
Supplementary Information: Exceptional Topological Insulators

M. Michael Denner,1 Anastasiia Skurativska,1 Frank Schindler,1, 2

Mark H. Fischer,1 Ronny Thomale,3 Tomáš Bzdušek,4, 1 and Titus Neupert1
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SUPPLEMENTARY NOTE 1: DIRAC THEORY FOR THE ETI

We here show how the infernal point of the Hamiltonian in Eq. (1) of the main text in presence of open boundary
conditions can be derived from a Dirac equation approach, similar to how the gapless surface Dirac fermion of a
Hermitian 3D TI can be obtained as a zeromode that is localized at domain walls of a 3D bulk Dirac mass. In
comparison to the two zero-energy states of a 3D TI surface Dirac fermion, we find only a single zero-energy state
for the ETI, underlining the fact that the ETI surface in some sense realizes “half” of a Hermitian Dirac cone (recall
that upon the introduction of non-Hermitian terms, a 2D Dirac cone generically splits into two exceptional points).

We start with the Bloch Hamiltonian of a three-dimensional exceptional topological insulator (ETI), corresponding
to Eq. (1) of the main text with the parameter choice M = 3, λ = 1, B = 0, giving

H(k) =

 ∑
i=x,y,z

cos ki − 3

 τzσ0 +
∑

i=x,y,z

sin kiτxσi + iδτxσ0, (1)

which describes a four-fold Dirac crossing at k = (0, 0, 0) that is gapped out by the non-Hermitian term multiplying δ.
Unless otherwise stated, we assume δ > 0. H(k) then has a nontrivial winding number1 w3D = 1. The long-wavelength
limit of the model is given by the Dirac theory

HD(k) =
∑

i=x,y,z

kiτxσi + iδτxσ0. (2)

We want to derive the band structure of the surface with normal in z-direction, where kx and ky remain as good
momentum quantum numbers. For this, we model the interface between an ETI and the vacuum via the Dirac
Hamiltonian

HD,z(kx, ky) =
∑
i=x,y

kiτxσi + (−i∂z)τxσz + iδθ(−z)τxσ0 − µθ(z)τzσ0, (3)

where µ > 0 multiplies a Hermitian mass term that gaps Supplementary Eq. (1) at δ = 0 into a trivial insulator and
θ(z) is the Heaviside step function. We use the convention θ(0) = 0.

Let us fix kx = ky = 0 for simplicity – we have numerically confirmed that the z-directed slab spectrum of the
Bloch Hamiltonian (1) away from this point is gapped. Zero-energy states Ψ(z) then satisfy

[(−i∂z)τxσz + iδθ(−z)τxσ0 − µθ(z)τzσ0] Ψ(z) = 0,

→ τxσz∂zΨ(z) = [δθ(−z)τx + iµθ(z)τz]σ0Ψ(z)

→ ∂zΨ(z) = [δθ(−z)τ0 + µθ(z)τy]σzΨ(z)

→ ∂zΨλ(z) = λ [δθ(−z)τ0 + µθ(z)τy] Ψλ(z),

(4)

where we have chosen Ψλ(z) as eigenstates of σz that satisfy σzΨλ(z) = λΨλ(z). We next solve the equation on both
sides separately. For z < 0 we obtain

∂zΨ
<
λ (z) = λδτ0Ψ<

λ (z) → Ψ<
+,1(z) = N<eδz(1, 0, 0, 0)T, Ψ<

+,2(z) = N<eδz(0, 0, 1, 0)T, (5)
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where N is a normalization factor, and the solutions corresponding to λ = −1 are not normalizable. For later use,
let us note that the following linear combination is an equally valid zero-energy solution for z < 0:

Ψ<
+(z) ≡

Ψ<
+,2(z) + iΨ<

+,1(z)
√

2
=
N<

√
2
eδz(i, 0, 1, 0)T, (6)

Likewise, for z > 0 we obtain

∂zΨ
>
λ (z) = λµτyΨ>

λ (z) → Ψ>
−(z) = N>e−µz(0,−i, 0, 1)T, Ψ>

+(z) = N>e−µz(i, 0, 1, 0)T, (7)

where again the remaining solutions are not normalizable. To obtain a viable zero-energy wavefunction for the entire
range of z, we need to match solutions across z = 0. For simplicity, let us set δ = µ ≡ ∆. There is then only a single
matchable solution, with wavefunction

Ψ(z) =

√
∆

2
e−∆|z|(i, 0, 1, 0)T, HD,z(0, 0)Ψ(z) = 0. (8)

SUPPLEMENTARY NOTE 2: ANALYTICAL TREATMENT OF THE ETI TIGHT-BINDING MODEL

In this section we analyze the tight-binding model from Eq. (1) of the main text analytically in some detail.
We set B = 0 throughout the discussion, i.e. we retain isotropy. While this causes certain instabilities in the
numerical computation of the spectrum, it also makes the problem more amenable for an analytical treatment. The
discussion is organized into subsections as follows. We begin in Supplementary Note 2.A. with rotating the model
to a basis that explicitly reveals its sublattice symmetry. While not necessary to enable the w3D invariant, the
sublattice symmetry greatly simplifies the phase diagram of the model. In Supplementary Note 2.B. we write the
analytical form of the Hamiltonian in slab geometry with open boundary conditions. By analyzing the constructed
slab Hamiltonian we reveal the existence of the macroscopically defective infernal point at zero surface momentum.
Finally, in Supplementary Note 2.C. we perform a perturbative expansion in the characteristic polynomial of the slab
Hamiltonian to infer the dispersion of the surface states around the infernal point. We conclude with analyzing the
convergence of our perturbative result by comparing to a numerical computation.

A. Phase diagram and the sublattice symmetry

We begin with the model in Eq. (1) with B = 0, but we rotate the Pauli matrices as τz 7→ τx 7→ τy 7→ τz. This
brings the Hamiltonian to the form

H(k;M,λ, δ)=

 0 0 f(k;M)−iλ sin kz+δ −iλ sin kx − λ sin ky
0 0 −iλ sin kx + λ sin ky f(k;M)+iλ sin kz+δ

f(k;M)+iλ sin kz−δ iλ sin kx + λ sin ky 0 0
iλ sin kx − λ sin ky f(k;M)−iλ sin kz−δ 0 0

 , (9)

where f(k;M) =
∑
j=x,y,z cos kj −M . Note that the rotated basis reveals a previously hidden sublattice symmetry

(which is broken for finite ∝ B). We denote the lower-left (upper-right) block as hLL (h†UR), where we dropped the
dependence on parameters for brevity. Note that because of the non-Hermitian term ∝ δ we have hLL 6= hUR. Note
that the point gap of Hamiltonian H at E = 0, implies through 0 6= detH = dethLL(dethUR)∗ that each of the blocks
respects the point gap too (the asterisk ‘∗’ indicates complex conjugation), meaning that both matrix blocks have a
well-defined inverse.

Recall from Eq. (5) in the main text that the winding number w3D for a point gap at E = 0 is determined from
matrices Qi = H−1∂iH where ∂i ≡ ∂ki . It follows from the block-off-diagonal form of the Hamiltonian that H−1 is

block-off-diagonal with (h†UR)−1 in the lower-left and h−1
LL upper-right position, such that

Qi =

(
h−1

LL∂ihLL 0
0 (h†UR)−1∂ih

†
UR

)
(10)

is block-diagonal. As a consequence, it is possible to write the integrand in Eq. (5) as a sum of two contributions,
which can be through simple manipulations brought into the form

Tr[QiQjQk] = Tr[hLL,ihLL,jhLL,k]− Tr[hUR,ihUR,jhUR,k], (11)
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a b c

Supplementary Figure 1. Phase diagrams for the ETI model. a Winding number w3D of the 2 × 2 block h0(k;m,λ)
in the (m,λ)-parameter space. b Phase diagram for the model in Eq. (1) of the main text for B = 0 and λ > 0 inside the
(M, δ)-parameter plane. The pair of green numbers indicate the two invariants (wLL

3D, w
UR
3D ) enabled by the sublattice symmetry,

which obey the sum rule in Eq. (12). All invariants reverse sign for λ < 0. The star indicates the values M = +3, δ = +1
considered throughout the manuscript, and the orange line indicates the range of parameter treated analytically for kx = ky = 0
in Supplementary Notes 2.B. and 2.C. c Color scheme for w3D utilized in the previous panels.

where hblock,i ≡ ∂kihblock. Therefore, the total winding number can be expressed as a difference of winding numbers
over the two blocks,

w3D = wLL
3D − wUR

3D . (12)

The existence of two integer point-gap invariants in the presence of sublattice symmetry is consistent with the
classification tables, such as in Ref. 2. (Note that for non-Hermitian systems the definition of sublattice symmetry
differs from the definition of chiral symmetry ! We also remark that for Hermitian systems wLL

3D = wUR
3D , such that w3D

vanishes.)
In the following we indicate the the pair of winding numbers as (wLL

3D, w
UR
3D ), and we investigate the phase diagram

in the parameter space of (M,λ, δ). Note that the two blocks can be expressed as

hLL(k;M,λ, δ) = h0(k;M + δ, λ) and hUR(k;M,λ, δ) = h0(k;M − δ, λ) (13)

where

h0(k;m,λ) =
( ∑
j=x,y,z

cos kj −m
)
σ0 + iλ

∑
j=x,y,z

sin kjσj , (14)

such that both topological invariants can be extracted by studying the properties of a single block. The point gap of
h0 closes when for some k the determinant vanishes, which corresponds to a pair of conditions∑

j=x,y,z

cos kj = m and λ2
( ∑
j=x,y,z

sin2 kj

)
= 0. (15)

Assuming λ 6= 0, the latter condition is fulfilled at TRIMs, in which case the first condition can only be satifies for
m ∈ {±1,±3}. This observation fixes the boundaries of the phase diagram. Computing the winding number w0

3D
then reveals the phase diagram displayed in Supplementary Fig. 1a. The phase diagram of the Hamiltonian in Eq. (9)
is then obtained easily by substituting for the two blocks m 7→M ± δ, and is displayed in Supplementary Fig. 1b.

B. Slab Hamiltonian and the infernal point

In this section we first present the Hamiltonian for a slab geometry with open boundary condition in z-direction.
We use the obtained Hamiltonian to reveal the macroscopic defectiveness at zero surface momentum, which we term
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infernal point. Adopting the rotated basis of Eq. (9) the ETI slab Hamiltonian can be expressed in a block form as

Hslab(kx, ky;M,λ, δ;N) =



H0 H+ 0 0 · · · 0 0 0
H− H0 H+ 0 · · · 0 0 0
0 H− H0 H+ · · · 0 0 0

0 0 H− H0
. . . 0 0 0

...
...

...
. . .

. . .
. . .

...
...

0 0 0 0
. . . H0 H+ 0

0 0 0 0 · · · H− H0 H+

0 0 0 0 · · · 0 H− H0


(16)

where N is the number of layers (blocks), the diagonal blocks are

H0(kx, ky;M,λ, δ) =


0 0 f̃(kx, ky;M) + δ −iλ sin kx − λ sin ky
0 0 −iλ sin kx + λ sin ky f̃(kx, ky;M) + δ

f̃(kx, ky;M)− δ iλ sin kx + λ sin ky 0 0

iλ sin kx − λ sin ky f̃(kx, ky;M)− δ 0 0

 (17)

where f̃(kx, ky;M) = cos kx + cos ky −M , and the next-to-diagonal blocks are

H+ =


0 0 1−λ

2 0
0 0 0 1+λ

2
1+λ

2 0 0 0
0 1−λ

2 0 0

 and H− =


0 0 1+λ

2 0
0 0 0 1−λ

2
1−λ

2 0 0 0
0 1+λ

2 0 0

 = H>+ . (18)

To proceed, we further consider λ = +1, and M = 2 + δ, which includes the case M = +3 and δ = +1 considered
in the main text as a special case. (An analogous analytical treatment is also possible for M = 2− δ.) We keep the
number of layers N as a free variable.

For the specified parameters, we aim to derive the spectrum for kx = ky = 0 analytically by analyzing the
characteristic polynomial det[Hslab(kx=0, ky=0; M=2+δ, λ=+1, δ; N)−E1]. For these parameters, the diagonal
block of (Hslab − E1) simplifies to

H0 − E1 =

 −E 0 0 0
0 −E 0 0
−2δ 0 −E 0

0 −2δ 0 −E

 with inverse [H0 − λ1]−1 =
1

E2

 −E 0 0 0
0 −E 0 0
2δ 0 −E 0
0 2δ 0 −E

 , (19)

and the next-to-diagonal blocks reduce to

H+ =

 0 0 0 0
0 0 0 1
1 0 0 0
0 0 0 0

 and H− =

 0 0 1 0
0 0 0 0
0 0 0 0
0 1 0 0

 = H>+ . (20)

For brevity, we will write Hslab(0, 0, ; 2+δ, 1, δ;N)−E1 ≡ H̃slab(N). Motivated by Ref. 3, we use Schur’s determinant
identity

det

(
A B
C D

)
= det(D) det(A−B ·D−1 · C) (21)

where A and D are square matrices (not necessarily of the same dimension), and it is assumed that detD 6= 0. Setting

D = H0 corresponding to the bottom-right 4× 4 block of H̃slab(N), we find

−B ·D−1 · C =

 . . .
...

...
· · · 0 0
· · · 0 M

 with M = −H+ · [H−1
0 − E1]−1 ·H− =

 0 0 0 0
0 E−1 0 0
0 0 E−1 0
0 0 0 0

 (22)
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and that

det H̃slab(N) = E4 det[H̃slab(N − 1)−B ·D−1 · C]. (23)

The computation unexpectedly simplifies at the next step of applying the Shur’s determinant identity. Note that the
bottom-right block of (H̃slab(N − 1)−B ·D−1 · C) is

D′ =

 −E 0 0 0
0 E−1 − E 0 0
−2δ 0 E−1 − E 0

0 −2δ 0 −E

 with detD′ = (E2 − 1)2, (24)

and with the same product −B′ · (D′)−1 · C ′ as obtained in the previous step in Eq. (22). We therefore obtain

det H̃slab(j + 2) = (E2 − 1)2 det[H̃slab(j + 1)−B(j) · (D′)−1 · C(j)] (25)

where

C(j) =
(

0 0 · · · 0︸ ︷︷ ︸
j blocks

H−
)

and B(j) =
(
C(j)

)>
, (26)

which remains valid for all N − 3 ≥ j ≥ 0. In the last step, knowing that H̃slab(1) = H0 − E1, we find that
(Hslab(1)−H+ · (D′)−1H−) = D′ with the determinant shown in Eq. (24). Altogether, we obtain

det H̃slab(N) = E4(E2 − 1)2(N−1). (27)

Therefore, for the chosen parameters (kx = ky = 0, λ = 1, and M − δ = 2), the characteristic polynomial has 2N − 2
roots at E = +1, 2N − 2 roots at E = −1, and 4 roots at E = 0.

Knowing the eigenenergies, it is also possible to search for the corresponding eigenstates. Parametrizing a generical
eigenvector as

ψ =
(
. . . , d(j−1) | a(j) , b(j) , c(j) , d(j) | a(j+1) . . .

)>
where 1 ≤ j ≤ N (28)

the eigentates correspond to solutions of

Ea(1) = 0

Eb(N) = 0

Ec(N) = −2δa(N)

Ed(1) = −2δb(1)

and

Ea(j) = c(j−1) for 2 ≤ j ≤ N
Eb(j) = d(j+1) for 1 ≤ j ≤ N − 1

Ec(j) = −2δa(j) + a(j+1) for 1 ≤ j ≤ N − 1

Ed(j) = b(j−1) − 2δb(j) for 2 ≤ j ≤ N.

(29)

Assuming δ 6= 0, such that the Hamiltonian is non-Hermitian, there are (not caring about the normalization) the
following linearly independent eigenstates:

• two eigenstates at E = 0, localized on opposite surfaces, namely (0, 0, 0, 1|0, . . .)> and (. . . 0|0, 0, 1, 0)> (both
have a single non-vanishing component).

• a pair of eigenstates at each E = ±1, also localized on opposite surfaces, namely (0,±1, 0,−2δ|0, 0, 0, 1|0 . . .)>
and (. . . 0|0, 0, 1, 0| ± 1, 0,−2δ, 0)> (they all have exactly three non-vanishing components).

Altogether, the Hamiltonian with dimension 4N has only 6 distinct eigenstates, indicating a huge defectiveness. (We
remark that for δ = 0 the Hamiltonian becomes Hermitian, and contains 4N distinct eigenstates as expected.)

C. Expansion near the infernal point
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We now extend to a small but finite kx and ky by assuming a linear expansion of sin ki ≈ ki and cos ki ≈ 1 in
Eq. (17), while keeping λ = 1 and M = δ + 2. This changes the diagonal block (with substracted λ1) to

H0 − E1 =

 −E 0 0 −ikx − ky
0 −E −ikx + ky 0
−2δ ikx + ky −E 0

ikx − ky −2δ 0 −E

 . (30)

At this stage an exact analytic solution becomes infeasible. Nevertheless, one can still deduce some properties about
the dispersion near the zero-energy states of the infernal point by considering the expansion of the characteristic
polynomial for small values of kx, ky and E. We only need to keep the contributions to the polynomial that are of
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Supplementary Figure 2. Dispersion of the states near the infernal point kx = ky = 0, M = 3, δ= λ= 1 for several
small values of N . The blue lines correspond to numerically found eigenvalues, while the yellow line indicates the theoretically
predicted dispersion of the zero-energy states in Eq. (34). We observe that the theoretical result approximates the spectrum
well for energies E . 0.2, which corresponds to an exponentially shrinking interval of momenta around the infernal point (notice
the logarithmic scale on the horizontal axis). In the thermodynamic limit we expect the spectrum of the slab Hamiltonian with
open boundary condition to exhibit a discontinuous jump between E = 0 and a finite value of energy.
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the lowest order in these variables. These correspond to the following two contributions to the determinant,
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= +E
4

(31)

and 
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· · · ×



= (2δ)
2N

(k
2
x + k

2
y). (32)

As all the other terms are of higher order in either E or (k2
x+k2

y) than the two listed terms, there exists a neighborhood
around kx = ky = 0 where these two terms are dominant. In this neighborhood, the dispersion of the previously
identified zero-energy states is obtained by solving for {E}4i=1 in the equation

(E − E1)(E − E2)(E − E3)(E − E4) = E4 + (2δ)2N (k2
x + k2

y). (33)

The solution is

E1,2,3,4 = ±
√
±i(2δ)N/2

√
k where k =

√
k2
x + k2

y. (34)

Note that the coefficient in the derived square-root dispersion grows exponentially with the number of layers, and
becomes infinitely steep in the thermodynamic limit N →∞.
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SUPPLEMENTARY NOTE 3: HIGHER-ORDER EXCEPTIONAL POINT ON THE SURFACE OF ETI

We showed in the main text that by tuning the g-factor angle α of the model in Eq. (1) in the range [0, π/2], the
surface states filling the point-gap region continuously evolve from a single-sheet covering (for α = π/2) to a pair of
bands connected with an exceptional point (EP) at E = 0 (for α = 0) (cf. Fig. 2a and b). Rather than encountering
some sharp transition, this is a simple consequence of the EP moving/leaving the point-gap region from/to the bulk
energy bands. In this section, we show that the evolution of the surface states with α is, in fact, even richer, as it
exhibits a collision and bouncing of two elementary (so-called second-order) EPs, with the critical point corresponding
to a third-order EP4. For brevity, we refer to these two types of band degeneracy as EP2, resp. EP3. Recall that an
nth order exceptional point (EPn) is a singularity where n bands become defective, and disperse as (kx + iky)1/n.

To reveal the presence of the EPs, we plot in Supplementary Fig. 4 the surface states across the critical point in a
way similar to Fig 2 a) and b) of the main text. More specifically, we consider a slab geometry with N = 20 layers, and
we take a regular square grid of momentum points with ∆kx = ∆ky = 2π/800 (we find the region |kx,y| < 2π/10 to
be sufficiently large to include all the surface states filling the point-gap region) inside the two-dimensional Brillouin
zone. We indicate all the identified eigenstates as points inside the complex energy plane, and color them blue to
red according to their localization (following their inverse participation ratio IPR[|ψ〉] =

∑
i |ψ(i)|4 /

∑
i |ψ(i)|2 where

ψ(i) are components of the right eigenstate |ψ〉).
Crucially, we also consider Cartesian lines in k-space by including two additional points along each bond of the

square lattice, following the schematics of Supplementary Fig. 3a. The image of these Cartesian lines is visible in the
surface-state energies of Fig. 2a and b and of Supplementary Fig. 4 as a deformed square grid. From the deformation
of the square grid one can deduce how a piece of the surface Brillouin zone is pasted onto the complex energy plane.
Besides continuous deformations, one observes that the square grid occasionally exhibits disclination defects. We
argue that these indicate various types of exceptional points on the surface of ETI at the corresponding complex
energy.

Let us first consider an isolated nth order exceptional point (EPn) occurring inside one of the squares of the
momentum grid [Supplementary Fig. 3(b, orange)]. Then the bands form a Riemann sheet that wind n times around
the central singularity until it connects back onto itself. Therefore, one needs to go n times along the edges of the
square (i.e. make 4n right turns along the orange path γ0) before returning to the original state. This is revealed as
an octagon (i.e. 2π disclination) for EP2, and as a dodecagon (i.e. 4π disclination) for EP3.

a b

Supplementary Figure 3. Momentum grid and paths for the surface spectra in this work. a The grid of points in
momentum space for which we plot the surface spectra in Fig. 2a and b of the main text and in Supplementary Fig. 4 below.
(b, orange) Assuming the presence of an nth order exceptional point (EPn, yellow star), one needs to circumvent it n times
until the energy band connects back onto itself. As a consequence, the surface-states spectrum along the square path γ0 looks
like a polygon with 4n sides in the complex energy plane. (b, magenta) If there are two nearby second-order exceptional points
(EP2s, green stars), one could enclose each one of them in sequence by following the magenta path γ1. The energy spectrum
along γ1 reveals whether the two EPs are formed by the same pair of bands, or by two different pairs of adjacent bands. (b,
blue) If three bands participate in the formation of the two adjacent EP2s, the spectrum along γ2 is equivalent to the spectrum
along γ0 for n = 3. Therefore, the merging of two EP2s results in an EP3. For a detailed discussion see Supplementary Note 3.
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Supplementary Figure 4. Surface states for (a-c) g-factor angles α = 0.57, 0.64 and 0.72. We indicate surface states
at momentum resolution δk = 2π/800 in both kx,y-directions in red-to-blue tones according to their inverse participation ratio
(IPR). The smaller light-gray points with a finer resolution δk = 2π/2400 represent the momentum mesh; more specifically,
they indicate the band energies along lines parallel with either kx or ky axis (cf. Supplementary Fig. 3a). The presence of
‘ordinary’ (second-order) exceptional points (EP2s) is revealed by an octagon shape with eight right angles [light yellow in a
and c], and their motion with increasing α is indicated by the green arrows. Two EPs collide and bounce at α ≈ 0.64, while
forming a third-order exceptional point (EP3) at the collision, revealed by a dodecagon shape with twelve right angles [light
yellow in b]. The meaning of the magenta arrows, of the cyan dots in panel c, and the detailed reasoning behind the occurrence
of the polygons are clarified in the text of Supplementary Note 3.

Since both an octagon and a dodecagon are observed in the panels of Supplementary Fig. 4, one interprets the
evolution of the surface states with increasing α as follows. First (Fig. 2b, α = 0) there is a single EP2 at E = 0. With
increasing α the EP2 moves to higher energies, while at the same time (Supplementary Fig. 4a, α = 0.57) another EP2
enters the point-gap region from the bulk states at E ≈ 1.6. The two EP2s collide (Supplementary Fig. 4b, α = 0.64)
at E ≈ 1.1, apparently forming an EP3 at the critical point. The EP2s then bounce and depart symmetrically from
the real energy axis (Supplementary Fig. 4c, α = 0.72), until they both leave the point-gap region, leaving behind
only a single-sheet covering surface state (Fig. 2a, α = π/2). [We remark that without additional analysis, our plots
cannot be directly used to tell the momentum (kx, ky) at which the EPs are formed.]

To analyze the situation near the critical point (Supplementary Fig. 4b, α = 0.64) in more detail, we consider a
pair of EP2s in two nearby infinitesimal squares of the momentum grid [Supplementary Fig. 3(b, magenta)]. We
construct the magenta path γ1 that starts at k0 (cyan dot) between the EP2s, then (i) encloses the first EP2, then
(ii) returns to k0, then (iii) encloses the second EP2, until finally (iv) it returns to k0 again. We argue that the
spectrum along γ1 signals whether the two EPs are formed by the same pair of energy bands, or by three contiguous
energy bands. To understand this, note that circumventing an EP2 results in a permutation of two band indices,
symbolically (1, 2) 7→ (2, 1). If the two EP2s were formed by the same pair of bands, then the two permutations along
γ1 act, in sequence, as (1, 2) 7→ (2, 1) 7→ (1, 2) (the overline indicates the two bands which are permuted at the next
step), meaning that the total permutation is trivial, and that the initial and the final state encountered along γ1 at
k0 are the same.

We apply this reasoning to the pair of EP2s visible in Supplementary Fig. 4c after the collision. Starting at the
cyan point on the bottom, and departing in the indicated direction, we follow the magenta path in Supplementary
Fig. 3b (performing in sequence: three right turns, one left turn, and three right turns). The three cyan points in
Supplementary Fig. 4c correspond to the same momentum k0, but lie at three distinct energies. Manifestly, the initial
and the final state are different. This implies that there are three surface bands at play, and that the two EP2s are
formed by different pairs of bands.

We finally explain why the merging of two EP2s results in an EP3. For that, note that the magenta path γ1 is
continuously deformable into the square blue path γ2 [Supplementary Fig. 3(b, blue)]. The total permutation of bands
along the paths γ1 and γ2 is the same, namely (1, 2, 3) 7→ (2, 1, 3) 7→ (2, 3, 1). Note that this is a cyclic permutation,
exactly as expected for an EP3. Therefore, the spectrum along the square path γ2 that encircles two EP2 formed
by three adjacent bands looks the same as expected for the square path γ0 encircling an EP3. This correspondence
suggests the formation of an exact EP3 at the critical point4.
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SUPPLEMENTARY NOTE 4: BULK INVARIANT

In this section, we relate the bulk invariant w3D of a 3D non-Hermitian Hamiltonian with a point gap [Eq. (5) of the
main text] to the flow of Chern numbers around the point gap [Eq. (2) of the main text]. Note that the same result has
been obtained in Ref. 5. Our argument is divided into four parts, distributed over the four subsection below. First,
in Supplementary Note 4.A. we deform the non-Hermitian Hamiltonian into a Floquet unitary form by employing
the polar decomposition while preserving the topological invariants. Second, in Supplementary Note 4.B., we depart
from the unitary form and review the proof from Ref. 6 which derives the equivalence of Eqs. (5) and (2) for the
special case of two-band models with vanishing w1D. Finally, by appealing to the topological nature of the integrals in
Eqs. (5) and (2) we show that the correspondence generalizes to models with arbitrarily many bands [Supplementary
Note 4.C.] and with arbitrary values of w1D along the three directions of the BZ torus [Supplementary Note 4.D.].

A. Mapping the non-Hermitian Hamiltonian to a Floquet operator via polar decomposition

We first review the arguments presented in Appendix G of Ref. 1, which relate a non-Hermitian Hamiltonian with
a point-gap to a unitary Floquet operator. To do so, recall that a non-singular matrix H(k)− E1 (i.e. with a point
gap at energy E ∈ C) has a polar decomposition. Setting for simplicity E = 0, this corresponds to

H(k) = U(k)P (k), (35)

where P (k) = [H(k)†H(k)]1/2 is a positive-definite self-adjoint matrix, and U(k) = H(k)P (k)−1 is a unitary matrix.
The decomposition into U(k) and P (k) is unique and depends continuously on k when H(k) is continuous (which is
the case for any physical system).

Importantly, if A and B are positive-definite self-adjoint matrices, then the linear combination tA + (1 − t)B for
t ∈ [0, 1] is also a positive-definite matrix. Setting these matrices specifically to A(k) = 1 and B = P (k), we find that

F (k, t) = U(k) [t1 + (1− t)P (k)] (36)

is a homotopy that continuously deforms F (k, 0) = H(k) to F (k, 1) = U(k) while preserving the point-gap at all k
and t [i.e. detF (k, t) 6= 0]. Furthermore, since we did not assume any symmetry of H(k), we are not required to check
for symmetries of U(k). As a consequence, H(k) and U(k) share all point-gap invariants.

We conclude that for each non-Hermitian H(k) with a point gap there is a canonically associated unitary U(k).
The continuous deformation that evolves the first into the latter changes the eigenstates and normalizes eigenvalues to
absolute value 1, but it preserves all point-gap invariants. Besides relating non-Hermitian and Floquet topology, the
obtained equivalence is particularly useful for analytical manipulations. Note that a unitary matrix is never defective,
meaning that it always has a complete set of eigenstates. In particular, the generic band singularity of H(k) is an
exceptional line, while that of U(k) is a Weyl point. This implies that U(k) has the usual spectral decomposition at
each k, which is impossible for non-Hermitian Hamiltonians at exceptional degeneracies.

B. Relating w3D to Chern numbers in two-band models with w1D = 0

For a Floquet unitary U(k), the eigenvalues become U(1) phases, i.e. λak = eiεak . We call below the complex
argument εak the quasi-energy of ath band, and we refer to the (counter-clockwise) direction along the unitary circle
as the (positive) quasi-energy direction. It is possible to consider all the k-points with fixed quasi-energy,

FS(µ) = {k ∈ BZ | ∃a : εak = µ (mod 2π)}, (37)

which corresponds to a Fermi surface of U(k) at quasi-energy µ. The orientation of the Fermi surface FS(µ) is defined
to be along the increasing quasi-energy. In the remainder of the present subsection we consider two-band models, i.e.,
U(k) : BZ → U(2). Furthermore, we assume that w1D is trivial for all directions along the Brillouin zone torus, in
which case the Floquet unitary can be continuously deformed into SU(2). For cases when these two conditions are
fulfilled, it was shown by Ref. 6 that

w3D = CFS(µ), (38)
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i.e. the winding number of U(k) is equal to the Chern number on the Fermi surface FS(µ) for an arbitrary choice
of Fermi quasi-energy µ (i.e., equivalently, to the flow of Berry curvature in the quasi-energy direction around the
point gap). Below, we review the arguments of Ref. 6 that lead to the validity of Eq. (38) in two-band models. These
arguments are generalized to the case of many bands and of non-vanishing w1D in the subsequent Supplementary
Notes 4.C. and 4.D.

Starting with a generic two-band unitary, note that U(2) = U(1)nSU(2) (semi-direct product). The decomposition
of the Floquet unitary U(k) into the two components is not unique: while the U(1)-component of U(k) is simply

det[U(k)], the SU(2)-component Ũ(k) = U(k)/
√

det[U(k)] has a ± sign ambiguity. Therefore, we choose to first
prove Eq. (38) for the class of unitaries U(k) that do not wind non-trivially along the U(1) component (i.e., for which
w1D is trivial for all directions around the Brillouin-zone torus). In such cases it is possible to choose the branch of the

square root globally, implying that Ũ(k) is a global and smooth function on the entire Brillouin zone. Furthermore,
the assumption also allows us to continuously deform the U(1)-component to a constant map [e.g., to 1 ∈ U(1)],

in which case the Floquet unitary operator U(k) is continuously deformed to special unitary Ũ(k). Because of the
continuity, such a deformation preserves both the left- and the right-hand side of Eq. (38).

The general SU(2) matrix can be decomposed using the identity matrix and the Pauli matrices as

Ũ(k) = n0(k)1− i [nx(k)σx + ny(k)σy + nz(k)σz] (39)

with norm

||n||2 = n2
0 + n2

x + n2
y + n2

z = 1 (40)

at each k, indicating the well-known property that as a topological space SU(2) ∼= S3. We use this simple expression
for a general SU(2) matrix to simplify the formula for w3D.

Noting that Ũ†(k) is obtained from Ũ(k) simply by flipping the sign −i 7→ +i, one easily checks that

Ũ−1∂kŨ =
(
Σa∈{0,x,y,z}na∂kna

)
1 + i [(∂kn0)nx − (∂knx)n0 − (∂kny)nz + (∂knz)ny]σx

+ i [(∂kn0)ny − (∂kny)n0 − (∂knz)nx + (∂knx)nz]σy

+ i [(∂kn0)nz − (∂knz)n0 − (∂knx)ny + (∂kny)nx]σz, (41)

where we dropped the k-arguments for brevity. Note that the obtained prefactor of 1 is simply 1
2∂k||n(k)||2 = 0

according to Eq. (40), and the term drops out. We thus rewrite

Ũ−1∂kŨ =
∑

a∈{x,y,z}

i [(∂kn0)na − (∂kna)n0 − εabc(∂knb)nc]σa. (42)

Furthermore, since Ũ−1Ũ = 1, we can rewrite Ũ−1∂iU = −(∂iŨ
−1)Ũ for one of the derivatives in Eq. (5) of the main

text, such that the formula for the 3D winding number reduces to

w3D = +
1

24π2

∫
BZ

d3kεijkTr[(∂iŨ
−1)Ũ Ũ−1(∂jŨ)Ũ−1(∂kŨ)] (43)

= +
1

24π2

∫
BZ

d3kεijkTr[(∂iŨ
−1)(∂jŨ)Ũ−1(∂kŨ)] (44)

with implicit summation over i, j, k ∈ {kx, ky, kz}. We further use that

(∂iŨ
−1)(∂jŨ) =

∑
a∈{0,x,y,z}

(∂ina)(∂inj)1 +
∑

a∈{x,y,z}

(−i) [(∂in0)(∂jna)− (∂ina)(∂jn0)− εade(∂ind)(∂jne)]σa. (45)

We now substitute expressions (42) and (45) into Eq. (44). Since Pauli matrices have zero trace, the only combinations
of terms that contribute to Eq. (44) are those that combine two copies of the same Pauli matrix (i.e., Tr[σa ·σa] = 2).
Therefore, the expression behind the integral of Eq. (44) equals

2εijk[(∂in0)(∂jna)− (∂ina)(∂jn0)− εade(∂ind)(∂jne)][(∂kn0)na − (∂kna)n0 − εabc(∂knb)nc], (46)

where i, j, k is summed over {kx, ky, kz}, and a, b, c over {x, y, z}.
We would now like to expand the product of the square brackets in Eq. (46). One readily observes that many of

the resulting terms vanish for symmetry reasons. On the one hand, combining any two terms without the εa... Levi-
Civita symbol results in expressions containing either εijk(∂in0)(∂kn0) = 0 or εijk(∂ina)(∂kna) = 0 (or equivalent).
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The cancellation arises after summation over the i, k indices due to taking the product of objects symmetric [i.e.,
(∂ina)(∂kna)] and antisymmetric (i.e., εijk) in i↔ k. Similarly, the combination involving εabcεade = (δbdδce− δbeδce)
is also easily shown to combine the antisymmetric tensor εijk with a combination of derivatives symmetric in i ↔ k
or j ↔ k, and therefore also vanishes. In summary, only the products that contain exactly one of the εa... symbols
are non-vanishing after summation, which (after also renaming d 7→ b and e 7→ c) results in

2εijkεabc[−(∂in0)(∂jna)(∂knb)nc + (∂ina)(∂jn0)(∂knb)nc − (∂inb)(∂jnc)(∂kn0)na + (∂inb)(∂jnc)(∂kna)n0]. (47)

After slight reordering of the terms and permuting the indices, the same expression is equivalently written as

2εijkεabc[n0(∂ina)(∂jnb)(∂jnc)− na(∂in0)(∂jnb)(∂knc) + na(∂inb)(∂jn0)(∂knc)− na(∂inb)(∂jnc)(∂kn0)] (48)

which one should recognize as

2εijk[ε0bcdn0(∂inb)(∂jnc)(∂jnd) + εa0cdna(∂in0)(∂jnc)(∂knd)

+ εab0dna(∂inb)(∂jn0)(∂knd) + εabc0na(∂inb)(∂jnc)(∂kn0)]

= 2εijkεabcdna(∂inb)(∂jnc)(∂knd). (49)

where a, b, c, d now range over the enlarged set {0, x, y, z}. Therefore, one obtains

w3D =
1

12π2

∫
BZ

d3kεijkεabcdna(∂inb)(∂jnc)(∂knd) =
1

2π2

∫
BZ

d3kεabcdna(∂kxnb)(∂kync)(∂kznd), (50)

which is recognized as the wrapping number of the Brillouin zone torus around the 3-sphere. (Note that the normal-
ization is also correct because 2π2 is exactly the surface area of the unit 3-sphere.)

The integrand in Eq. (50) is interpreted as the oriented area of the unit 3-sphere swiped by n(k) = (n0, nx, ny, nz)
as k is varied over the infinitesimal volume d3k. The orientation is important, namely it means that the area is being
“covered” resp. “uncovered” depending on the sign of the integrand. A generic point x0 ∈ S3 is covered (uncovered)

by the map Ũ(k) : BZ 7→ S3 a number of times which we denote ν+(x0) [ν−(x0)]. The geometric nature of the
wrapping number (50) implies that

w3D = ν+(x0)− ν−(x0), (51)

i.e., each x0 ∈ S3 is wrapped the same number of times if the orientation is taken into account. In a more technical
language7, the equal dimensionality of SU(2) ∼= S3 and of BZ = T 3 implies that the Pontryagin manifold of Ũ : BZ→
SU(2) [i.e. the framed pre-image Ũ−1(x0) of any point x0 ∈ SU(2), with framing defined by pulling back a basis of

tangent space Tx0SU(2)] is generically a set of discrete points {ki}i∈I that depends on Ũ and x0, each point carrying
positive or negative orientation o(ki) [the handedness of the pulled-back frame]. It follows from the Pontryagin-Thom

construction that the index of the map Ũ is

w3D =
∑
i

o(ki) (52)

and that it is invariant under cobordisms representing continuous deformations of the map Ũ and the choice of x0.
[In particular, the cobordism theory also implies that the invariant cannot change in fine-tuned (i.e., not generic)
situations where the pre-images are not point-like or where several point-like pre-images with the same orientation
are brought on top of one another.] A pair of pre-images with opposite orientation (i.e., one being “covered” and the
other “uncovered”) can pairwise annihilate, while keeping the right-hand side of Eq. (51) invariant.

The relation in Eq. (51) is particularly useful when used to study Weyl points in the spectrum of Ũ(k). The
eigenvalues of the special unitary in Eq. (39) are e±iθ where n0 = cos θ with θ ∈ [0, π]. Note that the eigenvalues

become degenerate (i.e., the bands of Ũ(k) exhibit a Weyl point) only when θ = 0 [corresponding to the “north pole”
of the 3-sphere] or θ = π [the “south pole” of the 3-sphere]. To prove the relation between w3D and CFS(µ), we

now study the relation between w3D and the Weyl points of Ũ(k), whence Eq. (38) will be seen as a straightforward
consequence.

The described band nodes are generically Weyl points, and they come in four species: They could occur at quasi-
energy 0 or π, and they can carry left-handed or right-handed chirality. We indicate the number of these four species
of Weyl points as N0

L, N0
R, Nπ

L and Nπ
R. It is detailed in Ref. 6 that positive (negative) coverings of ±1 ∈ SU(2)

produce right-handed (left-handed) Weyl points at the corresponding energy and k, i.e., that N0,π
L/R correspond to
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ν±(±1). [The fact that a right-handed and left-handed Weyl point can pairwise annihilate is seen as a consequence
of the index formula (52).] Since both ±1 ∈ SU(2) have to be wrapped w3D times, it follows from Eq. (51) that

w3D = N0
R −N0

L = Nπ
R −Nπ

L . (53)

In other words, non-vanishing w3D implies an imbalance between right-handed and left-handed Fermions (i.e., violating
the Nielsen-Ninomiya theorem6,8) both at quasi-energy 0 and π. It is well known (and confirmed by explicit calculation
of a linearized model around the degeneracies) that right-/left-handed Weyl points inject/remove one qunatum of Berry
curvature flow into the higher (quasi-)energy band. It therefore follows from the Weyl-point imbalance in two-band
models with vanishing w1D that Eq. (38) is valid for all µ with non-degenerate Fermi surfaces (i.e., when the Chern
number on the right-hand side can be meaningfully computed). We can thus interpret the right-hand side of Eq. (38)
as the flow of Berry curvature in the quasi-energy direction. For example, for the band with quasi-energy 0 < εk < π,
the right-handed (left-handed) Weyl points at ε = 0 act as sources (sinks) of quanta of Berry curvature, while the
right-handed (left-handed) Weyl points at ε = π instead act as sinks (sources) of quanta of Berry curvature.

Since Weyl points only occur at a discrete set of energies [namely at µ = 0 and µ = π for Ũ(k) ∈ SU(2)], one can
use continuity to define the flow of Chern number on the right-hand side of Eq. (38) for arbitrary quasi-energy µ –
including those coinciding with the Weyl point quasi-energy. Furthermore, because of the topological nature of the
integrals on both sides of Eq. (38), the presented result generalizes to any two-band unitary map U : BZ→ U(2) with
vanishing w1D, which are obtained from the explicitly discussed SU(2) models by a continuous deformation.

C. Relating w3D to Chern number in models with arbitrarily many bands and with w1D = 0

The generalization of the relation in Eq. (38) to models with a larger number of bands follows directly by combining
the (i) topological nature of integrals on both sides of the equation, (ii) additivity of both integrals under direct sum of
two unitary maps U1⊕U2, and (iii) the existence of a continuous deformation (homotopy) between any pair of models
with the same number of bands and with the same topological invariant w3D ∈ π[T 3,SU(N)] = Z. In particular, it is
important that the formula for w3D is identical for unitary operators with an arbitrary number N ≥ 2 of bands.

To proceed, first note that two-band models can attain arbitrary w3D ∈ Z. For example, the special unitary in
Eq. (39) with (before normalization)

nW0 (k) = (cos kx + cos ky + cos kz − 2),

nWx (k) = Re[(sin kx + i sin ky)W ], (54)

nWy (k) = Im[(sin kx + i sin ky)W ],

nWz (k) = sin kz,

and with W ∈ Z has w3D = W . We will introduce the notation for this particular model,

1

||nW (k)||2
{
nW0 (k)1− i[nWx (k)σx + nWy (k)σy + nWz (k)σz]

}
≡ ŨW (k). (55)

To proceed, let us investigate the validity of the equivalence in Eq. (38) for the special class of N -band models

ŨW(k)⊕ eiε1 ⊕ . . .⊕ eiεN−2 ≡ ŨWN (k) (56)

where {εi}N−2
i=1 are distinct and k-independent phases (i.e., quasi-energies) subject to

∑
i εi = 0. We also require each

of these phases to be different from 0 and π. On the one hand, we use the additivity of w3D for direct sum of unitaries,
combined with the fact that k-independent one-band unitaries have vanishing w3D, to show that the N -band model
in Eq. (56) has w3D = W . On the other hand, the Chern number is also additive under direct sum of models, and

contains a contribution from the two-band unitary ŨW (k) (for which it was proved in Supplementary Note 4.B. that
w3D = CFS(µ)) plus the contributions of the single-band models (which for µ 6= εi do not form Fermi surface, and
therefore their Chern number CFS(µ) trivially vanishes). Therefore, Eq. (38) is valid for models in Eq. (56) for all
quasi-energies except µ ∈ {0, π, ε1, . . . , εN−2}. Since this is a set of measure zero, we define the flow of Berry curvature
CFS(µ) at these quasi-energies by continuity from the values where it is well-defined.

We now generalize the result in Eq. (38) to arbitrary N -band models Ũ : BZ → SU(N). Recall that equivalence
classes of such maps under continuous deformations are fully determined by the homotopy set π[T 3,SU(N)] ∼= Z,
with the corresponding class determined by the value of w3D. Starting with an arbitrary N -band special unitary map



14

Ũ(k) that carries w3D = W , it follows from homotopy theory that there is a continuous deformation into ŨWN (k). The
continuous deformation preserves w3D by definition. Furthermore, such a continuous deformation must also preserve
the Chern number at each energy. It is therefore a trivial consequence that Eq. (38) is valid for arbitrary special
unitary models with arbitrarily many bands. By considering further continuous deformations, our proof trivially
extends to all N -band models U : BZ 7→ U(N) that have w1D = 0.

D. Relating w3D to Chern number in models with arbitrary w1D

The generalization of the relation in Eq. (38) to models with non-trivial w1D is achieved through similar logic as
exercised in the previous subsection when generalizing to arbitrarily many bands. Namely, we first prove the relation
for specially crafted simple models – a representative model for each homotopy equivalence class – and then we argue
(based on the invariant nature of the invariants under continuous deformations and on their additivity under direct
sum of models) that the correspondence generalizes to arbitrary unitary models.

Recall that the set of homotopy classes of unitary models in 3D are π[T 3,U(N)] = Z4 for any N ≥ 2, where the
four integer invariants correspond to winding numbers w3D and (w1D,x, w1D,y, w1D,z) ≡ w1D. We therefore consider
the following U(3) models (a representative for each homotopy class),

U (W,w)(k) = ŨW (k)⊕ eik·w, (57)

for which it is easily checked that w3D = W and w1D = w. Concerning the Chern number, we already argued in the
previous subsections that W = CFS(µ) for the two-band part ŨW (k), while the one-band part eik·w manifestly carries
zero Chern number as it encodes a constant (i.e., k-independent) eigenstate (0, 0, 1). Therefore, one readily finds that
Eq. (38) is valid for the models in Eq. (57). Because of the continuous nature of the integrals defining w1D, W3D and
CFS(µ), the relation is readily generalized to arbitrary 3-band models U : BZ→ U(3).

To generalize to models with N ≥ 3 bands, one can consider [in analogy with Eq. (56) of Supplementary Note 4.C.] a
direct-sum composition of the representative model in Eq. (57) with N−3 one-band models corresponding to constant
quasi-energies. The proof of Eq. (38) for arbitrary U(N) model with N ≥ 3 is then trivial to complete. Finally, the
generalization to N = 2 model U2-band(k) is obtained similarly, with a single k-independent band instead added to
the two-band model itself [rather than to the homotopy representative in Eq. (57)]. Assuming that U2-band(k) carries
w3D = W and w1D = w, there is a homotopy equivalence

U2-band(k)⊕ eiε1 ∼ ŨW (k)⊕ eik·w, (58)

whence the relation in Eq. (38) follows for the two-band model U2-band(k) from the additivity of invariants in direct-
sum models. Therefore, we complete the proof of the equivalence w3D = CFS(µ) (for arbitrary quasi-energy µ) for
arbitrary unitary map U : BZ → U(N) with arbitrary N ≥ 2. Finally, by recalling the continuity arguments of
Supplementary Note 4.A., the equivalence generalizes to non-Hermitian point-gapped Hamiltonians whenever the
Chern number is well-defined (i.e., whenever the Fermi surface is not intersected by an exceptional degeneracy).

SUPPLEMENTARY NOTE 5: NON-HERMITIAN TERMS IN ELECTRONIC SYSTEMS

In this section, we discuss scenarios, in which the specific structure of the self-energy discussed in the main text
could arise in a condensed matter setting. In general, the emergence of non-Hermitian terms in electronic systems
is best understood in the language of Green’s functions, where the terms arise through a complex self-energy. The
non-interacting Green’s function is given by

G(0)(ω) = (iω −H)−1, (59)

with H being the free Hamiltonian of the (electronic) system. This Green’s function describes infinitely long-lived
excitations at the eigenenergies of H. Interactions can be incorporated into the full Green’s function introducing the
self-energy Σ(ω),

G(ω) = {[G(0)(ω)]−1 − Σ(ω)}−1 = [iω −H − Σ(ω)]−1 ≡ [iω −Heff ]−1, (60)

where in the last step, we have dropped the ω dependence of Σ. If the self-energy is complex, for example due to
finite quasi-particle lifetimes, the effective Hamiltonian of the system Heff is non-Hermitian.
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A. Non-Hermitian terms due to coupling to short-lived electronic excitations

One scenario to obtain a complex self-energy as discussed in the main text, is to consider an additional orbital—for
concreteness, we call it an f electron—with no dispersion and a short lifetime 1/Γ, which couples to the s, p orbitals
of the topological insulator. The (effective) Hamiltonian of this additional f orbital is

Hf = µfc
†
f cf + iΓc†f cf . (61)

Considering a hopping Hamiltonian between the s, p, and f electrons of the form

Hsp−f = tsc
†
scf + tpc

†
pcf , (62)

we can find the full Hamiltonian in block form as

H =

(
Hsp Hsp−f

H†sp−f Hf

)
. (63)

Since the full Green’s function is defined as

(iω −H)G(ω) = 1, (64)

we obtain (
iω −Hsp −Hsp−f

−H†sp−f iω −Hf

)(
Gsp(ω) Gsp−f(ω)

Gf−sp(ω) Gf(ω)

)
= 1. (65)

Using

Gf−sp(ω) = (iω −Hf)
−1
H†sp−fGsp(ω), (66)

we can rewrite

(iω −Hsp)Gsp(ω)−Hsp−fGf−sp(ω) = (iω −Hsp)Gsp(ω)−Hsp−f (iω −Hf)
−1
H†sp−fGsp(ω)

= (iω −Hsp − Σ(ω))Gsp(ω) = 1.
(67)

This gives a correction to the s- and p-electron self energy

Σ(ω) = (ts tp)T (iω −Hf)
−1

(ts tp) =
1

iω − µf − iΓ

(
t2s tstp
tstp t2p

)
. (68)

To lowest order in ω, the self energy thus reads

Σ ≈

(
it2s

Γ−iµf

itstp
Γ−iµf

itstp
Γ−iµf

it2p
Γ−iµf

)
=

i

2

t2s + t2p
Γ− iµf

τ0 + i
tstp

Γ− iµf
τx +

i

2

t2s − t2p
Γ− iµf

τz, (69)

which adds to the effective Hamiltonian of s and p electrons. Considering ts ≈ tp ≡ tf , the contributions proportional
to τz vanish. Including spins of s, p orbitals, we obtain the self-energy

Σ = i
t2f

Γ− iµf
(τ0 + τx)σ0. (70)

If the f electron sits close to the chemical potential, in other words µf � Γ, the non-Hermitian term dominates in
Eq. (70) and gives rise to the physics discussed in the main text.
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Supplementary Figure 5. Lowest-order Feynman diagram of the electron self-energy from the electron-phonon coupling.

B. Non-Hermitian terms due to electron-phonon scattering

As an alternative scenario, we consider the scattering of electrons and phonons, one of the most fundamental
interactions in solids. For simplicity, we describe this coupling with a toy model, the Holstein Hamiltonian, which in
second quantization reads

H = Hel +Hph +Hel−ph

=
∑
k

c†k,ν (k · Γ− µ)ν,ν′ ck,ν′ + ω0

∑
q

(
b†qbq +

1

2

)
+

∑
k,q,ν,ν′

gν,ν′√
N

(
b†q + b−q

)
c†k+q,νck,ν′ . (71)

Here, we consider non-interacting electrons with a 3D Dirac dispersion k · Γ, with Γi = τxσi, and model the phonons
as a single branch of Einstein phonons of frequency ω0 and momentum q. The coupling strength gν,ν′ is taken to be
small and momentum independent but we allow electrons to scatter from ν to ν′. Here and in the following, we use
ν as a combined index of orbital and spin.

The interaction with the phonons leads to a non-trivial self-energy in the electron Green’s function

G(k, iωm)−1
ν,ν′ = G(0)(k, iωm)−1

ν,ν′ + Σel−ph(k, iωm)ν,ν′ (72)

with the bare (non-interacting) electron Green’s function given by

G(0)(k, iωm)ν,ν′ = (iωm −Hel)
−1
ν,ν′ (73)

and ωm = (2m + 1)πT (m an integer) are the fermionic Matsubara frequencies. In the following, we use a lowest-
order approximation to the electron-phonon problem9, since we are only interested in the structure of the resulting
self-energy. The self-energy can be calculated as

Σel−ph(k, iωm)ν,ν′ = − 1

Nβ

∑
k′,m′

∑
ν′′,ν′′′

gν,ν′′G(k′, iωm′)ν′′,ν′′′gν′′′,ν′D(q, i(ωm − ωm′)), (74)

where we have relied on Migdal-Eliashberg theory to neglect vertex corrections10,11. This is valid even for the case
of Dirac materials12, but only correct in the weak-coupling regime g/ω0 � 113,14. It is also customary to replace the
full electron and phonon Green’s functions in Eq. (74) to lowest order with the bare Green’s function in Eq. (73) and
the bare phonon Green’s function10,11

D(0)(q, iΩn) =
[
ω2

0 + Ω2
n

]−1
, (75)

with Ωn = 2nπT the bosonic Matsubara frequencies. This corresponds to the processes of emitting and subsequently
absorbing a phonon with momentum q (−q), see Supplementary Fig. 5.

The electron self-energy thus simplifies to

Σel−ph(k, iωm)ν,ν′ = − 1

Nβ

∑
k′,m′

[
g

(iωm′ + µ)1 + k′ · Γ
(iωm′ + µ)2 − |k′|2

g
1

[(ω2
0 + (ωm − ωm′)2)]

]
ν,ν′

, (76)
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where, for simplicity, we have neglected the matrix indices of gν,ν′ and the element ν, ν′ is taken after matrix multi-
plication. The term linear in k′ vanishes upon integration, such that, performing the summation over the Matsubara
frequencies, we find

1

β

∑
m′

(iωm′ + µ)

(iωm′ + µ)2 − |k′|2
1

[(ω2
0 + (ωm − ωm′)2)]

= −1

2

nF(−|k′| − µ)

(iωm + |k′|+ µ)2 − ω2
0

− 1

2

nF(|k′| − µ)

(iωm − |k′|+ µ)2 − ω2
0

+
1

2

(iωm + µ+ ω0)nB(ω0)

ω0(iωm − |k′|+ µ+ ω0)(iωm + |k′|+ µ+ ω0)

+
1

2

(iωm + µ− ω0)(1 + nB(ω0))

ω0(iωm − |k′|+ µ− ω0)(iωm + |k′|+ µ− ω0)

= FF(k′, iωm) + FB(k′, iωm).

(77)

To continue, we have separated the first two fermionic and the last two bosonic terms, and nF(x), nB(x) are the
fermion and boson distribution functions, respectively. We thus find the self-energy

Σel−ph(k, iωm)ν,ν′ = − 1

N

∑
k′

(FF(k′, iωm) + FB(k′, iωm))(g2)ν,ν′ , (78)

where (g2)ν,ν′ =
∑
ν′′ gν,ν′′gν′′,ν′ . In the following, we perform the remaining integration in k′:

− 1

N

∑
k′

FF(k′, iωm) =
1

4π2

∫ ∞
0

dk′k′2
[

nF(−k′ − µ)

(iωm + k′ + µ)2 − ω2
0

+
nF(k′ − µ)

(iωm − k′ + µ)2 − ω2
0

]

=
1

4π2

[∫ −µ
−∞

dk̂
(k̂ + µ)2nF(k̂)

(iωm − k̂)2 − ω2
0

+

∫ ∞
−µ

dk̂
(k̂ + µ)2nF(k̂)

(iωm − k̂)2 − ω2
0

]

=
1

4π2

∫ ∞
−∞

dk̂
(k̂ + µ)2nF(k̂)

(iωm − k̂)2 − ω2
0

,

(79)

where, in the second line, we substituted k̂ = −k′ − µ in the first and k̂ = k′ − µ in the second term. Performing the

analytic continuation k̂ → z yields

1

4π2

∫ ∞
−∞

f(z)dz =
1

4π2

∫ ∞
−∞

dz
(z + µ)2nF(z)

(z − iωm + ω0)(z − iωm − ω0)
, (80)

where f(z) has two poles z1,2 = iωm ± ω0 in the upper half of the complex plane. Choosing an integration contour C
of radius R in the upper half surrounding the poles allows to evaluate the integral with the residue theorem. As the
arc in the complex plane vanishes in the limit R→∞, the fermionic term yields

− 1

N

∑
k′

FF(k′, iωm) = − i

4πω0

[
(iωm + µ− ω0)2nF(iωm − ω0)− (iωm + µ+ ω0)2nF(iωm + ω0)

]
. (81)

The bosonic integral

− 1

N

∑
k′

FB(k′, iωm) = − 1

ω0

1

4π2

∫ ∞
0

dk′k′2
[

(iωm + µ+ ω0)nB(ω0)

(iωm + µ+ ω0)2 − k′2
+

(iωm + µ− ω0)(1 + nB(ω0))

(iωm + µ− ω0)2 − k′2

]
(82)

is formally divergent due to large and intermediate momentum states. We therefore introduce a regularization pa-
rameter λ, so that singularities appear solely in this quantity. Correspondingly, we limit the momentum integral to
the region |k′| < λ, in which the description with the effective Dirac Hamiltonian remains valid

− 1

N

∑
k′

FB(k′, iωm) = − 1

4π2ω0

∫ λ

0

dk′k′2
[

(iωm + µ+ ω0)nB(ω0)

(iωm + µ+ ω0)2 − k′2
+

(iωm + µ− ω0)(1 + nB(ω0))

(iωm + µ− ω0)2 − k′2

]
= − 1

4π2ω0

[
nB(ω0)(iωm + µ+ ω0)2 artanh

(
λ

iωm + µ+ ω0

)
− nB(ω0)(iωm + µ+ ω0)λ

+(1 + nB(ω0))(iωm + µ− ω0)2 artanh

(
λ

iωm + µ− ω0

)
− (1 + nB(ω0))(iωm + µ− ω0)λ

]
.

(83)
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The combination of both terms in the self-energy yields

Σel−ph(k, iωm)ν,ν′ = − 1

N

∑
k′

(FF(k′, iωm) + FB(k′, iωm))(g2)ν,ν′

= Φ(iωm)(g2)ν,ν′ ,

(84)

where we combined the integrals in the function Φ. Finally, we can analyze the matrix structure of the self-energy.
Since the electron-phonon scattering can in principle scatter between s and p orbitals but is spin preserving, we
parametrize gν,ν′ = gρτρσ0, where ρ = 0, x, y, z, τρ are Pauli matrices, and σ0 is the 2× 2 identity. This yields

(g2)ν,ν′ =
[∑

ρ

g2
ρτ0σ0 + 2

∑
a

g0gaτaσ0 + i
∑
a,b

gagbεabcτcσ0

]
νν′
, (85)

where a = x, y, z. Note that for gx 6= 0, the phonon needs to break inversion symmetry, while gy ≡ 0 for time-reversal-
symmetric scattering. Finally, if we assume gx � gz, we obtain

gg ≈ (g2
0 + g2

x)τ0σ0 + 2g0gxτxσ0, (86)

which results in a self-energy of the form

Σel−ph(iωm) = Φ(iωm)
(
(g2

0 + g2
x)τ0σ0 + 2g0gxτxσ0

)
, (87)

where we removed the momentum argument, since the right hand side does not contain a k-dependence.
At small ωm, Φ(iωm) ≈ Φ(0), we can investigate the influence of the cutoff λ. Being the dominant scale in the

problem, we take λ� ω0, where ω0 > µ. This allows to expand the hyperbolic tangent in Eq. (83),

artanh

(
λ

µ+ ω0

)
≈ −i

π

2
,

λ

µ+ ω0
� 1, (88)

artanh

(
λ

µ− ω0

)
≈ i

π

2
,

λ

µ− ω0
� −1, (89)

which yields

Φ(0) = − 1

N

∑
k′

(FF(k′, 0) + FB(k′, 0))

=
i

4πω0

[
(µ+ ω0)2nF(ω0)− (µ− ω0)2(1− nF(ω0))

]
+

i

8πω0

(
4µω0nB(ω0)− (µ− ω0)2

)
+

λ

4π2ω0
(2µnB(ω0) + µ− ω0) .

(90)

The last term constitutes the real part of the self-energy, which can be parametrically small by a suitable combination
of ω0, µ, nB(ω0). This means the imaginary part of the self-energy becomes dominant by a suitable choice of the phonon
frequency ω0 and the selective driving via nB(ω0), while µ� ω0. In such a setting, Φ(0) ≈ iφ(0), yielding

Σel−ph(0) = iβτ0σ0 + iδτxσ0, (91)

with β = φ(0)(g2
0 + g2

x) and δ = 2φ(0)g0gx. The appearance of the term βτ0σ0 shifts the point gap on the imaginary
axis, without altering the properties discussed in the main body of the paper.

The result derived above is only valid for small electron-phonon couplings g/ω0. For stronger couplings, the self-
energy has to be calculated to higher orders in g or even self-consistently. Such a rather tedious calculation requires
to take care of the branch cuts in (84). Importantly, the overall structure of the self-energy is preserved to the next
order in the coupling constant.
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SUPPLEMENTARY NOTE 6: DISCUSSION OF TWO BAND MODELS WITH NON-TRIVIAL w3D

Two-band models often serve as minimal models describing the physics of topological phases in case of Hermitian
Hamiltonians. Here we would like to discuss two specific examples of non-Hermitian two-band models with a point
gap in their spectrum: non-Hermitian extensions of a Chern insulator and a non-Hermitian Weyl semimetal proposed
in Ref. 3 and 15 and point out that these models are not easily regularizable to host a single exceptional point.

A. Non-Hermitian Chern insulator

First, consider a non-Hermitian variant of Chern insulator in 2D rotated in the complex plane, described by

H =
(1 + cos kx + cos ky)σz + sin kxσx + sin kyσy√

3 + 2 cos kx + cos(kx − ky) + 2 cos ky + cos(kx + ky)
+

(
1

2
eikz − 1

)
σ0. (92)

This model possesses a point gap in the bulk spectrum, see Supplementary Fig. 6a. Even though the 3D winding
number for this model is non-trivial w3D = 1, open boundaries in z-direction yield the non-Hermitian skin effect, with
occupations concentrating on one side of the system as shown in Supplementary Fig. 6b. For open boundaries in x and
y-direction, the point gap regions are filled by edge states. The corresponding weak invariants w1D,i={x,y,z} support
this observation, being zero for x, y and one in z-direction. The appearance of the non-Hermitian skin effect, signalled
by a non-trivial w1D invariant, hence causes a collapse of the point gap. This disqualifies the model in Eq.(92) for
hosting stable surface states like for instance exceptional points.
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Supplementary Figure 6. Energy spectra and localization properties of the non-Hermitian Chern insulator. a Bulk
spectrum of the non-Hermitian Chern insulator (blue) and open boundary condition spectrum in z direction (red) for a system
of 20 layers. b The occupation of lattice sites for OBC in z direction for a system of 20 layers.

B. Non-Hermitian Weyl semimetal

The two-band model describing a dissipative Weyl semimetal with a point gap in the bulk spectrum has recently
been proposed in Ref. 3 and 15. The non-Hermitian Hamiltonian of the model reads as follows

HNHWS = i

h+
∑

i∈{x,y,z}

cos ki

σ0 +
∑

i∈{x,y,z}

sin kiσi. (93)

The determinant of this Hamiltonian is real at every k-point, therefore there are no 1D winding numbers, whereas
the 3D winding number is non-trivial. The weak Chern numbers cannot be properly defined due to the occurrence of
Weyl points at TRIMs.

The spectrum for open boundaries in the x direction features three analytically calculated eigenvalues at ε1,2,3 =
i(h± 2), ih appearing in the point gap. Each of these states is 2N-fold degenerate, where N is the number of layers.
The ellipses of states being present around the analytical solutions in Supplementary Fig. 7a are due to the numerical
instability of the model. This resembles the infernal point discussed in the main section of the paper, as the surface
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Supplementary Figure 7. Energy spectrum in the complex plane for the non-Hermitian Weyl semimetal. a Bulk
energy spectrum (blue) and spectrum for open boundary conditions in x direction (red) for the model in Eq. (93) for h = 0
and 20 layers. The analytical solution shows eigenstates at the center of the point gaps. b Open boundary condition spectrum
for the regularization term introduced in Eq. (94) (B = 0.1, 20 layers), resulting in a single surface band covering the point
gaps, indicated in red-to-blue tones according to their inverse participation ratio (IPR).

state is fine-tuned rather than generic. Similar to the four-band case this surface state can be regularized along certain
momentum directions by adding a small perturbation

H = HNHWS +B [(1− cos kx)σy + (1− cos ky)σz + (1− cos kz)σx] , (94)

which yields a single sheet of eigenstates covering the OBC point gap as illustrated in Supplementary Fig. 7b. The
above perturbation moves Weyl cones in the Brillouin zone, ensuring that they do not fall on the same momentum
direction when considering open boundary conditions. In a two-band model, this is not possible to ensure with
constant regularization terms for surface orientations along cardinal axes. Correspondingly, without a k-dependent
perturbation, there is always a direction in momentum space along which the OBC system has an infernal point, with
this direction being the connection of two Weyl points.

C. Effective theory at a spin-orbit coupled band edge

In the main text, we focus on how an ETI can arise near the critical Dirac point between a topological and
a trivial insulator upon the addition of a suitable non-Hermitian coupling. The rational for considering this case
is that the density of states is very low near such a Dirac point, and hence it is the most favorable situation for
observing the physical consequences of the ETI point gap topology. However, point gaps with the same topology
can also arise in other generic situations. One that corresponds to a reasonably small density of states is the band
edge of a generic spin-orbit coupled band. To demonstrate this, let us analyse the behaviour of the ETI around
k = (π, π, π) by projecting the Hamiltonian onto the states corresponding to the upper-bands. Diagonalizing the
original Hamiltonian, Eq. (1) from the main text, H(π, π, π) with B = 0 for simplicity, we obtain two eigenvalues

E± = ±
√

(3 +M − δ)(3 +M + δ) each doubly degenerate with corresponding eigenvectors given by the rows of the
matrices V for the upper-band and W for the lower-energy band as follows

V =
1

Nv

(
0 v 0 1

v 0 1 0

)
, W =

1

Nw

(
0 w 0 1

w 0 1 0

)
, (95)

where

v = −
i(−3−M +

√
(3 +M − δ)(3 +M + δ))

δ
,

w = −
i(3 +M +

√
(3 +M − δ)(3 +M + δ))

δ

(96)
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are normalization factors

Nv =

√
1 +

(−3−M +
√

(3 +M − δ)(3 +M + δ))2

δ2

Nw =

√
1 +

(3 +M +
√

(3 +M − δ)(3 +M + δ))2

δ2
.

(97)

We expand H(k) around k = (π, π, π), shifting momentum k → p + (π, π, π) and keeping only the terms of the
first order in p. The linearized Hamiltonian reads as follows

h(p) = (−3−M)τzσ0 + iδτxσ0 − λ
∑

j=x,y,z

pjτxσj . (98)

We apply degenerate perturbation theory to first order in p and to first order in δ. The corrections to the energy
in the upper-band are going to be the eigenvalues of the following matrix

heff(p) = V h(p)V † − V h(p)W †Wh(p)V †

E+ − E−
= q1σ0 − iq2ξ · σ +O(p2) , (99)

where ξ = (−px, py, pz), q1 =
√

(3 +M − δ)(3 +M + δ), and q2 = δλ/(3 +M). The resulting linearized Hamiltonian
in Eq.(99) is of the same form as the Hamiltonian in Eq. (93) for small k, which has been studied earlier in Ref. 3.
Thus, an ETI Hamiltonian arises generically at the band edge of a spin-orbit coupled band when subject to a suitable
non-Hermitian perturbation. The fact that q2 is linear in λ emphasizes the importance of spin-orbit coupling for this
result.
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