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REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

In this work, the authors developed the stability rules of Nasicon-structured materials. By applying 

machine learning to the ab-initio computed phase stability of 3881 potential Nasicons the authors 

extracted a simple two-dimensional descriptor that is extremely good at separating stable from 

unstable Nasicons. Below are some comments: 

1. In Table 1, the criterion for the thermodynamically ground state Nasicons is Ehull ≤ 0. The Ehull of 

the ground state materials is 0, what does “<0” mean? 

2. In exploring Nasicons, the authors considered different Na contents, different transition metal 

combinations and different polyanion combinations. How did they determine the positions of Na+, 

transition metals and polyanions in the unit cell? 

3. In the machine learning part, the authors noted that “a useful phenomenological model that is able 

to capture those physical factors and quantify them without additional DFT calculations can further 

facilitate the search for new NASICON compositions”. Is it necessary to optimize the initial structures 

by DFT calculations? 

4. For Nasicons, there are many different crystal forms, such as rhombohedral and monoclinic. Could 

the method developed in this work be applied to determine the stability for other non-rhombohedral 

Nasicon-type materials? 

5. Some latest reviews on NASICON solid electrolytes such as Mater. Today 2020, 41, 200-218 and 

ChemElectroChem DOI: 10.1002/celc.202001527 are recommended. 

Reviewer #2 (Remarks to the Author): 

The authors compute the formation energy of 3000+ NASICON materials with DFT, compute the 

phase diagrams to extract the energy above the convex hull, successfully synthesize 5 new materials, 

and then develop a two-descriptor model to describe their data. 

Overall, I find the computational and experimental aspects of this work to be exciting and well-

executed. The analysis of the structural factors influencing stability is similarly well done. However, I 

feel like the ML modeling side of the work is a bit muddled and introduces many questions. I think the 

work may be suitable for publication but would benefit from some clarifications and revisions before 

publication. 

First, a few minor points: 

-- Without meaning any insult to the authors, some of the English should be improved for readability, 

particularly in the abstract and introduction. 

-- Krishna Rajan et al.’s 2011 work on predicting stability in perovskites should probably be cited 

along with the current references 12-17 (https://doi.org/10.1098/rspa.2010.0543) 

-- How can you have an E_hull < 0, as referenced in Table 1? 

-- The conductivities of over 300 NASICON materials are referenced in Fig. 3, but there is no indication 

given as to where these measurements came from. Please provide the data in the SI or cite the 

paper(s) where these data came from (or, ideally, both) 

A few general/high-level comments and questions: 

-- It appears to me that the work is missing a compelling argument that computational predictions of 

the thermodynamic phase stability are actually correlated with experimental stability. Many 

metastable materials are synthesizable and stable at ambient conditions. This is a fairly big claim and 



it is central to the author’s work; can the authors reference past studies that have demonstrated 

convincingly that this is a safe assumption? 

-- It is stated in the introduction that synthesizability is a non-local property, and yet the authors 

attempt to fit local descriptors to predict it. Can the authors address this apparent contradiction? 

-- The “Physical trends of stability in NASICON” section is very good. My takeaway is that 

understanding the physical system in depth makes for promising descriptors, and that good 

descriptors are necessary for small data models. However these descriptors are very clearly not 

generalizable beyond the NASICON materials, despite some implications that these descriptors could 

provide value in other materials systems, e.g. in the introduction: “…but also demonstrate an efficient 

paradigm for discovering new materials with complicate composition and atomic structure”. I don’t 

think this necessarily a new paradigm that’s being described here. 

Finally, a few points on the ML section. To make a compelling case, the the authors first need to argue 

that the computational stability calculations are correlated with experimental stability (as mentioned 

above). Then, they need to show that the ML model is correlated with the computational data it was 

trained on. I’m not sure this is thoroughly shown. 

-- The authors appear to quote training error when providing the model performance: “Applied to all 

3881 compositions, such stability model has an overall classification accuracy of 81.8%, as well as a 

recall value of 96.6% and F1 score of 88.2% for capturing GS/LS-NASICONs.” Was this training error? 

Validation? K-fold cross-validation? Training error should almost never be cited as a model 

generalization error proxy. 

-- The authors examined the fit of ~4M models against 3K training points. With this many “attempts” 

to find the best model, one risks crossing the bounds dictated by PAC learning theory. Can the authors 

justify this approach within the bounds of PAC theory? Otherwise, overfitting may be an issue. 

Although the “test” set of 32 compounds is small, there is a hint of overfitting: 96.6% recall in training 

but 62.5% recall on the test set. 

-- It appears the ML model made incorrect prediction(s) for the 5 successfully synthesized compounds 

according to Fig 5b. Can you confirm this? This would seem to challenge whether the ML model can 

actually predict experimental stability. I also only see two “new” materials on this plot; shouldn’t there 

be 6? 

-- The authors discuss how their model is validated against three criteria: “1) its ability to capture 

experimentally reported NASICONs (Fig. 5b); 2) its robustness in identifying GS/LS NASICONs in both 

Na rich and Na poor regions (Fig. 5c); 3) its robustness in identifying GS/LS-NASICONs with different 

metal chemistries (Fig. 5d).” However, actual performance metric values are not given for #2 or #3. 

Can you please clarify the model performance in these areas? 

-- It is claimed a few times that the incorrect predictions are close to the decision boundary 

(“Moreover, the false negative classifications still remain likely to be synthetically accessible, as the 

average accessible probability of the false negative predictions is 30.9% for Na1 NASICONs and 39.0% 

for Na3 NASICONs.”) However, this statement is hand-wavy without knowing the distribution of other 

points around the decision boundary and also begs the question: then why not move the decision 

boundary? I believe it is better to be forthright about the model performance without discussing how 

the model wasn't "too wrong." 

Reviewer #3 (Remarks to the Author): 

The manuscript by Bin Ouyang et al. present high-throughput computations for the stability and 

synthetic accessibility of new NASICON materials which have complex bonding topology and 

composition, followed with machine learning to develop a simple descriptor to describe the stability of 

NASICONs. Evaluation of stability and synthetic accessibility were made with the quantity of energy 



above the convex hull (Ehull) taking configurational entropy into account, and reliability of the 

computed data were demonstrated by experimental confirmation on six predicted new materials. This 

work provides significant results in that not only a new stability map of NASICONs was developed from 

the high-throughput computational results which is of potential importance for practical applications, 

but also the physical trends of the NASICONs stability was understood with the concept of bond 

compatibility and site miscibility, and based on which a simple descriptor (“tolerance factor”) for 

NASICONs was identified. While this work brings novelty in the discovery and understanding of the 

complicated systems NASICONs, additional evidences are needed for the machine learning of the 

tolerance factor before I can recommend publication. My comments and suggestions are provided 

below. 

Major comments: 

1. Convergence of the machine learning results is unclear. In this work, the SIS+MLR machine 

learning scheme were used. The “SIS” part involves the generation of increasing complex features by 

using the SISSO code, and the complexity was simply set to two. Actually, the feature complexity 

(defined as the number of operators in a feature) is a hyper-parameter that need to be optimized. It is 

not clear whether there is a significant improve if the feature complexity is slightly increased up to 3 

or 4. Similarly, it is not discussed why the SIS-selected features were set to 2000. What will be the 

results if this number is increased to 2500 or 3000? Or is it because the computational cost of the MLR 

part limit this number to only 2000? 

2. In the first dimension of the 2D descriptor t_1=∛(N_Na )+X_A^Std, the linear combination of Na 

content and standard deviation of electronegativity of A is physically meaningless, though the 

classification in Fig 5 looks good. N_Na is the number of Na atoms in the chemical formula 

NaxM2(AO4)3, whereas the electronegativity X represents the tendency of an atom to attract 

electrons. It is difficult to understand why the linear combination of such two quantities is reasonable. 

I believe this is an important question the readers will ask if this descriptor is going to be impactful. 

3. The prediction performance of the tolerance factor on unseen data is not clear. Fig 5 shows analysis 

of the descriptor with the training data, but I don’t see a test on unseen data or cross validation (e.g. 

how sensitive is the descriptor on the training dataset?) 

Minor comments: 

1. The authors claim the descriptor is “extremely good” in the abstract. This seems overrated as the 

overall training classification accuracy is 81.8%, where there is still much room to improve. 

2. More details are needed for the MLR methods and the primary features. For example, the definition 

and data source for the input features ionic radii (Shannon radii?) and electronegativity (Pauling 

electronegativity?) is unclear. In line 279, “MLR would optimize the ranking of relative stability, which 

is more important than the absolute Ehull values …”, please elaborate on the “relative stability” and 

why it is better than the absolute Ehull values.
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Response to the Reviewers: Manuscript ID NCOMMS-21-06620 

We thank the editor and three reviewers for their time spent to evaluate our manuscript and 
for their recommendation/comments. All of the reviewers’ concerns are addressed below in 
detail. In addition to the modification in response to reviewer’s comments, we have also made 
some other changes in language and technique contents. All changes to technique contents are 
colored in red, while language editing is colored in blue in the manuscript. 
 
Reviewer #1 (Remarks to the Author): 
 
In this work, the authors developed the stability rules of Nasicon-structured materials. By 
applying machine learning to the ab-initio computed phase stability of 3881 potential Nasicons 
the authors extracted a simple two-dimensional descriptor that is extremely good at separating 
stable from unstable Nasicons. Below are some comments: 
 
1. In Table 1, the criterion for the thermodynamically ground state Nasicons is Ehull ≤ 0. The 

Ehull of the ground state materials is 0, what does “<0” mean? 
 
The Ehull is calculated as energy relative to a convex hull constructed from all the 
compounds available in Materials Project Data base (APL Materials 1, 011002 (2013), 
https://materialsproject.org/) without the newly computed NASICONs.  Therefore, Ehull ≤ 0 
indicates that the evaluated NASICON is a new ground state. We have clarified this in the 
manuscript (Page 6 colored with red). 

 
2. In exploring Nasicons, the authors considered different Na contents, different transition 

metal combinations and different polyanion combinations. How did they determine the 
positions of Na+, transition metals and polyanions in the unit cell? 

 
Since there are almost 4000 NASICONs evaluated in this paper, we cannot evaluate all 
possible ion configurations with DFT.  As a reasonable approach, we created a large number 
of distributions of Na on the 6b and 18e sites, polyanion distributions, and metal 
distributions in a Rhombohedral cell and ranked them according to their electrostatic 
energy. The configuration with lowest electrostatic energy was calculated with DFT. Similar 
sampling methods have also been applied in some of our previous work (Chem. Mater. 
2020, 32, 5, 1896–1903, Adv. Energy Mater. 2020, 1903968, Adv. Funct. Mater. 2019, 
1902392, Nature Chemistry, 2016, 8, 692–697, Chem. Mater. 2016, 28, 15, 5450–5460 etc.). 
Note that at this point we only need a reasonable estimate for the energy from this analysis 
to determine whether the NASICON is stable or not.  So even if we do not have the exact 
occupancy from this, we are guaranteed a fairly low energy for each composition. We have 
modified the manuscript to clarify how we picked the ionic ordering (Page 6 colored with 
red). 

 
3. In the machine learning part, the authors noted that “a useful phenomenological model 

that is able to capture those physical factors and quantify them without additional DFT 
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calculations can further facilitate the search for new NASICON compositions”. Is it necessary 
to optimize the initial structures by DFT calculations? 

 
The current model only requires basic physical properties such as cation radius, Na content, 
electronegativity and electrostatic energy. The first three parameters (i.e., cation radius, Na 
contents and electronegativity) are only related to the chemistry of the NASICON, while the 
fourth parameter (electrostatic energy) is calculated as the Coulomb interaction for a 
prototype NASICON framework with fixed lattice constant. None of these quantities 
requires DFT calculations. We have provided the prototype NASICON structure in our 
supplementary materials as well as an example python code demonstrating how to 
calculate the exact electrostatic energy terms on the basis of that structure 
(NASICONPrim.cif and CalculateEWaldEnergy.ipynb), relevant modifications are also added 
to the manuscript (Supplementary note 6 colored in red). 

 
4. For Nasicons, there are many different crystal forms, such as rhombohedral and monoclinic. 

Could the method developed in this work be applied to determine the stability for other 
non-rhombohedral Nasicon-type materials? 
 
We thank the reviewer for bringing this up. The major difference between the 
rhombohedral (R-3C) and monoclinic phases (C2/C) NASICONs is related to Na ordering 
(Chem. Mater. 2002, 14, 4684-4693). Therefore, the energy difference between 
rhombohedral and monoclinic NASICONs is expected to be small.  To give an estimate, the 
disordering energy of Na site is typically 30-40 meV per f.u., while the contribution to ܧ௛௨௟௟ 
has to be normalized by the number of atoms/f.u., i.e., ~30-40 meV/ (17-21 atoms/f.u.). 
Such energy variation is much smaller than the energy change caused by the chemistry of 
the material. A table comparing the ܧ௛௨௟௟ values among 15 groups of NASICONs for both 
Rhombohedral and Monoclinic phases is also attached in supplementary note 3 to support 
the argument that the energy difference between both phases is small. Hence, the fact that 
we use the rhombohedral NASICON as a prototype should not change the conclusion as to 
whether a NASICON is stable or not at a given composition.  But of course, we cannot 
conclude whether it is rhombohedral or monoclinic NASICON that will form. We have added 
clarification on this point in page 25 (colored red) 

 
5. Some latest reviews on NASICON solid electrolytes such as Mater. Today 2020, 41, 200-218 

and ChemElectroChem DOI: 10.1002/celc.202001527 are recommended. 
 

We thank the reviewer for suggesting the review papers, we have included these papers 
into our references (Page 4 colored in red, literature 36 and 37). 
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Reviewer #2 (Remarks to the Author): 
 
The authors compute the formation energy of 3000+ NASICON materials with DFT, compute the 
phase diagrams to extract the energy above the convex hull, successfully synthesize 5 new 
materials, and then develop a two-descriptor model to describe their data. 
 
Overall, I find the computational and experimental aspects of this work to be exciting and well-
executed. The analysis of the structural factors influencing stability is similarly well done. 
However, I feel like the ML modeling side of the work is a bit muddled and introduces many 
questions. I think the work may be suitable for publication but would benefit from some 
clarifications and revisions before publication. 
 
First, a few minor points: 
-- Without meaning any insult to the authors, some of the English should be improved for 
readability, particularly in the abstract and introduction. 
 
We thank for the reviewer for pointing out the language issue. We have carefully gone through 
the manuscript and polished the language. We hope such efforts had improved the readability 
of our manuscript. 
 
-- Krishna Rajan et al.’s 2011 work on predicting stability in perovskites should probably be cited 
along with the current references 12-17 (https://doi.org/10.1098/rspa.2010.0543) 
 
We have added this work into our references (page 3 colored in red, literature 18) 
 
-- How can you have an E_hull < 0, as referenced in Table 1? 
 
See our answer to question 1 of Reviewer 1.   
 
-- The conductivities of over 300 NASICON materials are referenced in Fig. 3, but there is no 
indication given as to where these measurements came from. Please provide the data in the SI 
or cite the paper(s) where these data came from (or, ideally, both) 
 
We have added a table in the supplementary information (Supplementary note 4), which 
contains a complete list of conductivity and the corresponding references with detailed 
information about measurements. 
 
A few general/high-level comments and questions: 
-- It appears to me that the work is missing a compelling argument that computational 
predictions of the thermodynamic phase stability are actually correlated with experimental 
stability. Many metastable materials are synthesizable and stable at ambient conditions. This is 
a fairly big claim and it is central to the author’s work; can the authors reference past studies 
that have demonstrated convincingly that this is a safe assumption? 
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Thank you.  This specific issue has been investigated in [Science advances 2, e1600225 (2016)].  
That work investigated the relation between observed stability (i.e. phases that were 
experimentally reported in ICSD) and Ehull. That work shows that while a majority of observed 
phases are indeed a ground state, a substantial fraction of observed compounds is not.  
However, these phases mostly appear in a range of 100 meV/atom above the hull (though the 
result is sensitive to chemistry).  In addition to relying on this large-scale analysis, we also apply 
ideal mixing entropy to estimate the accessibility via entropy stabilization at high temperature. 
Therefore, we believe that the value of Ehull(0K)-T Sideal can be a useful estimator for synthetic 
accessibility, which is also supported by the 5/6 success rate in our experimental attempts. 
 
However, we agree that synthetic accessibility is a complex issue that currently has no formal 
theory in materials science.  So, given the available data and analysis, Ehull is the best one can do.   
We have added a few sentences in the result section to clarify the reliability and limitation of 
our current models (Page 7 and Page 12 colored in red). 
 
-- It is stated in the introduction that synthesizability is a non-local property, and yet the 
authors attempt to fit local descriptors to predict it. Can the authors address this apparent 
contradiction? 
 
The synthesizability is a non-local property as it involves not only the cohesive energy within 
the crystal structure but also the competing stability with other phases, as explained in the 
manuscript. Therefore, a model fitted to formation energy does not really measure the 
synthesizability of a material [npj Computational Materials, 2020, 6, 97]. It should be noted that 
in our work, we machine-learn the Ehull value which contains the non-local aspects of the energy 
as it describes the competition with phases at other composition.  The physical properties to 
which we fit are not really local as many of them are elemental, so they have no or weak 
compositional dependence.  Our results seem to indicate that this is enough to capture the 
Ehull behavior.   
 
The analysis in Fig. 4 can also serve as an example to illustrate this idea. The ICOHP analysis in 
Fig. 4 and the discussion (page 21-page 22 colored in red) indicate that a too electronegative 
metal (such as Ge) leads to a lack of stability of the NASICON as the decomposition into 
competing phase can create a more stable bonding environment for Ge.   Hence, this is a 
powerful example of how simple descriptors indicate that a NASICON composition would be 
unstable with respect to decomposition in phases with different composition (a non-local event 
in a phase diagram).   
 
We have also clarified this on page 3 highlighted in red.  
 
-- The “Physical trends of stability in NASICON” section is very good. My takeaway is that 
understanding the physical system in depth makes for promising descriptors, and that good 
descriptors are necessary for small data models. However these descriptors are very clearly not 
generalizable beyond the NASICON materials, despite some implications that these descriptors 
could provide value in other materials systems, e.g. in the introduction: “…but also 
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demonstrate an efficient paradigm for discovering new materials with complicate composition 
and atomic structure”. I don’t think this necessarily a new paradigm that’s being described here. 
 
We would like to clarify that we are not trying to claim that the descriptors for NASICON 
stability would be the same for other chemical systems. On the contrary, we anticipate that 
such rules can differ a lot for other chemical systems. In this paper, the new paradigm we 
referred to is the computational framework under which phenomenological stability models 
and physical intuition can be mined in a data-driven fashion. Actually, it seems likely that 
different descriptors would be needed for structures where the bonding topology creates a 
different bonding competition between the elements.  But these could be extracted in the 
same manner as presented here. 
 
In addition, we also want to mention that even though the influence of electronegativity and 
miscibility do not necessarily apply to all inorganic compounds, it is still useful for 
understanding the stability of other materials with two distinct cation sites. There is some prior 
evidence in the literature that electronegativity limits on metal mixing arises from bond 
covalency competition: e.g ternary nitrides by Sun et al. [Nature Materials, 2019, 18, 732–739], 
and alkali metal-late transition metal-halides by Bartel et al. [J. Am. Chem. Soc. 2020, 142, 11, 
5135–5145]. 
 
We have modified the discussion section to highlight the above arguments (colored in red in 
page 21-22) 
 
Finally, a few points on the ML section. To make a compelling case, the authors first need to 
argue that the computational stability calculations are correlated with experimental stability (as 
mentioned above). Then, they need to show that the ML model is correlated with the 
computational data it was trained on. I’m not sure this is thoroughly shown. 
 
The issue as to whether Ehull is a good measure of synthetic accessibility is addressed in an 
earlier section of this rebuttal. Our ML model is designed to optimize the capability of ranking 
the predicted values of Ehull as close as possible to the computed Ehull. Therefore, the best 
model proposed by ML should reflect the correlation between the ML model and computed 
Ehull values. We have clarified this issue in our discussion section [colored in red in page 23]. 
Finally, we also reiterate that the proof is in the pudding so as to speak. The successful 
synthesis of five out of six predicted compounds is a high success rate. Even the “failed” 
synthesis provides clear evidence of NASICON phase formation but with impurity phases. For 
this reason, we cannot be sure about the composition of the NASICON phase component and 
we classified it as a “failure”.  But under less stringent evaluation criteria one can consider this a 
six out of six-success rate.  
 
-- The authors appear to quote training error when providing the model performance: “Applied 
to all 3881 compositions, such stability model has an overall classification accuracy of 81.8%, as 
well as a recall value of 96.6% and F1 score of 88.2% for capturing GS/LS-NASICONs.” Was this 



 6

training error? Validation? K-fold cross-validation? Training error should almost never be cited 
as a model generalization error proxy. 
 
We appreciate the comment and have made this clearer this in the manuscript.  To clarify, the 
“81.8% accuracy, 96.6% recall value and 88.2 F1 score” are for all data (80% training data + 20% 
validation data). The purpose of showing performance on all data is to give a sense of how our 
model performs on all data. 
We agree that one should not use training error as a model generalization error proxy. We 
performed training on 80% stratified sampling data and validation on the remaining 20% of the 
stratified sampling data. The validation accuracy score is 84.7% while the validation F1 score is 
72.3%. We have added the validation information into the revised manuscript (Page 18 colored 
in red). 
 
-- The authors examined the fit of ~4M models against 3K training points. With this many 
“attempts” to find the best model, one risks crossing the bounds dictated by PAC learning 
theory. Can the authors justify this approach within the bounds of PAC theory? Otherwise, 
overfitting may be an issue. Although the “test” set of 32 compounds is small, there is a hint of 
overfitting: 96.6% recall in training but 62.5% recall on the test set. 
 
According to PAC theory, to reduce the risk of overfitting (measured by generalization error ߝ), 
the amount of training data ݉ should follow ݉ ∝ ܱ ቀ ଵఌమ ∗ VC(ܪ)ቁ, where ܸ(ܪ)ܥ refers to the 
Vapnik–Chervonenkis (VC) dimension of our SIS+MLR classification model. It can be proven that 
the VC dimension of our classifier solely depends on the maximal VC dimension of the 
candidate descriptors. In this work, we limited the complexity of each descriptor by (a) using 
only 24 features to generate each descriptor, (b) combining features with only 17 basic 
mathematical operators. By doing this, the maximal complexity of each descriptor is fixed, and 
so is VC(ܪ). Using the previous formula, the required amount of training data ݉ to avoid 
overfitting only depends on the maximal complexity of descriptors constructed during SIS, but 
not on the number of trial models. Therefore, our method of fitting more than millions of 
models is safe within the bounds of PAC theory. As an additional support, several other 
SIS/SISSO-like algorithms similar to ours also have reasonable generalizability for different 
chemical systems as shown in Phys. Rev. Mater. 2, 083802 (2018), J. Phys.: Mater. 2, 024002 
(2019), Sci. Adv. 2019;5: eaav0693 and Nat. Commun., 9, 4168 (2018).  
 
We regard the low 62.5% recall rate, as compared to the 96.6% training recall rate, as a result 
of differences in data distribution rather than overfitting. The training data set was evenly 
sampled across the compositional space. However, the experimentally reported NASICON data 
are mainly in the Na rich regime (18 out of 32 data points have xNa≥3), where the stability is 
relatively hard to capture. Because our model optimization was done on the entire NASICON 
compositional space, it can negatively impact the model performance in certain local areas. This 
is also supported by Fig. 5c, where the Na rich compounds have lower recall rates compared 
with the Na poor compounds. We believe such discrepancies should not be attributed to 
overfitting. 
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References to PAC theory: 

1. https://www.cs.cmu.edu/~mgormley/courses/10601-s17/slides/lecture28-pac.pdf 
2. https://web.eecs.umich.edu/~cscott/past_courses/eecs598w14/notes/05_vc_theory.pdf 
3. http://web.cs.iastate.edu/~honavar/pac.pdf 

 
 
-- It appears the ML model made incorrect prediction(s) for the 5 successfully synthesized 
compounds according to Fig 5b. Can you confirm this? This would seem to challenge whether 
the ML model can actually predict experimental stability. I also only see two “new” materials on 
this plot; shouldn’t there be 6? 
First of all, there are indeed 5 new NASICONs in Fig. 5b but in the descriptor space their points 
overlap somewhat. We did not include Na3HfSn(SiO4)2(PO4) since it has a large amount of 
impurity during synthesis. To make those data points more distinguishable, Fig. 5b is replotted, 
and a list of the calculated Paccessible of the 32 compounds is provided in supplementary note 7.  
 
Secondly, we want to mention that 11/12 experimentally reported NASICONs with Na1/f.u. are 
successfully classified. While the misclassification of the 5 successfully synthesized NASICONs 
arises from the relatively poor performance of the model in the Na-rich regime, as mentioned 
in the previous comment. They are not far from predicted stability as indicated by the high Platt 
Scaling probability Paccesible listed in supplementary note 7.  Therefore, we believe our model is 
useful for predicting experimental stability. Relative modifications are added in page 18 and 19. 
 
-- The authors discuss how their model is validated against three criteria: “1) its ability to 
capture experimentally reported NASICONs (Fig. 5b); 2) its robustness in identifying GS/LS 
NASICONs in both Na rich and Na poor regions (Fig. 5c); 3) its robustness in identifying GS/LS-
NASICONs with different metal chemistries (Fig. 5d).” However, actual performance metric 
values are not given for #2 or #3. Can you please clarify the model performance in these areas? 
 
We have added the actual performance metric values for #2 and #3 on page 19 and 21 (in red). 
For the Na-rich and Na-poor region (#2), the accuracy of the classification is 36.7% and 92.7%, 
respectively. Again, this is an indication that our model has better performance for Na-poor 
rather than Na-rich compounds. On the other hand, for Ca/Ge NASICONs and Hf/Zr NASICONs 
(#3), the classification accuracy is 72.9% and 75.8% respectively.  
 
-- It is claimed a few times that the incorrect predictions are close to the decision boundary 
(“Moreover, the false negative classifications still remain likely to be synthetically accessible, as 
the average accessible probability of the false negative predictions is 30.9% for Na1 NASICONs 
and 39.0% for Na3 NASICONs.”) However, this statement is hand-wavy without knowing the 
distribution of other points around the decision boundary and also begs the question: then why 
not move the decision boundary? I believe it is better to be forthright about the model 
performance without discussing how the model wasn't "too wrong." 
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We are optimizing the F1 score in our model, so the current boundary is optimal in terms of the 
F1 score. Moving the boundary would increase the rate of false positives, which decreases the 
precision score and F1 score.  In the end, where one would want this boundary is a tradeoff.  In 
the F1 score recall and precision are treated as equally valuable, but in a realistic materials 
discovery program, the value of each of these would be a tradeoff between the cost of doing 
experiments (pushing towards higher precision) and the cost of missing out on a valuable 
compound (pushing towards higher recall).  We have added discussion about this issue in the 
manuscript on Page 18, 19, 21 with edits colored in red. Additionally, the distribution of all 
Paccessible is added in supplementary note 8. 
 
Reviewer #3 (Remarks to the Author): 
 
The manuscript by Bin Ouyang et al. present high-throughput computations for the stability and 
synthetic accessibility of new NASICON materials which have complex bonding topology and 
composition, followed with machine learning to develop a simple descriptor to describe the 
stability of NASICONs. Evaluation of stability and synthetic accessibility were made with the 
quantity of energy above the convex hull (Ehull) taking configurational entropy into account, 
and reliability of the computed data were demonstrated by experimental confirmation on six 
predicted new materials. This work provides significant results in that not only a new stability 
map of NASICONs was developed from the high-throughput computational results which is of 
potential importance for practical applications, but also the physical trends of the NASICONs 
stability was understood with the concept of bond compatibility and site miscibility and based 
on which a simple descriptor (“tolerance factor”) for NASICONs was identified. While this work 
brings novelty in the discovery and understanding of the complicated systems NASICONs, 
additional evidence is needed for the machine learning of the tolerance factor before I can 
recommend publication. My comments and suggestions are provided below. 
 
Major comments: 
1. Convergence of the machine learning results is unclear. In this work, the SIS+MLR machine 
learning scheme were used. The “SIS” part involves the generation of increasing complex 
features by using the SISSO code, and the complexity was simply set to two. Actually, the 
feature complexity (defined as the number of operators in a feature) is a hyper-parameter that 
need to be optimized. It is not clear whether there is a significant improve if the feature 
complexity is slightly increased up to 3 or 4. Similarly, it is not discussed why the SIS-selected 
features were set to 2000. What will be the results if this number is increased to 2500 or 3000? 
Or is it because the computational cost of the MLR part limit this number to only 2000? 
 
We thank the reviewer for bringing up those concerns. First of all, the SISSO code limits feature 
complexity to be no more than 3 as higher complexity will lead to an overwhelmingly large 
combinatorial space of possible features (Phys. Rev. Materials 2, 083802). The SIS-selected 
subspace is also practically limited to 2000 because of memory issues.  
 
We have tested the performance of different feature complexities and SIS-selected subspaces. 
Increasing complexity to 3 only improved the F1 score by 1% which led us to prefer the simpler 
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complexity of 2.  As for SIS-selected subspace, we found that the final feature already appears 
among the top when the SIS-selected subspace size is set as 500. Increasing the subspace 
further to 2000 did not change the result of the final feature. Therefore, we think a subspace 
size beyond 2000 is less likely to lead to a better solution. 
 
We have added the relevant information on page 26 colored in red. 
 
 
2. In the first dimension of the 2D descriptor t_1=∛(N_Na )+X_A^Std, the linear combination of 
Na content and standard deviation of electronegativity of A is physically meaningless, though 
the classification in Fig 5 looks good. N_Na is the number of Na atoms in the chemical formula 
NaxM2(AO4)3, whereas the electronegativity X represents the tendency of an atom to attract 
electrons. It is difficult to understand why the linear combination of such two quantities is 
reasonable. I believe this is an important question the readers will ask if this descriptor is going 
to be impactful. 
 
We do not really agree with this assessment by the reviewer.  We note that the all the physical 
properties have been made dimensionless. Therefore, the summation of different physical 
factors (or their transformations) can be interpreted as an accumulation of their impact on 
stability. With this consideration, t_1= ඥ ேܰ௔య + (ܳ஺ௌ௧ௗ)ଶ  (modified instead of 
t_1=∛(N_Na )+X_A^Std as detailed in additional modification 1) indicates that Na content and 
polyanion charge variation penalizes the stability in this feature dimension. Though the ML 
procedure does not provide physical explanations, one can attempt to read meaning into these 
descriptors.  For example, the cube root of Na content is a measure of the average Na-Na 
distance.  The square of the charge difference between the polyanions is a measure of their 
average electrostatic interaction.   Such an interpretation may be useful though we stress that it 
is not required to have a functioning model.  
 
3. The prediction performance of the tolerance factor on unseen data is not clear. Fig 5 shows 
analysis of the descriptor with the training data, but I don’t see a test on unseen data or cross 
validation (e.g. how sensitive is the descriptor on the training dataset?) 
 
We have performed 80-20 test-validation data splitting while 20% of the data are generated 
from stratified sampling. Those 20% data are not used in the training process. We have 
highlighted our statements on page 24 colored in red. Meanwhile, we have added the specific 
performance of the model in both training and test data set in page 18, 19, 21 with edits 
colored in red. 
 
Minor comments: 
1. The authors claim the descriptor is “extremely good” in the abstract. This seems overrated 

as the overall training classification accuracy is 81.8%, where there is still much room to 
improve. 
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We agree that “extremely good” is overstated. We have removed “extremely” in the 
revised manuscript. 
 

2. More details are needed for the MLR methods and the primary features. For example, the 
definition and data source for the input features ionic radii (Shannon radii?) and 
electronegativity (Pauling electronegativity?) is unclear. In line 279, “MLR would optimize 
the ranking of relative stability, which is more important than the absolute Ehull values …”, 
please elaborate on the “relative stability” and why it is better than the absolute Ehull 
values. 
 
Thank you for pointing out the absent of data resource. And yes, the radii are Shannon radii 
while the electronegativity is Pauling electronegativity. We have modified the methodology 
section accordingly (colored red in supplementary note 6). 
 
The relative stability we mentioned is the order of the Ehull values. We trained the MLR 
model to maximize performance for ranking the Ehull values rather than to predict absolute 
Ehull values, as the relative values are more meaningful to compare the synthetic 
accessibility. We have also added relevant clarifications in the revised manuscript (colored 
in red in page 17). 
 
 
Additional modifications: 
1. We would like to mention that the first dimension of our machine learned descriptor is 

mislabeled. It should be ඥ ேܰ௔య + (ܳ஺ௌ௧ௗ)ଶ instead of ඥ ேܰ௔య + ஺ܺௌ௧ௗ. Since it was only an 
incorrect labelling, the numerical results are not changed. We have corrected all the 
labels and reference to the label across the whole manuscript (all modifications colored 
in red). 
 

2. We have corrected the number of theoretically predicted synthetic accessible Na3 
NASICONs and updated Fig. 3b. The old heatmap in Fig. 3b does not include the correct 
estimation of ideal mixing entropy.  

 
3. We noticed that the SVC learned boundary is inconsistent across Fig. 5, as the boundary 

in Fig. 5a are different from Fig. 5b-5c. It originates from the incorrect use of an older 
version of a figure. Fig. 5 has been updated accordingly. 

 
4. We have also updated Fig. S6, the labels in the old figure does not have the correct 

dimensionless treatment. 
 

5. The language of the whole paper is carefully revised. All the corresponding language 
modifications are colored in blue. 



REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

The revised version is ready for acceptance. 

Reviewer #2 (Remarks to the Author): 

Referee’s note: I have made comments directly against the authors’ most recent response document. 

I have not changed any of the original text; I have only added my own (new) comments, which are all 

preceded by ">>" characters. 

The authors compute the formation energy of 3000+ NASICON materials with DFT, compute the 

phase diagrams to extract the energy above the convex hull, successfully synthesize 5 new materials, 

and then develop a two-descriptor model to describe their data. 

Overall, I find the computational and experimental aspects of this work to be exciting and well-

executed. The analysis of the structural factors influencing stability is similarly well done. However, I 

feel like the ML modeling side of the work is a bit muddled and introduces many questions. I think the 

work may be suitable for publication but would benefit from some clarifications and revisions before 

publication. 

First, a few minor points: 

-- Without meaning any insult to the authors, some of the English should be improved for readability, 

particularly in the abstract and introduction. 

We thank for the reviewer for pointing out the language issue. We have carefully gone through the 

manuscript and polished the language. We hope such efforts had improved the readability of our 

manuscript. 

>> The readability is much improved with these edits – looks great. 

-- Krishna Rajan et al.’s 2011 work on predicting stability in perovskites should probably be cited 

along with the current references 12-17 (https://doi.org/10.1098/rspa.2010.0543) 

We have added this work into our references (page 3 colored in red, literature 18) 

>> Great. 

-- How can you have an E_hull < 0, as referenced in Table 1? 

See our answer to question 1 of Reviewer 1. 

>> Thanks for providing the clarification in the text – this addresses my question. 

-- The conductivities of over 300 NASICON materials are referenced in Fig. 3, but there is no indication 

given as to where these measurements came from. Please provide the data in the SI or cite the 

paper(s) where these data came from (or, ideally, both) 

We have added a table in the supplementary information (Supplementary note 4), which contains a 



complete list of conductivity and the corresponding references with detailed information about 

measurements. 

>> Thanks for doing this. Providing this data all in one place will increase the impact of the paper. In 

the spirit of FAIR data principles (findable, accessible, interoperable and particularly reusability), the 

authors may also want to consider also providing the structure files in an online resources (e.g. GitHub) 

where they can be readily accessed by readers who wish to reproduce or improve on this work. 

>> On a related note, can the authors make the rest of the data in this paper available via an online 

repository? E.g. the 3000+ DFT computed energies, the ML descriptors, etc.? 

A few general/high-level comments and questions: 

-- It appears to me that the work is missing a compelling argument that computational predictions of 

the thermodynamic phase stability are actually correlated with experimental stability. Many 

metastable materials are synthesizable and stable at ambient conditions. This is a fairly big claim and 

it is central to the author’s work; can the authors reference past studies that have demonstrated 

convincingly that this is a safe assumption? 

Thank you. This specific issue has been investigated in [Science advances 2, e1600225 (2016)]. That 

work investigated the relation between observed stability (i.e. phases that were experimentally 

reported in ICSD) and Ehull. That work shows that while a majority of observed phases are indeed a 

ground state, a substantial fraction of observed compounds is not. However, these phases mostly 

appear in a range of 100 meV/atom above the hull (though the result is sensitive to chemistry). In 

addition to relying on this large-scale analysis, we also apply ideal mixing entropy to estimate the 

accessibility via entropy stabilization at high temperature. Therefore, we believe that the value of 

Ehull(0K)-T Sideal can be a useful estimator for synthetic accessibility, which is also supported by the 

5/6 success rate in our experimental attempts. 

However, we agree that synthetic accessibility is a complex issue that currently has no formal theory 

in materials science. So, given the available data and analysis, Ehull is the best one can do. 

We have added a few sentences in the result section to clarify the reliability and limitation of our 

current models (Page 7 and Page 12 colored in red). 

>> Perfect. 

-- It is stated in the introduction that synthesizability is a non-local property, and yet the authors 

attempt to fit local descriptors to predict it. Can the authors address this apparent contradiction? 

The synthesizability is a non-local property as it involves not only the cohesive energy within the 

crystal structure but also the competing stability with other phases, as explained in the manuscript. 

Therefore, a model fitted to formation energy does not really measure the synthesizability of a 

material [npj Computational Materials, 2020, 6, 97]. It should be noted that in our work, we machine-

learn the Ehull value which contains the non-local aspects of the energy as it describes the 

competition with phases at other composition. The physical properties to which we fit are not really 

local as many of them are elemental, so they have no or weak compositional dependence. Our results 

seem to indicate that this is enough to capture the Ehull behavior. 

The analysis in Fig. 4 can also serve as an example to illustrate this idea. The ICOHP analysis in Fig. 4 

and the discussion (page 21-page 22 colored in red) indicate that a too electronegative metal (such as 

Ge) leads to a lack of stability of the NASICON as the decomposition into competing phase can create 

a more stable bonding environment for Ge. Hence, this is a powerful example of how simple 



descriptors indicate that a NASICON composition would be unstable with respect to decomposition in 

phases with different composition (a non-local event in a phase diagram). 

We have also clarified this on page 3 highlighted in red. 

>> I understand the author’s point here, but I don’t think they have fully addressed the question. 

(Disclaimer: This is not a major point, and I don’t wish to belabor it here, but I think it will increase 

the impact of the paper to address this point more clearly in the paper. Please feel free to ignore this 

particular comment below.) 

>> I have assumed the use of the term “locality” here means that you only need to know information 

(structure/composition) on the phase in question, and you don’t need to know anything else about the 

other competing phases. I believe the authors are arguing above that one can use local descriptors 

only to learn or infer about non-local behavior because the non-local behavior is built into the model 

(hyper)parameters, e.g. if you know Ge is in the structure, you know the competing phases are likely 

to be significantly more stable. For the record, I completely agree with the authors’ point here. 

>> I believe what should be said in the text is something along the lines of “synthesizability is hard to 

predict because it is a fundamentally nonlocal property, but it can nonetheless be learned using only 

local descriptors.” Provided the authors do agree with this statement, I would recommend (but of 

course not insist) they add something to this effect in the text to clarify what appears to be a 

contradiction of their own making. 

-- The “Physical trends of stability in NASICON” section is very good. My takeaway is that 

understanding the physical system in depth makes for promising descriptors, and that good 

descriptors are necessary for small data models. However these descriptors are very clearly not 

generalizable beyond the NASICON materials, despite some implications that these descriptors could 

provide value in other materials systems, e.g. in the introduction: “…but also demonstrate an efficient 

paradigm for discovering new materials with complicate composition and atomic structure”. I don’t 

think this necessarily a new paradigm that’s being described here. 

We would like to clarify that we are not trying to claim that the descriptors for NASICON stability 

would be the same for other chemical systems. On the contrary, we anticipate that such rules can 

differ a lot for other chemical systems. In this paper, the new paradigm we referred to is the 

computational framework under which phenomenological stability models and physical intuition can be 

mined in a data-driven fashion. Actually, it seems likely that different descriptors would be needed for 

structures where the bonding topology creates a different bonding competition between the elements. 

But these could be extracted in the same manner as presented here. 

In addition, we also want to mention that even though the influence of electronegativity and miscibility 

do not necessarily apply to all inorganic compounds, it is still useful for understanding the stability of 

other materials with two distinct cation sites. There is some prior evidence in the literature that 

electronegativity limits on metal mixing arises from bond covalency competition: e.g ternary nitrides 

by Sun et al. [Nature Materials, 2019, 18, 732–739], and alkali metal-late transition metal-halides by 

Bartel et al. [J. Am. Chem. Soc. 2020, 142, 11, 5135–5145]. 

We have modified the discussion section to highlight the above arguments (colored in red in page 21-

22) 

>> Good edits here. 



>> Referee’s note: Everything in the paper up to this point is high quality work and suitable for 

publication in Nature Communications. However, I have major concerns when it comes to the ML work, 

which begins here. I am concerned not just by the quality of the work, but also by the authors’ 

approaches and responses; going back through this paper for a second time has strengthened these 

concerns. I have sought to highlight my concerns below. 

Finally, a few points on the ML section. To make a compelling case, the authors first need to argue 

that the computational stability calculations are correlated with experimental stability (as mentioned 

above). Then, they need to show that the ML model is correlated with the computational data it was 

trained on. I’m not sure this is thoroughly shown. 

The issue as to whether Ehull is a good measure of synthetic accessibility is addressed in an earlier 

section of this rebuttal. Our ML model is designed to optimize the capability of ranking the predicted 

values of Ehull as close as possible to the computed Ehull. Therefore, the best model proposed by ML 

should reflect the correlation between the ML model and computed Ehull values. We have clarified this 

issue in our discussion section [colored in red in page 23]. Finally, we also reiterate that the proof is in 

the pudding so as to speak. The successful synthesis of five out of six predicted compounds is a high 

success rate. Even the “failed” synthesis provides clear evidence of NASICON phase formation but with 

impurity phases. For this reason, we cannot be sure about the composition of the NASICON phase 

component and we classified it as a “failure”. But under less stringent evaluation criteria one can 

consider this a six out of six-success rate. 

>> Upon reading the paper, I initially got the suspicion that the authors wanted to highlight the two 

facts that (1) DFT got 5 or 6/6 synthesizability predictions right, and (2) the ML model is good, while 

seeking to hide the inconvenient fact that (3) the ML model incorrectly predicted the synthesizability 

of all five successfully synthesized phases. The answer provided above reinforces that suspicion. “The 

best model proposed by ML should reflect the correlation between the ML model and the computed 

E_hull values… the successful synthesis of five out of six predicted compounds is a high success rate.” 

Let's be clear: this is a high success rate for the DFT/E_hull method, but a 0% success rate for the ML 

model. 

-- The authors appear to quote training error when providing the model performance: “Applied to all 

3881 compositions, such stability model has an overall classification accuracy of 81.8%, as well as a 

recall value of 96.6% and F1 score of 88.2% for capturing GS/LS-NASICONs.” Was this training error? 

Validation? K-fold cross-validation? Training error should almost never be cited as a model 

generalization error proxy. 

We appreciate the comment and have made this clearer this in the manuscript. To clarify, the “81.8% 

accuracy, 96.6% recall value and 88.2 F1 score” are for all data (80% training data + 20% validation 

data). The purpose of showing performance on all data is to give a sense of how our model performs 

on all data. 

We agree that one should not use training error as a model generalization error proxy. We performed 

training on 80% stratified sampling data and validation on the remaining 20% of the stratified 

sampling data. The validation accuracy score is 84.7% while the validation F1 score is 72.3%. We 

have added the validation information into the revised manuscript (Page 18 colored in red). 

>> I find this comment concerning as well. I believe this shows a fundamental misunderstanding of 

how ML models should be judged. The statement “the purpose of showing performance on all data is 

to give a sense of how our model performs on all data” does not make sense – it doesn’t matter 

whether the performance is judged on “all data” or not, it matters whether the authors are sampling 

the generalization (validation or hold-out) error or not. I asked five of my colleagues working in 



materials ML what they would think if they read a paper where model performance was judged by the 

error against an 80% training and 20% validation split, and they unanimously said this was poor 

practice at best and disingenuous at worst. 

>> The authors have not addressed these initial concerns with the latest edits; the manuscript still 

cites model accuracy/recall/F1 score under 80% training. To be clear, only the performance against 

the 20% validation matters. Even better would be to compute a k-fold cross-validation across the 

entire training set. 

>> I highly recommend the authors remove the statement “Applied to all 3881 compositions, this 

model has an overall classification accuracy of 312 81.8%, as well as a recall value of 96.6% and F1 

score of 88.2% for capturing GS/LS313 NASICONs”, or they modify it to clarify the training error (only) 

and the validation error (only). This is a key differentiation because it enables the reader to see if 

there is a large divergence between the training and validation/generalization errors. If so, this would 

imply overfitting in the model. If not, it gives confidence that the model is not overfit. Otherwise it is 

difficult to contextualize the model performance. 

>> As an additional metric for contextualization of model performance, can the authors cite the 

fraction of synthesizable/non-synthesizable in the training set? In general, a model with no statistical 

significance can still achieve an accuracy equal to the majority class weight – e.g. if the training set is 

e.g. 70% synthesizable/30% non-synthesizable, a model with zero generalizability can still validate 

with 70% accuracy (simply by guessing that everything is synthesizable). 

-- The authors examined the fit of ~4M models against 3K training points. With this many “attempts” 

to find the best model, one risks crossing the bounds dictated by PAC learning theory. Can the authors 

justify this approach within the bounds of PAC theory? Otherwise, overfitting may be an issue. 

Although the “test” set of 32 compounds is small, there is a hint of overfitting: 96.6% recall in training 

but 62.5% recall on the test set. 

According to PAC theory, to reduce the risk of overfitting (measured by generalization error ε), the 

amount of training data m should follow m∝O(1/ε^2 *VC (H) ), where VC(H) refers to the Vapnik–

Chervonenkis (VC) dimension of our SIS+MLR classification model. It can be proven that the VC 

dimension of our classifier solely depends on the maximal VC dimension of the candidate descriptors. 

In this work, we limited the complexity of each descriptor by (a) using only 24 features to generate 

each descriptor, (b) combining features with only 17 basic mathematical operators. By doing this, the 

maximal complexity of each descriptor is fixed, and so is VC 〖(H)〗. Using the previous formula, the 

required amount of training data m to avoid overfitting only depends on the maximal complexity of 

descriptors constructed during SIS, but not on the number of trial models. Therefore, our method of 

fitting more than millions of models is safe within the bounds of PAC theory. As an additional support, 

several other SIS/SISSO-like algorithms similar to ours also have reasonable generalizability for 

different chemical systems as shown in Phys. Rev. Mater. 2, 083802 (2018), J. Phys.: Mater. 2, 

024002 (2019), Sci. Adv. 2019;5: eaav0693 and Nat. Commun., 9, 4168 (2018). 

We regard the low 62.5% recall rate, as compared to the 96.6% training recall rate, as a result of 

differences in data distribution rather than overfitting. The training data set was evenly sampled 

across the compositional space. However, the experimentally reported NASICON data are mainly in 

the Na rich regime (18 out of 32 data points have xNa≥3), where the stability is relatively hard to 

capture. Because our model optimization was done on the entire NASICON compositional space, it can 

negatively impact the model performance in certain local areas. This is also supported by Fig. 5c, 

where the Na rich compounds have lower recall rates compared with the Na poor compounds. We 

believe such discrepancies should not be attributed to overfitting. 



References to PAC theory: 

https://www.cs.cmu.edu/~mgormley/courses/10601-s17/slides/lecture28-pac.pdf 

https://web.eecs.umich.edu/~cscott/past_courses/eecs598w14/notes/05_vc_theory.pdf 

http://web.cs.iastate.edu/~honavar/pac.pdf 

>> These are good comments; I’d recommend that the authors add something to this effect to the 

text rather than just in this document. 

>> The 62.5% test recall may very well be due to differences in the data distribution. The way to 

explore this is to compute the k-fold cross-validation error on the training set, which ensures you stay 

in the training distribution. I’d recommend the authors compute this value and cite it in the 

manuscript. 

-- It appears the ML model made incorrect prediction(s) for the 5 successfully synthesized compounds 

according to Fig 5b. Can you confirm this? This would seem to challenge whether the ML model can 

actually predict experimental stability. I also only see two “new” materials on this plot; shouldn’t there 

be 6? 

First of all, there are indeed 5 new NASICONs in Fig. 5b but in the descriptor space their points 

overlap somewhat. We did not include Na3HfSn(SiO4)2(PO4) since it has a large amount of impurity 

during synthesis. To make those data points more distinguishable, Fig. 5b is replotted, and a list of the 

calculated Paccessible of the 32 compounds is provided in supplementary note 7. 

>> This new plot looks good. 

Secondly, we want to mention that 11/12 experimentally reported NASICONs with Na1/f.u. are 

successfully classified. While the misclassification of the 5 successfully synthesized NASICONs arises 

from the relatively poor performance of the model in the Na-rich regime, as mentioned in the previous 

comment. They are not far from predicted stability as indicated by the high Platt Scaling probability 

Paccesible listed in supplementary note 7. Therefore, we believe our model is useful for predicting 

experimental stability. Relative modifications are added in page 18 and 19. 

>> First of all, I am glad the authors’ edits to page 18 now do recognize the fact that the ML model 

does not accurately predict the 5 newly synthesized compounds. 

>> However, I am still unsettled by the apparent attempt by the authors to initially hide this fact from 

the reader until it was pointed out by a referee. To me, this calls into question the credibility of the 

authors and the work as a whole. 

-- The authors discuss how their model is validated against three criteria: “1) its ability to capture 

experimentally reported NASICONs (Fig. 5b); 2) its robustness in identifying GS/LS NASICONs in both 

Na rich and Na poor regions (Fig. 5c); 3) its robustness in identifying GS/LS-NASICONs with different 

metal chemistries (Fig. 5d).” However, actual performance metric values are not given for #2 or #3. 

Can you please clarify the model performance in these areas? 

We have added the actual performance metric values for #2 and #3 on page 19 and 21 (in red). For 

the Na-rich and Na-poor region (#2), the accuracy of the classification is 36.7% and 92.7%, 

respectively. Again, this is an indication that our model has better performance for Na-poor rather 

than Na-rich compounds. On the other hand, for Ca/Ge NASICONs and Hf/Zr NASICONs (#3), the 

classification accuracy is 72.9% and 75.8% respectively. 



>> Thank you for adding these scores, but can the authors please clarify whether these are training 

errors (hopefully not) or validation errors? 

-- It is claimed a few times that the incorrect predictions are close to the decision boundary 

(“Moreover, the false negative classifications still remain likely to be synthetically accessible, as the 

average accessible probability of the false negative predictions is 30.9% for Na1 NASICONs and 39.0% 

for Na3 NASICONs.”) However, this statement is hand-wavy without knowing the distribution of other 

points around the decision boundary and also begs the question: then why not move the decision 

boundary? I believe it is better to be forthright about the model performance without discussing how 

the model wasn't "too wrong." 

We are optimizing the F1 score in our model, so the current boundary is optimal in terms of the F1 

score. Moving the boundary would increase the rate of false positives, which decreases the precision 

score and F1 score. In the end, where one would want this boundary is a tradeoff. In the F1 score 

recall and precision are treated as equally valuable, but in a realistic materials discovery program, the 

value of each of these would be a tradeoff between the cost of doing experiments (pushing towards 

higher precision) and the cost of missing out on a valuable compound (pushing towards higher recall). 

We have added discussion about this issue in the manuscript on Page 18, 19, 21 with edits colored in 

red. Additionally, the distribution of all Paccessible is added in supplementary note 8. 

>> Thank you for adding this distribution to the SI; this is helpful and addresses my concerns. 

Reviewer #3 (Remarks to the Author): 

All of my concerns have been well addressed.
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Reviewer #1 (Remarks to the Author): 
 
The revised version is ready for acceptance. 
 
 
Reviewer #2 (Remarks to the Author): 
 
We thank the reviewer for their evaluation of our work as the revised manuscript is much 
improved as a result. Before we address each point individually, we want to summarize our 
responses to the reviewer’s major concerns: 
 

1. Transparency of the data: We do not agree with the reviewer that we are trying to hide 
any data (details below in specific comment). We have made all raw data publicly 
available and have done so in the revised manuscript via a GitHub repo together with 
Jupyter notebooks to reproduce our ML model (details below). 

2. Validation method: With respect to the validation method, we agree that reporting 
scores that combine training and validation data is not a good practice. We have now 
done 5-fold cross validation that shows an average validation accuracy of 82.1%, which is 
close to the validation accuracy of 82.4% with the 80-20 splitting data set used in model 
selection (SIS+MLR). We agree with the reviewer that K-fold cross validation is a more 
rigorous way to evaluate our model, and details about the newly performed 5-fold cross 
validation have been added into the revised manuscript. 

3. Rigorousness of the modeling process: We regret the disorganization of the machine 
learning part. There were indeed parts with unclear information. We have now performed 
a rigorous check of all the contents in this section, specifically addressing the points raised 
by the reviewer and also identifying a few additional points of clarification highlighted in 
the end of the response letter. 

 
With the above-mentioned modifications, we are confident that the machine learning part of the 
paper is greatly improved, and all of our arguments are both rigorous and reproducible. For the 
following one-to-one response, our response is highlighted with red color. 
 
Referee’s note: I have made comments directly against the authors’ most recent response 
document. I have not changed any of the original text; I have only added my own (new) 
comments, which are all preceded by ">>" characters. 
 
The authors compute the formation energy of 3000+ NASICON materials with DFT, compute the 
phase diagrams to extract the energy above the convex hull, successfully synthesize 5 new 
materials, and then develop a two-descriptor model to describe their data. 
 
Overall, I find the computational and experimental aspects of this work to be exciting and well-
executed. The analysis of the structural factors influencing stability is similarly well done. 
However, I feel like the ML modeling side of the work is a bit muddled and introduces many 
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questions. I think the work may be suitable for publication but would benefit from some 
clarifications and revisions before publication. 
 
First, a few minor points: 
-- Without meaning any insult to the authors, some of the English should be improved for 
readability, particularly in the abstract and introduction. 
 
We thank for the reviewer for pointing out the language issue. We have carefully gone through 
the manuscript and polished the language. We hope such efforts had improved the readability of 
our manuscript. 
 
>> The readability is much improved with these edits – looks great. 
 
-- Krishna Rajan et al.’s 2011 work on predicting stability in perovskites should probably be cited 
along with the current references 12-17 (https://doi.org/10.1098/rspa.2010.0543) 
 
We have added this work into our references (page 3 colored in red, literature 18) 
 
>> Great. 
 
-- How can you have an E_hull < 0, as referenced in Table 1? 
 
See our answer to question 1 of Reviewer 1. 
 
>> Thanks for providing the clarification in the text – this addresses my question. 
 
-- The conductivities of over 300 NASICON materials are referenced in Fig. 3, but there is no 
indication given as to where these measurements came from. Please provide the data in the SI 
or cite the paper(s) where these data came from (or, ideally, both) 
 
We have added a table in the supplementary information (Supplementary note 4), which 
contains a complete list of conductivity and the corresponding references with detailed 
information about measurements. 
 
>> Thanks for doing this. Providing this data all in one place will increase the impact of the paper. 
In the spirit of FAIR data principles (findable, accessible, interoperable and particularly 
reusability), the authors may also want to consider also providing the structure files in an online 
resources (e.g. GitHub) where they can be readily accessed by readers who wish to reproduce or 
improve on this work. 
 
>> On a related note, can the authors make the rest of the data in this paper available via an 
online repository? E.g. the 3000+ DFT computed energies, the ML descriptors, etc.? 
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Yes. All the DFT computed energies and ML descriptors have been put online as a Github repo 
https://github.com/Jeff-oakley/NASICON_Predictor_Data. In addition to that, we have also 
uploaded Jupyter notebooks that can be used to reproduce both the 80-20 validation and 5-fold 
cross validation procedures that we refer to in the revised manuscript. A detailed description is 
also provided in the Data availability section of the revised manuscript on Page 28 highlighted 
with red color. 
 
A few general/high-level comments and questions: 
-- It appears to me that the work is missing a compelling argument that computational predictions 
of the thermodynamic phase stability are actually correlated with experimental stability. Many 
metastable materials are synthesizable and stable at ambient conditions. This is a fairly big claim 
and it is central to the author’s work; can the authors reference past studies that have 
demonstrated convincingly that this is a safe assumption? 
 
Thank you. This specific issue has been investigated in [Science advances 2, e1600225 (2016)]. 
That work investigated the relation between observed stability (i.e. phases that were 
experimentally reported in ICSD) and Ehull. That work shows that while a majority of observed 
phases are indeed a ground state, a substantial fraction of observed compounds is not. However, 
these phases mostly appear in a range of 100 meV/atom above the hull (though the result is 
sensitive to chemistry). In addition to relying on this large-scale analysis, we also apply ideal 
mixing entropy to estimate the accessibility via entropy stabilization at high temperature. 
Therefore, we believe that the value of Ehull(0K)-T Sideal can be a useful estimator for synthetic 
accessibility, which is also supported by the 5/6 success rate in our experimental attempts. 
 
However, we agree that synthetic accessibility is a complex issue that currently has no formal 
theory in materials science. So, given the available data and analysis, Ehull is the best one can do. 
We have added a few sentences in the result section to clarify the reliability and limitation of our 
current models (Page 7 and Page 12 colored in red). 
 
>> Perfect. 
 
-- It is stated in the introduction that synthesizability is a non-local property, and yet the authors 
attempt to fit local descriptors to predict it. Can the authors address this apparent contradiction? 
 
The synthesizability is a non-local property as it involves not only the cohesive energy within the 
crystal structure but also the competing stability with other phases, as explained in the 
manuscript. Therefore, a model fitted to formation energy does not really measure the 
synthesizability of a material [npj Computational Materials, 2020, 6, 97]. It should be noted that 
in our work, we machine-learn the Ehull value which contains the non-local aspects of the energy 
as it describes the competition with phases at other composition. The physical properties to 
which we fit are not really local as many of them are elemental, so they have no or weak 
compositional dependence. Our results seem to indicate that this is enough to capture the Ehull 
behavior. 
 

https://github.com/Jeff-oakley/NASICON_Predictor_Data
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The analysis in Fig. 4 can also serve as an example to illustrate this idea. The ICOHP analysis in Fig. 
4 and the discussion (page 21-page 22 colored in red) indicate that a too electronegative metal 
(such as Ge) leads to a lack of stability of the NASICON as the decomposition into competing 
phase can create a more stable bonding environment for Ge. Hence, this is a powerful example 
of how simple descriptors indicate that a NASICON composition would be unstable with respect 
to decomposition in phases with different composition (a non-local event in a phase diagram). 
 
We have also clarified this on page 3 highlighted in red. 
 
>> I understand the author’s point here, but I don’t think they have fully addressed the question. 
(Disclaimer: This is not a major point, and I don’t wish to belabor it here, but I think it will increase 
the impact of the paper to address this point more clearly in the paper. Please feel free to ignore 
this particular comment below.) 
 
>> I have assumed the use of the term “locality” here means that you only need to know 
information (structure/composition) on the phase in question, and you don’t need to know 
anything else about the other competing phases. I believe the authors are arguing above that 
one can use local descriptors only to learn or infer about non-local behavior because the non-
local behavior is built into the model (hyper)parameters, e.g. if you know Ge is in the structure, 
you know the competing phases are likely to be significantly more stable. For the record, I 
completely agree with the authors’ point here. 
 
>> I believe what should be said in the text is something along the lines of “synthesizability is 
hard to predict because it is a fundamentally nonlocal property, but it can nonetheless be learned 
using only local descriptors.” Provided the authors do agree with this statement, I would 
recommend (but of course not insist) they add something to this effect in the text to clarify what 
appears to be a contradiction of their own making. 
 
We agree that this point should be clarified. We have added the following statement to page 3 
of the revised manuscript: “Synthesizability is hard to predict because it is a fundamentally 
nonlocal property [Bartel et. al., npj Computational Materials 5, 4, (2019)], but it can nonetheless 
be learned using only local descriptors, specifically when the scope of materials under 
investigation is restricted to a single structure or class of structures [Bartel et. al., Science 
advances 5, eaav0693 (2019)].”  
 
-- The “Physical trends of stability in NASICON” section is very good. My takeaway is that 
understanding the physical system in depth makes for promising descriptors, and that good 
descriptors are necessary for small data models. However these descriptors are very clearly not 
generalizable beyond the NASICON materials, despite some implications that these descriptors 
could provide value in other materials systems, e.g. in the introduction: “…but also demonstrate 
an efficient paradigm for discovering new materials with complicate composition and atomic 
structure”. I don’t think this necessarily a new paradigm that’s being described here. 
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We would like to clarify that we are not trying to claim that the descriptors for NASICON stability 
would be the same for other chemical systems. On the contrary, we anticipate that such rules 
can differ a lot for other chemical systems. In this paper, the new paradigm we referred to is the 
computational framework under which phenomenological stability models and physical intuition 
can be mined in a data-driven fashion. Actually, it seems likely that different descriptors would 
be needed for structures where the bonding topology creates a different bonding competition 
between the elements. But these could be extracted in the same manner as presented here. 
 
In addition, we also want to mention that even though the influence of electronegativity and 
miscibility do not necessarily apply to all inorganic compounds, it is still useful for understanding 
the stability of other materials with two distinct cation sites. There is some prior evidence in the 
literature that electronegativity limits on metal mixing arises from bond covalency competition: 
e.g ternary nitrides by Sun et al. [Nature Materials, 2019, 18, 732–739], and alkali metal-late 
transition metal-halides by Bartel et al. [J. Am. Chem. Soc. 2020, 142, 11, 5135–5145]. 
 
We have modified the discussion section to highlight the above arguments (colored in red in page 
21-22) 
 
>> Good edits here. 
 
>> Referee’s note: Everything in the paper up to this point is high quality work and suitable for 
publication in Nature Communications. However, I have major concerns when it comes to the 
ML work, which begins here. I am concerned not just by the quality of the work, but also by the 
authors’ approaches and responses; going back through this paper for a second time has 
strengthened these concerns. I have sought to highlight my concerns below. 
 
Finally, a few points on the ML section. To make a compelling case, the authors first need to argue 
that the computational stability calculations are correlated with experimental stability (as 
mentioned above). Then, they need to show that the ML model is correlated with the 
computational data it was trained on. I’m not sure this is thoroughly shown. 
 
The issue as to whether Ehull is a good measure of synthetic accessibility is addressed in an earlier 
section of this rebuttal. Our ML model is designed to optimize the capability of ranking the 
predicted values of Ehull as close as possible to the computed Ehull. Therefore, the best model 
proposed by ML should reflect the correlation between the ML model and computed Ehull values. 
We have clarified this issue in our discussion section [colored in red in page 23]. Finally, we also 
reiterate that the proof is in the pudding so as to speak. The successful synthesis of five out of six 
predicted compounds is a high success rate. Even the “failed” synthesis provides clear evidence 
of NASICON phase formation but with impurity phases. For this reason, we cannot be sure about 
the composition of the NASICON phase component and we classified it as a “failure”. But under 
less stringent evaluation criteria one can consider this a six out of six-success rate. 
 
>> Upon reading the paper, I initially got the suspicion that the authors wanted to highlight the 
two facts that (1) DFT got 5 or 6/6 synthesizability predictions right, and (2) the ML model is good, 
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while seeking to hide the inconvenient fact that (3) the ML model incorrectly predicted the 
synthesizability of all five successfully synthesized phases. The answer provided above reinforces 
that suspicion. “The best model proposed by ML should reflect the correlation between the ML 
model and the computed E_hull values… the successful synthesis of five out of six predicted 
compounds is a high success rate.” Let's be clear: this is a high success rate for the DFT/E_hull 
method, but a 0% success rate for the ML model. 
 
We apologize for the lack of clarity in our previous response; however, we do not agree with the 
reviewer that we are intentionally seeking to hide the fact that the ML model misclassified the 5 
NASICONs newly synthesized in this work. In our previous submission, this point has already been 
stated clearly: 
 

1. On Page 18 of the manuscript, “… we applied the [ML] model to classify 27 previously 
reported and 5 newly synthesized NASICONs (shown in Fig 5b)… The model correctly 
captures 20 of the 32 experimentally synthesized NASICONs as synthetically accessible… 
the five newly synthesized Na3-NASICONs are all misclassified when the boundary is set 
at Paccessible = 50%.” This final sentence states exactly what the reviewer purports we are 
trying to hide.  

2. In Figure 5b, the five inverted green triangles are the data points the reviewer purports 
are being hidden. These points are further emphasized with an inset in this figure.  

 
Nonetheless, we have further expanded this discussion in the revised manuscript to avoid 
readers having the same interpretation. While more statements concerning this point can be 
found at Page 18–19 (colored in red). Our main modifications are summarized below: 
 

1. We strengthened the point in the revised abstract and the main text (colored red on Page 
12) that 5/6 successful rate for newly synthesized NASICON is solely for Ehull capability of 
capturing synthetic accessibility.  

2. The fact that 0/5 rate of success in predicting newly synthesis compound is highlighted 
and discussed both in Fig. 5 and page 19. However, we interpret the 0/5 rate as weak 
performance for capturing Na rich compounds rather than overfitting as 1) 5-fold cross 
validation suggests no overfitting; 2) The detailed comparison between Na rich and Na 
poor performance in page 19-20 and Fig. 5c shows obvious performance difference 
among Na rich and Na poor compounds. Additionally, there is no sign of overfitting even 
compare the recall of the LS/GS NASICONs in the training set with the validation set within 
Na poor or Na rich region (Page 20). 

 
-- The authors appear to quote training error when providing the model performance: “Applied 
to all 3881 compositions, such stability model has an overall classification accuracy of 81.8%, as 
well as a recall value of 96.6% and F1 score of 88.2% for capturing GS/LS-NASICONs.” Was this 
training error? Validation? K-fold cross-validation? Training error should almost never be cited as 
a model generalization error proxy. 
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We appreciate the comment and have made this clearer this in the manuscript. To clarify, the 
“81.8% accuracy, 96.6% recall value and 88.2 F1 score” are for all data (80% training data + 20% 
validation data). The purpose of showing performance on all data is to give a sense of how our 
model performs on all data. 
We agree that one should not use training error as a model generalization error proxy. We 
performed training on 80% stratified sampling data and validation on the remaining 20% of the 
stratified sampling data. The validation accuracy score is 84.7% while the validation F1 score is 
72.3%. We have added the validation information into the revised manuscript (Page 18 colored 
in red). 
 
>> I find this comment concerning as well. I believe this shows a fundamental misunderstanding 
of how ML models should be judged. The statement “the purpose of showing performance on all 
data is to give a sense of how our model performs on all data” does not make sense – it doesn’t 
matter whether the performance is judged on “all data” or not, it matters whether the authors 
are sampling the generalization (validation or hold-out) error or not. I asked five of my colleagues 
working in materials ML what they would think if they read a paper where model performance 
was judged by the error against an 80% training and 20% validation split, and they unanimously 
said this was poor practice at best and disingenuous at worst. 
 
>> The authors have not addressed these initial concerns with the latest edits; the manuscript 
still cites model accuracy/recall/F1 score under 80% training. To be clear, only the performance 
against the 20% validation matters. Even better would be to compute a k-fold cross-validation 
across the entire training set. 
 
We agree with the reviewer such statements can be misleading. We have removed all statements 
about the model performance on all data. Instead, we only cite validation metrics for evaluating 
our model performance throughout the revised manuscript (Page 17-20 in red color). 
 
>> I highly recommend the authors remove the statement “Applied to all 3881 compositions, this 
model has an overall classification accuracy of 312 81.8%, as well as a recall value of 96.6% and 
F1 score of 88.2% for capturing GS/LS313 NASICONs”, or they modify it to clarify the training 
error (only) and the validation error (only). This is a key differentiation because it enables the 
reader to see if there is a large divergence between the training and validation/generalization 
errors. If so, this would imply overfitting in the model. If not, it gives confidence that the model 
is not overfit. Otherwise it is difficult to contextualize the model performance. 
 
Similar with our above response. We agree that we should not report the overall performance of 
the model on all data. In the revised manuscript, we followed the reviewer’s suggestion to use 
the 5-fold cross validation on determining our decision boundary, and only the metrics for the 
validation set is used. Meanwhile, when evaluating the performance of our final model, we 
compared also metrics on training data with validation data to check if there is any obvious 
divergence. As being shown in page 18 and supplementary note 7, the training accuracy (82.3%) 
and F1 score (74.9%) are quite similar to validation accuracy (84.5%) and F1 score (78.1%). This 
further confirms no overfitting. 



 8 

 
>> As an additional metric for contextualization of model performance, can the authors cite the 
fraction of synthesizable/non-synthesizable in the training set? In general, a model with no 
statistical significance can still achieve an accuracy equal to the majority class weight – e.g. if the 
training set is e.g. 70% synthesizable/30% non-synthesizable, a model with zero generalizability 
can still validate with 70% accuracy (simply by guessing that everything is synthesizable). 
 
In our data, ~83% of the computation data is unstable (US), so it is true that a naïve model that 
only predicts US would achieve an accuracy of 83%. However, this same model would achieve a 
recall of 0% (and an F1 score of 0).  In our model, we achieve 81.3% recall for predicting GS/LS 
NASICONs, demonstrating a significant improvement over this naïve baseline. However, we agree 
that one should be careful when evaluating performance with unbalanced data. To address this, 
we 1) used class-weighted SVC and stratified sampling to overcome the uneven amount of GS/LS 
and US NASICONs (colored in red in methods section on page 28); 2) When evaluating 
performance, we use accuracy, recall and f1 score to give a more systematic evaluate model 
performance.  
We agree that comparing to a naïve baseline and discussing the unbalanced data is important, 
so we have cited the fraction of synthesizable/non-synthesizable in the data set in the revised 
manuscript (colored in red in methods) and discussed our interpretation of the validation 
accuracy in methods and supplementary note 7. 
 
-- The authors examined the fit of ~4M models against 3K training points. With this many 
“attempts” to find the best model, one risks crossing the bounds dictated by PAC learning theory. 
Can the authors justify this approach within the bounds of PAC theory? Otherwise, overfitting 
may be an issue. Although the “test” set of 32 compounds is small, there is a hint of overfitting: 
96.6% recall in training but 62.5% recall on the test set. 
 
According to PAC theory, to reduce the risk of overfitting (measured by generalization error ε), 

the amount of training data m should follow m∝O(1/ε^2 *VC⁡(H) ), where VC(H) refers to the 
Vapnik–Chervonenkis (VC) dimension of our SIS+MLR classification model. It can be proven that 
the VC dimension of our classifier solely depends on the maximal VC dimension of the candidate 
descriptors. In this work, we limited the complexity of each descriptor by (a) using only 24 
features to generate each descriptor, (b) combining features with only 17 basic mathematical 

operators. By doing this, the maximal complexity of each descriptor is fixed, and so is VC⁡〖(H)〗. 
Using the previous formula, the required amount of training data m to avoid overfitting only 
depends on the maximal complexity of descriptors constructed during SIS, but not on the number 
of trial models. Therefore, our method of fitting more than millions of models is safe within the 
bounds of PAC theory. As an 
additional support, several other SIS/SISSO-like algorithms similar to ours also have reasonable 
generalizability for different chemical systems as shown in Phys. Rev. Mater. 2, 083802 (2018), J. 
Phys.: Mater. 2, 024002 (2019), Sci. Adv. 2019;5: eaav0693 and Nat. Commun., 9, 4168 (2018). 
 
We regard the low 62.5% recall rate, as compared to the 96.6% training recall rate, as a result of 
differences in data distribution rather than overfitting. The training data set was evenly sampled 
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across the compositional space. However, the experimentally reported NASICON data are mainly 

in the Na rich regime (18 out of 32 data points have xNa≥3), where the stability is relatively hard 
to capture. Because our model optimization was done on the entire NASICON compositional 
space, it can negatively impact the model performance in certain local areas. This is also 
supported by Fig. 5c, where the Na rich compounds have lower recall rates compared with the 
Na poor compounds. We believe such discrepancies should not be attributed to overfitting. 
 
References to PAC theory: 
https://www.cs.cmu.edu/~mgormley/courses/10601-s17/slides/lecture28-pac.pdf 
https://web.eecs.umich.edu/~cscott/past_courses/eecs598w14/notes/05_vc_theory.pdf 
http://web.cs.iastate.edu/~honavar/pac.pdf 
 
>> These are good comments; I’d recommend that the authors add something to this effect to 
the text rather than just in this document. 
 
Yes. We have added them in the revised manuscript as well (Page 27). 
 
>> The 62.5% test recall may very well be due to differences in the data distribution. The way to 
explore this is to compute the k-fold cross-validation error on the training set, which ensures you 
stay in the training distribution. I’d recommend the authors compute this value and cite it in the 
manuscript. 
 
We have done 5-fold cross validation in the revised manuscript (see our response to comments 
above). Meanwhile, we have also evaluated the data at different Na contents and metal 
chemistry to explore the performance for different data distributions. We found the Na content 
can lead to the largest variation on accuracy. That also explains the 62.5% recall (56.3% in the 
updated model from 5-fold CV) in capturing 32 experimentally reported compounds as 18 of 
them are Na rich NASICONs (for which the model was found to perform relatively poorly). 
Detailed discussions are added in revised manuscript at Page 18-20. 
 
-- It appears the ML model made incorrect prediction(s) for the 5 successfully synthesized 
compounds according to Fig 5b. Can you confirm this? This would seem to challenge whether the 
ML model can actually predict experimental stability. I also only see two “new” materials on this 
plot; shouldn’t there be 6? 
First of all, there are indeed 5 new NASICONs in Fig. 5b but in the descriptor space their points 
overlap somewhat. We did not include Na3HfSn(SiO4)2(PO4) since it has a large amount of 
impurity during synthesis. To make those data points more distinguishable, Fig. 5b is replotted, 
and a list of the calculated Paccessible of the 32 compounds is provided in supplementary note 
7. 
 
>> This new plot looks good. 
 
Secondly, we want to mention that 11/12 experimentally reported NASICONs with Na1/f.u. are 
successfully classified. While the misclassification of the 5 successfully synthesized NASICONs 
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arises from the relatively poor performance of the model in the Na-rich regime, as mentioned in 
the previous comment. They are not far from predicted stability as indicated by the high Platt 
Scaling probability Paccesible listed in supplementary note 7. Therefore, we believe our model is 
useful for predicting experimental stability. Relative modifications are added in page 18 and 19. 
 
>> First of all, I am glad the authors’ edits to page 18 now do recognize the fact that the ML model 
does not accurately predict the 5 newly synthesized compounds. 
 
>> However, I am still unsettled by the apparent attempt by the authors to initially hide this fact 
from the reader until it was pointed out by a referee. To me, this calls into question the credibility 
of the authors and the work as a whole. 
 
Same with our response above. Starting from the initial draft, the fact that the five newly 
synthesized compounds are not predicted successfully has already been shown in Fig. 5b and 
listed in supplementary note 5. We also made further modifications in our first revision by 
zooming in all five points to show specifically those five compounds are not classified correctly 
by the model. In this second revision, we have made new edits to ensure this point is clear 
(colored red in 18).  
 
-- The authors discuss how their model is validated against three criteria: “1) its ability to capture 
experimentally reported NASICONs (Fig. 5b); 2) its robustness in identifying GS/LS NASICONs in 
both Na rich and Na poor regions (Fig. 5c); 3) its robustness in identifying GS/LS-NASICONs with 
different metal chemistries (Fig. 5d).” However, actual performance metric values are not given 
for #2 or #3. Can you please clarify the model performance in these areas? 
 
We have added the actual performance metric values for #2 and #3 on page 19 and 21 (in red). 
For the Na-rich and Na-poor region (#2), the accuracy of the classification is 36.7% and 92.7%, 
respectively. Again, this is an indication that our model has better performance for Na-poor 
rather than Na-rich compounds. On the other hand, for Ca/Ge NASICONs and Hf/Zr NASICONs 
(#3), the classification accuracy is 72.9% and 75.8% respectively. 
 
>> Thank you for adding these scores, but can the authors please clarify whether these are 
training errors (hopefully not) or validation errors? 
 
Those were scores for all data (training + testing). As mentioned in the above comments, we have 
now removed all statements of performance on all data and only cited validation metrics for 
evaluating performance. 
 
-- It is claimed a few times that the incorrect predictions are close to the decision boundary 
(“Moreover, the false negative classifications still remain likely to be synthetically accessible, as 
the average accessible probability of the false negative predictions is 30.9% for Na1 NASICONs 
and 39.0% for Na3 NASICONs.”) However, this statement is hand-wavy without knowing the 
distribution of other points around the decision boundary and also begs the question: then why 
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not move the decision boundary? I believe it is better to be forthright about the model 
performance without discussing how the model wasn't "too wrong." 
 
We are optimizing the F1 score in our model, so the current boundary is optimal in terms of the 
F1 score. Moving the boundary would increase the rate of false positives, which decreases the 
precision score and F1 score. In the end, where one would want this boundary is a tradeoff. In 
the F1 score recall and precision are treated as equally valuable, but in a realistic materials 
discovery program, the value of each of these would be a tradeoff between the cost of doing 
experiments (pushing towards higher precision) and the cost of missing out on a valuable 
compound (pushing towards higher recall). We have added discussion about this issue in the 
manuscript on Page 18, 19, 21 with edits colored in red. Additionally, the distribution of all 
Paccessible is added in supplementary note 8. 
 
>> Thank you for adding this distribution to the SI; this is helpful and addresses my concerns. 
 
 
Additional clarifications and corrections of the ML model: 
 

1. In the first revision, we have the statement that “The validation accuracy score is 84.7% 
while the validation F1 score is 72.3%.” (Page 17) We noticed that the reviewer may think 
this refers to the validation error of the SVC model that determines the classification 
boundary. We want to clarify that this is the validation error of the machine learning 
ranking model for evaluating ranking performance of the 2D descriptor. Such metrics can 
be reproduced in Run_Ranked_SVM.ipynb 

2. We agree with the reviewer’s suggestion that 5-fold cross validation will be a great way 
to evaluate the ML model. We have used that for determining the decision boundary 
between LS/GS and US NASICONs. However, we still keep the use of 80-20 splitting for 
selecting 2D descriptors. Our reasons are 1) The 80-20 splitting is a widely used way for 
evaluating a model and our comparison between 80-20 splitting and 5-fold cross 
validation for the fitting of the class-weighted SVC gives quite similar validation accuracy 
(shown in our first response and Run_five_fold_CV.ipynb); 2) Repeating the 2D descriptor 
selection on the 2 million feature space during k-fold CV is quite computationally 
expensive (many orders of magnitude more than fitting the SVC once the 2D descriptor is 
fixed).  
 

 
Reviewer #3 (Remarks to the Author): 
 
All of my concerns have been well addressed. 
 



REVIEWERS' COMMENTS 

Reviewer #4 (Remarks to the Author): 

The manuscript by Ouyang et al. discusses stability rules for NASICON-structured materials. This work 

combines many pieces of data from high-throughput DFT calculations, machine learning, and 

experiment. 

My evaluation of this manuscript is focused on the machine learning (ML) section of the paper. I agree 

with reviewer #2 that the ML part is not very strong and had severe issues concerning the validation 

of the models. The ML model also does not predict the newly discovered materials to be stable, so that 

it does not add much to the manuscript in addition to DFT. For the revision, the authors performed the 

5-fold cross validation suggested by reviewer #2 and now distinguish clearly between model 

performance on the training and test sets. This is very good and makes the ML validation more 

believable. 

However, the paragraphs added to the manuscript are not well written, they suffer from poor English, 

lack logical structure, and make use of technical jargon, which makes them hard to understand. In 

order to make sense of it all, I also took a look at the GitHub repository with the provided data. 

Unfortunately, the data is simply dumped and not at all documented, so that it is not particularly 

useful. Overall, I therefore have to conclude that the ML part of this work is not yet up to the 

standards of Nature Communications. I have no questions in addition to those of reviewer #2, but the 

authors should carefully rewrite the ML section of the manuscript, moving the technical details to the 

SI while keeping the concepts in the main paper. The shared data on GitHub should additionally be 

documented such that the work and especially the model validation become fully reproducible.
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Response to the Reviewers: Manuscript ID NCOMMS-21-06620B 

We thank the editor and fourth reviewer for their time spent to evaluate our manuscript and 
for their recommendation/comments. The reviewer’s concerns are addressed below in detail. 
All changes made in the manuscript are highlighted in red. 
 
Reviewer #4 (Remarks to the Author): 
 
The manuscript by Ouyang et al. discusses stability rules for NASICON-structured materials. This 
work combines many pieces of data from high-throughput DFT calculations, machine learning, 
and experiment. 
 
My evaluation of this manuscript is focused on the machine learning (ML) section of the paper. I 
agree with reviewer #2 that the ML part is not very strong and had severe issues concerning the 
validation of the models. The ML model also does not predict the newly discovered materials to 
be stable, so that it does not add much to the manuscript in addition to DFT. For the revision, 
the authors performed the 5-fold cross validation suggested by reviewer #2 and now 
distinguish clearly between model performance on the training and test sets. This is very good 
and makes the ML validation more believable. 
 
However, the paragraphs added to the manuscript are not well written, they suffer from poor 
English, lack logical structure, and make use of technical jargon, which makes them hard to 
understand. In order to make sense of it all, I also took a look at the GitHub repository with the 
provided data. Unfortunately, the data is simply dumped and not at all documented, so that it is 
not particularly useful. Overall, I therefore have to conclude that the ML part of this work is not 
yet up to the standards of Nature Communications. I have no questions in addition to those of 
reviewer #2, but the authors should carefully rewrite the ML section of the manuscript, moving 
the technical details to the SI while keeping the concepts in the main paper. The shared data on 
GitHub should additionally be documented such that the work and especially the model 
validation become fully reproducible. 
 
We would like to thank the reviewer for the careful evaluation and good suggestions. We have 
gone through the manuscript, particularly machine learning section thoroughly. As suggested 
by the reviewer, the logical structure and English writing were carefully revised. Some technical 
details were moved to the SI as well. We believe the readability of the manuscript is much 
improved. The Github repo (https://github.com/Jeff-oakley/NASICON_Predictor_Data ) has 
been carefully organized as well. All the data and demonstration scripts are documented so 
people can reproduce our data more efficiently. 
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