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Yavaş5, M. Daghofer6,7, J. Chaloupka8,9, G. Khaliullin1, H. Gretarsson1,5, and B. Keimer1∗

1Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, D-70569 Stuttgart, Germany
2Department of Physics, Pohang University of Science and Technology, Pohang 790-784, South Korea

3Center for Artificial Low Dimensional Electronic Systems,
Institute for Basic Science (IBS), 77 Cheongam-Ro, Pohang 790-784, South Korea

4Department of Chemistry, University of Munich (LMU),
Butenandtstraße 5-13 (Haus D), 81377 München, Germany

5Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
6Institute for Functional Matter and Quantum Technologies,

University of Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany
7Center for Integrated Quantum Science and Technology,

University of Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany
8Department of Condensed Matter Physics, Faculty of Science,
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Supplementary Note 1: X-ray absorption spectrum and incident energy dependence of RIXS spectra
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Fig. S1 X-ray absorption spectrum and RIXS spectra taken with different incident x-ray photon energies. a Ru L3-edge
x-ray absorption spectrum of RuCl3 taken with π incident polarization. The arrow indicates 2837.8 eV used for the RIXS
measurement in the main text. b Incident energy dependence of RIXS spectra at qqq = (0,0). c Expanded plot of low-energy
RIXS spectra taken at 2837.6 (red) and 2838.1 eV (blue).

Figure S1a shows the x-ray absorption spectrum around the Ru L3 edge taken with π incident polarization. 2837.8 eV used for
the RIXS measurements in the main text is indicated by the arrow. It is located between a shoulder around 2837 eV corresponding
to transitions to the t2g orbitals and a peak around 2837 eV corresponding to transitions to the eg orbitals. Figure S1b shows
RIXS spectra taken with different incident photon energies around the Ru L3 edge. With lower incident energies (< 2838 eV),
the low-energy excitations within the t5

2g electron configurations are enhanced, whereas with higher incident energies (> 2838
eV) transitions to the t4

2ge1
g configurations are enhanced. Figure S1c compares the low-energy region of RIXS spectra taken

at 2837.6 (red) and 2838.1 eV (blue), which are close to 2837.8 eV of the main text. Upon detuning from the t2g resonance,
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the quasi-elastic and S̃ = 3/2 intensities weaken almost uniformly. This observation indicates that the quasi-elastic intensity
is dominated by resonant magnetic scattering and contains little contributions from extrinsic non-resonant scattering channels,
validating the intensity analysis presented in Fig. 5.

Supplementary Note 2: Determination of multiplet parameters from high-energy RIXS data

To quantitatively extract the multiplet parameters from the RIXS data shown in Fig. 2, we have diagonalized the single-ion
Kanamori Hamiltonian for the d5 electron configuration, which includes intra-ionic Coulomb interactions, spin-orbit coupling,
and crystal fields. The Coulomb interactions are expressed using the intra-orbital interaction U , inter-orbital interaction U ′, and
the Hund’s-rule coupling JH :

HC =U ∑
m

nm↑nm↓+U ′ ∑
m̸=m′

nm↑nm′↓

+(U ′− JH) ∑
m<m′,σ

nmσ nm′σ − JH ∑
m ̸=m′

d†
m↑dm↓d†

m′↓dm′↑

+ JH ∑
m ̸=m′

d†
m↑d†

m↓dm′↓dm′↑, (1)

where d†
m↑ and nm↑ are the electron creation and number operators, respectively. We employ the widely used approximation

U ′ =U −2JH . The spin-orbit coupling Hso and cubic crystal field Hcub are included as follows:

Hso = λ ∑
i

l⃗i · s⃗i, (2)

Hcub = 10Dq ·
(

3
5 neg − 2

5 nt2g

)
. (3)

Using the eigenfunctions of the above Hamiltonian, we computed the RIXS transition amplitudes from the ground state
doublet to the excited states within the fast-collision approximation as detailed in Ref. [1].

Supplementary Note 3: Selection of the pseudospin Hamiltonian parameters

TABLE SI: Representative pseudospin models in the vicinity of the optimal parameter set.

Models K J Γ Γ′ J3 EFM −EZZ (meV)
Optimal set -5 -3 2.5 0.1 0.75 -0.12
Alternative 1 -5 -2.5 2.5 0 0.5 -0.13
Alternative 2 -5 -2.5 2.5 0 0.75 0.05
Ref. [2] -5 -0.5 2.5 0 0.5 0.37

Using the exact diagonalization (ED) method, we have examined a large number of models, inspecting their ability to explain
our RIXS data. Along this extensive work, we observed that only the models which locate a system close to the ferromagnetic
(FM) phase boundary are consistent with the data. On the classical level, the ground state energies of FM and zigzag (ZZ) states
differ by EFM −EZZ = d ·S2, where S = 1/2 and

d =
1
2

√(
K − 1

2
Γ+Γ′

)2

+2Γ2 +
1
2

(
K − 1

2
Γ
)
+(J+3J3)−

3
2

Γ′. (4)

The proximity to the FM state implies small d values, which puts an additional constraint on the possible variations of the
exchange parameters within the ZZ ordered state. We actually found that the models with a small negative d ≲ 0 best describe
the data. To illustrate this useful empirical rule, we present here the ED results for the RIXS intensities and also the dynamical
spin responses, calculated for four representative models given in Table SI. In addition to the optimal parameter set and the
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Fig. S2 Comparison of theoretical RIXS intensity at T = 20 K for various parameter sets. a Theoretical RIXS intensity
obtained for the optimal exchange parameters used in the main text: (K,J,Γ,Γ′,J3) = (−5,−3,2.5,0.1,0.75)meV. We have
shown the intensities for the two scattering geometries corresponding to the (H,0) path (red) and the (H,H) path (blue). This
panel thus reproduces selected data of Fig. 5. b The same for the parameter set (K,J,Γ,Γ′,J3) = (−5,−2.5,2.5,0,0.5)meV
characterized by a similar proximity to the FM phase. c The same for the parameter set of panel b but with enhanced
J3 = 0.75 meV making the zigzag correlations more robust. d The same for the parameter set of Ref. [2]:
(K,J,Γ,Γ′,J3) = (−5,−0.5,2.5,0,0.5)meV, again showing pronounced zigzag correlations at T = 20 K. e Hexagon-shaped
clusters of 24 and 32 sites that were utilized in the numerical calculations to periodically cover the honeycomb lattice.
f Accessible momenta for the clusters shown in panel e and the two cuts through the Brillouin zone explored by RIXS. Gray
shading highlights the characteristic momenta for pseudospin correlations: the qqq = Γ point (center) hosts FM correlations while
the zigzag correlations are associated with the qqq = M point (upper right).
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Fig. S3 Dynamical response of pseudospin models. a-d The trace of the pseudospin susceptibility at the two most relevant qqq
points (imaginary part is plotted). The parameter sets considered here are identical to those for panels a-d of Fig. S2. The
pseudospin susceptibility was calculated by exact diagonalization using the 24-site cluster and broadened by a Gaussian profile.
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model by Winter et al. (Ref. [2]) discussed in the main text, we consider alternative parameter sets 1 and 2 in the vicinity of the
optimal set. The ED calculations confirm that all models have the zigzag ground state with the correct moment direction. For
the first two models with EFM −EZZ < 0, the classical ground state would have been FM, and thus the ZZ order in these models
is stabilized by quantum effects, which shift the actual ZZ/FM phase boundary from that found in the classical approximation.
The last two models give the ZZ order already on a classical level.

We first look at the qqq dependence of the theoretical RIXS intensity (Fig. S2). Panels a-d correspond to the models indicated
in the inset of each panel. The calculations were performed for hexagonal clusters of 24 and 32 sites shown in panel e. The
accessible momenta for these clusters and the momentum paths studied are shown in panel f. The global intensity maximum
in panels a and b is located at the Γ point as observed in RIXS, whereas it is located at the M point (Bragg wavevector of the
zigzag order) in panels c and d. We recall that, when treated classically, the optimal set and alternative set 1 would have the
ferromagnetic ground state, while the alternative set 2 and the set of Ref. [2] have more robust ZZ ground state (Table SI). This
comparison demonstrates that one needs to stay very close to the FM phase to have sufficiently pronounced qqq ∼ 0 correlations
at 20 K as observed in RIXS. Underlying picture is that as soon as the quantum effects, favoring the ZZ order over competing
FM state, are weakened by thermal fluctuations, spectral weight moves to qqq ∼ Γ area hosting FM correlations.

However, there is some freedom in choosing the model parameters if the proximity to FM is kept: cf. panels a and b
representing two slightly different sets but with very similar values of d ∼−0.5 meV. Fine selecion between them can be made
by comparing the corresponding dynamical spin response functions with inelastic neutron scattering (INS) data. In particular,
the recent INS data that have sufficient resolution to see the actual energy profiles [3] are helpful to narrow down the parameter
window. Figure S3 shows dynamical pseudospin correlations captured by the susceptibility tensor χαβ (qqq,ω) = ⟨S̃α

qqq S̃β
−qqq⟩ω whose

energy-integrated components determined the RIXS spectral weights above. We plot the imaginary part of its trace to show some
coordinate-free characteristic profiles. The parameter sets for panels a-d are the same as those in Fig. S2. If one compares the
optimal set (a) and alternative set 1 (b), the position of the peak at qqq = Γ favors the former as it is more consistent with the
INS data that shows a sharp magnon peak around 2 meV [3]. The alternative set 2 (c) is not consistent with RIXS (although
the agreement with INS is decent), and the set of Ref. [2] (d) with small J completely misses the well-defined magnon peak
observed in INS.

Supplementary Note 4: Paramagnetic susceptibility and trigonal crystal field

Here we estimate the trigonal crystal field in RuCl3 from the magnetic susceptibility anisotropy in single crystals. We have
measured the paramagnetic susceptibility up to 370 K, and fit the data using the Curie-Weiss law:

χ =
C

T −Θ
+χ0. (5)

The inverse magnetic susceptibilities 1/(χ − χ0) for in-plane (H // ab) and out-of-plane (H // c) magnetic fields are shown in
Fig. S4a and b, respectively, along with the results of fits to the Curie-Weiss law (red curves). The deviations from Curie-Weiss
behavior can be attributed to short-range correlations present well above the magnetic ordering temperature (see Fig. 5f and
related discussion).

The paramagnetic Curie temperatures for both ab-plane and c-axis magnetic field directions are positive, Θab ≃ 50 K and
Θc ≃ 30 K, respectively. These values are roughly consistent with the exchange constants obtained from the RIXS data (K =−5
meV, J =−3 meV, J3 = 0.75, Γ+2Γ′ = 2.7 meV):

Θab =− 3
4

[
J+ J3 +

1
3 K − 1

3 (Γ+2Γ′)
]
∼ 40 K,

Θc =− 3
4

[
J+ J3 +

1
3 K + 2

3 (Γ+2Γ′)
]
∼ 20 K. (6)

The high temperature slopes in 1/(χ − χ0) plots are clearly different, resulting in anisotropic Curie constants (Cab ∼ 3Cc)
and g-factors; we find |gab| ≃ 2.53 and |gc| ≃ 1.56, with an average value of |g| ≃ 2.2. Even though the maximum temperature
∼ 370 K might be not high enough to access the true Curie-Weiss behavior, it is evident that the g-factor anisotropy is robust in
RuCl3. A similar anisotropy (|gab| ≃ 2.3 and |gc| ≃ 1.3) has been deduced from the analysis of low-temperature magnetization
data [4], using similar exchange constants as above. Overall, the magnetic anisotropy in RuCl3 originates from a combination
of single-ion effects (i.e., the g-factors) and the exchange anisotropy (i.e., the Γ and, to a lesser extent, Γ′ terms), as expected for
spin-1/2 systems with a layered crystal structure.

The g-factors are sensitive to the orbital content of the ground state wavefunction, and thus contain useful information on
the strength of the trigonal crystal field [5] which splits the t2g electron level into an a1g singlet and an e′g doublet by ∆ =
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Fig. S4 Estimation of trigonal crystal field based on paramagnetic susceptibility. a, b In-plane (H // ab) and out-of-plane
(H // c) inverse magnetic susceptibility 1/(χ −χ0). The red lines show the fits to the Curie-Weiss law [Eq. (5)] with parameters
χab

0 = 1.0×10−4 emu/mol and Cab = 0.60 emu·K/mol, and χc
0 = 1.0×10−3 and Cc = 0.229 emu·K/mol. The resulting

g-factors are |gab|= 2.53 and |gc|= 1.56. c The g-factors of the pseudospin S̃ = 1/2 as a function of the trigonal field
parameter δ = 2∆/λ [Eq. (8)], at the covalency factors of κ = 1 (dotted black), κ = 0.9 (solid red), and κ = 0.8 (dotted blue).
The grey vertical line indicates the trigonal field δ ∼−0.7 consistent with the g-factors in RuCl3. d Energy levels of the
pseudospin S̃ = 3/2 states. Away from cubic limit (∆ = 0), they split into two doublets separated by ∆3/2. The S̃ = 1/2 and 3/2
wavefunctions for δ =−0.7 are depicted. The red and blue colors represent the spin components S = 1/2 and −1/2 along the
trigonal axis, respectively. Inset: t2g orbital splitting ∆ under the trigonal crystal field (electron picture).

E(e′g)−E(a1g) (see the inset of Fig. S4d). The trigonal field ∆ and spin-orbit coupling λ quantify the ground state pseudospin
S̃ = 1/2 wavefunctions of the Ru3+ ion as follows:

∣∣∣+ 1
2

⟩
=+sinθ |0,↑⟩− cosθ |+1,↓⟩ ,∣∣∣− 1

2

⟩
=−sinθ |0,↓⟩+ cosθ |−1,↑⟩ . (7)

The angle 0 ≤ θ ≤ π/2 is given by tan2θ = 2
√

2/(1+δ ), where δ = 2∆/λ . The wavefunctions above are written in the basis
of |LZ ,SZ⟩ using the trigonal field quantization axis. The relative phases of the Kramers partners |± 1

2 ⟩ are chosen such that the
g-factor is isotropic in the cubic limit, g = −2; its negative sign emphasizes the presence of a large orbital contribution to the
magnetic moment. The latter is given by MMM = (2SSS−κLLL), where LLL is the effective orbital moment of the t2g level and κ is the
covalency reduction factor [5].

The wavefunctions in Eq. (7) assume a pure t5
2g configuration in the ground state. The admixture of t4

2geg configurations by
electron interactions results in a correction ∆g to the g-factors [6]. Including this effect, one obtains

gab =−[1− cos2θ +
√

2κ sin2θ +∆g] ,

gc =−[κ +(2+κ)cos2θ +∆g] . (8)

Adopting the results of Ref. [6] and assuming the relation 8B ≃ JH between the Racah parameter B and Hund’s coupling JH , we
obtain ∆g ≃ 2κJH/10Dq. Since the t4

2geg configuration energy is rather low in RuCl3, this correction is sizeable; using JH = 0.34
eV and 10Dq = 2.4 eV as measured in this work, we find ∆g ≃ 0.28κ .

Figure S4c shows the g-factors as a function of the trigonal field parameter δ , for several values of the covalency factor κ .
The g-factors |gab| ≃ 2.53 and |gc| ≃ 1.56 obtained from the Curie-Weiss fits are well reproduced by the above equations at
δ =−0.70 and κ = 0.97. We find that |gab| ≃ 2.3 and |gc| ≃ 1.3 of Ref. [4] result in a nearly identical trigonal field parameter
δ = −0.75, and smaller κ = 0.82. With λ = 0.15 eV obtained from our RIXS data (see Fig. 2), δ ∼ −0.7 yields the trigonal
splitting of ∆∼−50 meV (trigonal elongation within a point charge model). This splitting is roughly consistent with the quantum
chemistry calculations of Ref. [7] (∼ −70 meV), and somewhat larger than that reported in Ref. [8] (-12±10 meV). ∆ ∼ −50
meV is rather small compared to the spin-orbit coupling λ ; this implies that the orbital magnetism, which is responsible for the
bond-dependent Kitaev interactions, remains unquenched.
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Apart from modification of the ground state wavefunctions, the trigonal crystal field splits the spin-orbit S̃ = 3/2 excitation
into two doublets, labeled by B and C in Fig. S4d, by an amount ∆3/2 =

λ
4 [
√

8+(1+δ )2 − 3+ δ ] [9]. With δ = −0.70, we
obtain the S̃ = 3/2 quartet splitting of ∆3/2 ∼ 30 meV. This splitting is much smaller than the current energy resolution of 0.1
eV, and is consistent with the absence of a clear splitting of the A1 peaks in the RIXS spectra (see Fig. 3).

Supplementary Note 5: X-ray self-absorption correction

Due to the x-ray self-absorption, the scattering intensity observed by the spectrometer is reduced from the differential cross
section. The reduction factor f is given by [10]:

f = 1+
αout(Eout)

αin(Ein)
· sin(θ)

sin(χ)
, (9)

where αin(Ein) [αout(Eout)] is the absorption coefficient for the incoming (outgoing) x-ray energy, light path, and polarization,
and θ (χ) is the angle between the sample and the incoming (outgoing) x-rays. In our scattering geometry χ = π/2−θ holds.
For the RIXS intensity analysis presented in Fig. 5 of the main text, we are concerned only with the low-energy excitations (<
0.25 eV) created by the incident x-ray photons of 2837.8 eV. As shown in Fig. S1a, the change of x-ray absorption coefficient
within this energy range is small, and it is also shown in Ref. [8] that the x-ray linear dichroism around the Ru L3 edge is small.
We have therefore taken the ratio αout(Eout)

αin(Ein)
to be unity and the correction coefficient depends only on the scattering geometry.
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