 

content. The manuscript should be published but I have some some questions that I think the authors 

need to address first: 

1. By analogy to III-V superlattices, the authors conclude that a plateau in Rzz is indicative of chiral 

side surface states. The authors have discussed how to rule out other contributions such as trivial 

surface states and the presence of an additional Fermi surface. Related to that last point, can the 

authors discuss why they can specifically rule out charge transfer between the X(Y)-valleys and 

Gamma-valley, in light of what has been observed in graphene or bismuth by the Behnia group? 

2. In the Landau level model, the expression for the N=0 levels contains a term proportional to 

v1.v2/l_B^2. Is that term due to q quadratric terms in Hamiltonian?



We thank both referees for reviewing our manuscript. We appreciate their comments and 

suggestions, which have been very helpful in improving our manuscript. In the following, we 

provide a point-to-point response (shown in blue) to the comments raised by Referee 3 (shown in 

black). 

Response to Reviewer #3 

This work reports the observation of a 3D quantum Hall effect in BaMnSb2 resulting from a 

spin-valley locked band dispersion. The work additionally argues that chiral side-surface states 

are observed in the quantum limit, as has been reported in the past in III-V superlattices. Novelty 

issues were raised by previous referees given that a prior work submitted in March 2019 

demonstrated similar results [Phys. Rev. B 101, 081104(R), (2020)]. However, by the editor's 

request, I will overlook this concern. 

In their response to other referees, the authors do highlight additional characterization beyond 

what was shown in [Phys. Rev. B 101, 081104(R), (2020)], which further justifies the novelty of 

the content. The manuscript should be published. 

Response: We thank the referee for taking time to review our manuscript and appreciate the 

referee’s judgment: “The manuscript should be published”. 

but I have some questions that I think the authors need to address first: 

1. By analogy to III-V superlattices, the authors conclude that a plateau in Rzz is indicative of 

chiral side surface states. The authors have discussed how to rule out other contributions 

such as trivial surface states and the presence of an additional Fermi surface. Related to that 

last point, can the authors discuss why they can specifically rule out charge transfer between 

the X(Y)-valleys and Gamma-valley, in light of what has been observed in graphene or 

bismuth by the Behnia group? 

Response: We thank the referee for raising this question and drawing comparison to the Behnia 

group’s studies of graphene and bismuth in the magnetic quantum limit where charge transfer 

between bands has a profound influence on the quantum oscillation spectrum. This work 

highlights that charge transfer between valleys can lead to non-trivial Landau level evolution 

(Zhu et al., Nature Communications 8,15297, 2017), thus resulting in a striking change in 

magnetoresistance.  

For the material studied in our work, BaMnSb2, although the lower photon energy ARPES 

shown in the SI indicates multiple valleys (an additional trivial pocket at \Gamma), we can 

exclude the possibility of the charge transfer between the X(Y) and  valleys leading to non-

trivial Landau level evolution, as discussed below. First, the background of the field dependence 

of Hall resistivity xy nearly shows temperature independent linear behavior if we do not 

consider the xy plateau above 20T (see Fig. 3f in the manuscript). This low field linearity, 

combined with the higher field plateaus, originating from the X-point pockets, indicates that the 

in-plane transport is dominated by a single band despite the existence of the band near the  

point. Second, the SdH oscillations exhibit a single frequency. As shown in Table S1 in the 

supplemental materials, the carrier density (𝑛𝑆𝑑𝐻) estimated from the quantum oscillation 

frequency is close to the carrier density extracted from Hall coefficients (𝑛𝐻𝑎𝑙𝑙) for most of the 

samples used in this study (i.e. samples E#1, E#3 and B#1) [Note that there is only one exception 

for sample Z#1 and this sample exhibits a relatively large difference between 𝑛𝑆𝑑𝐻 and 𝑛𝐻𝑎𝑙𝑙, 



which can be attributed to inhomogeneous transport caused by Zn doping, as discussed in the 

manuscript on page 12]. The above facts, together with the spin-valley degeneracy analyses 

based on the observed quantum Hall effect (Fig. 3 and 4) and the Landau level spectrum 

calculations (Fig. 4f), indicate that the high mobility Dirac fermions hosted by X(Y) valleys are 

responsible for the observed SdH oscillations and quantum Hall effect, and that the  valley has 

negligible contributions to transport and does not show quantized Landau levels even under high 

magnetic fields due to a significantly lower mobility. This is not only consistent with the 

calculated band structure (Fig. 2a) which shows the X(Y) valley is characterized by linear Dirac 

bands, whereas the  valley shows nearly flat dispersion at the valence band top. The low carrier 

mobility of the  valley also explains why this Fermi pocket is not probed in the SdH 

oscillations. 

Given that the carriers of the X(Y) valleys have much higher mobility than those of the  valley 

(which does not exhibit Landau quantization in this field range), the only effect of any Landau 

quantization driven by charge transfer would be the extent to which the Landau quantization of 

the X(Y) valleys follows a canonical vs grand canonical description, i.e. the evolution of Landau 

levels with a fixed particle number and oscillating chemical potential in the former, or fixed 

chemical potential and oscillating particle number in the latter. By contrast, the work of Behnia 

et al exhibits non-trivial Landau Level evolution because both sets of pockets involved (for both 

Bismuth and Graphite) are strongly Landau quantized and approaching their magnetic quantum 

limits. This is apparently not what we observed in the field range where the Rzz plateau is present 

(Fig. 4b). As shown in Fig. 4b, when Rzz reaches a plateau, xx drops to a minimum close to zero. 

More importantly, as seen in Fig. 4d, in the field range where the Rzz plateau is observed, the 

Hall conductivity yx shows the  = ½ plateau and the corresponding xx is close to zero.  This 

clearly demonstrates the system is in a nearly ideal quantum Hall state within the quantum limit. 

These results indicate the Rzz plateau is the consequence of the quantum Hall state and 

suggestive of the chiral surface states as discussed in the manuscript.  

We have added some of the above discussions to the revised manuscript on page 15-16 and cited 

the Behnia group’s work on the charge transfer of bismuth.  

2. In the Landau level model, the expression for the N=0 levels contains a term proportional to 

v1.v2/l_B^2. Is that term due to q quadratric terms in Hamiltonian? 

Response: Yes, the term proportional to b0.|v1.v2|/l_B^2 in the  N=0 Landau levels originates 

from the q-quadratic term (See the b0 term in Eq. (29), (31), (35) and (36) in Supplementary 

Materials). 

 


