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Supplementary Note 1. More Details on the 1+1D Inversion-invariant
Example

In this part, we show more details on the 1+1D two-band inversion-invariant example.

A. Model Hamiltonian

We consider a 1D lattice with lattice constant being 1, and each lattice site consists of two orbitals at the same
position: one spinless s orbital and one spinless p orbital. As we consider the noninteracting cases, we only care about
the single-particle Hilbert space, which is spanned by localized states |R, a〉 with a = s,p and R the lattice vector.
The symmetry group G of interest is spanned by the 1D lattice translations and the inversion symmetry. Owing to
1D lattice translations, it is convenient to use the Fourier transformation of |R, a〉 as the bases

|ψk,a〉 =
1√
N

∑
R

|R, a〉eikR , (1)

where ~ = 1 is chosen henceforth, k is the momentum, N is the total number of lattice sites. Throughout this section,
k ∈ 1BZ is always implied, unless k ∈ R is explicitly specified. The bases |ψk〉 = (|ψk,s〉, |ψk,p〉) have three key
properties: (i) they are orthonormal 〈ψk,a|ψk′,a′〉 = δkk′δaa′ , (ii) |ψk+G〉 = |ψk〉 for all reciprocal lattice vectors G,

and (iii) the periodic parts e−ir̂k|ψk,a〉 = (1/
√
N )
∑
R |R, a〉 are smooth functions of k ∈ R. Here we have chosen the

localized |R, a〉 to realize r̂|R, a〉 = R|R, a〉.
The bases allow us to express the single-particle Hamiltonian as

Ĥ(t) =
∑
k

|ψk〉H(k, t)〈ψk| , (2)

where t is time. Since we care about the Floquet crystals, we set

H(k, t+ T ) = H(k, t) (3)

with T > 0 the time period. Within one period, we choose H(k, t) as the following

H(k, t) =

 M1(k) sin(2π t
T ) , 0 ≤ t < T

2

M2(k) sin(2π t
T − π) , T

2 ≤ t < T
(4)

where M1(k) = d(k) + t1 sin(k)σx, M2(k) = d(k)/2 + t2 sin(k)σy, d(k) = E1 + B1 cos(k) + (E2 + B2 cos(k))σz, and
σx,y,z are the 2× 2 Pauli matrices.

Furthermore, the inversion symmetry P is represented as

P|ψk〉 = |ψ−k〉uP(k) (5)

with

uP(k) = σz . (6)

The inversion invariance of the system, [Ĥ(t),P] = 0, is then represented as

uP(k)H(k, t)u†P(k) = H(−k, t) . (7)
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B. Time-evolution Matrix and Quasi-energy Band

The corresponding unitary time-evolution operator

Û(t) =
∑
k

|ψk〉U(k, t)〈ψk| , (8)

where U(k, t) is the time-evolution matrix given by Dyson series

U(k, t) = T exp

[
−i

∫ t

0

dt′H(k, t′)

]
, (9)

and T is the time-ordering operator. Throughout this work, the initial time is set to zero without loss of generality
(Supplementary Note 7). Owing to the time-periodic nature of H(k, t), U(k, t+ T ) is related to U(k, t) via

U(k, t+ T ) = U(k, t)U(k, T ) , (10)

meaning that all essential information of the dynamics is embedded in one period. For concreteness, we in the rest of
this section choose the following parameter values for U(k, t)

T = 2π, E1 = 0.05, E2 = 0.65, B1 = 0.2,

B2 = 1.2, t1 = −0.5, t2 = 0.6 .
(11)

The eigenspectrum of the unitary U(k, t) is important for our later discussion. Diagonalizing U(k, t) results in
two eigenvalues exp[−iφm,k(t)] with m = 1, 2, and the real phase φm,k(t) is known as the phase band [1] of U(k, t),
which by definition has a 2π ambiguity. Thereby, we can always fix the phase bands in a time-independent 2π range:
φm,k(t) ∈ [Φk,Φk + 2π), where [Φk,Φk + 2π) is called the phase Brillouin zone (PBZ) and we call Φk the PBZ lower
bound. In this work, we restrict the PBZ to be time-independent, which is different from the time-dependent PBZ
in Ref. [1]. In particular, the quasi-energy bands Em,k, also known as the Floquet bands, are derived from the phase
bands at the end of a driving period

Em,k =
φm,k(T )

T
. (12)

We plot the quasi-energy spectrum for U(k, t) in Fig. 2(a), where the PBZ lower bound is chosen as Φk = −π.
The band index m is assigned to the two quasi-energy bands within the PBZ always following an ascending order:
E1,k < E2,k. The quasi-energy bands are separated by two quasi-energy gaps in the PBZ, which are essential for
defining topological equivalence for Floquet crystals [1].

The parameter values in Supplementary Eq. (11) give us one specific Floquet system; if we change the parameter
values or even add more symmetry-preserving terms to the two-band Hamiltonian, we would get a different G-invariant
Floquet system with a new time-evolution operator Û ′(t) and a new time-evolution matrix U ′(k, t). Throughout this
section, two Floquet systems are considered to be topologically equivalent if and only if (iff) they are connected by a
continuous deformation that preserves the symmetry group G and both quasi-energy gaps.

In terms of the terminology adopted in Supplementary Note 2, we choose both quasi-energy gaps to be relevant
gaps [2, 3] that must be preserved during any topologically equivalent deformation (Fig. 2(a)). Then, the time-evolution
matrix U(k, t) in Supplementary Eq. (9)—equipped with the time period T , the relevant gap choice in Fig. 2(a), the
symmetry group G, and the symmetry representation of G like Supplementary Eq. (6)—is called a Floquet gapped
unitary (FGU), which is in short denoted by U(k, t). U ′(k, t) stands for another FGU that has the same G as U(k, t).

On the other hand, the time-evolution operator Û(t) in Supplementary Eq. (8)—equipped with T , the relevant gap

choice in Fig. 2(a), and G—is called a Floquet crystal, which is in short denoted by Û(t). Û ′(t) stands for another G-
invariant Floquet crystal. The above topological equivalence can be defined for both FGUs and Floquet crystals, while
the difference is that since a Floquet crystal consists of a FGU and the corresponding bases, topological equivalence
among Floquet crystals requires both equivalent FGUs and equivalent bases. It means that topologically distinction
among FGUs must infer topologically distinction among the underlying Floquet crystals, and thereby all topological
invariants of FGUs apply to Floquet crystals. Therefore, to avoid dealing with the deformation of bases, we will focus
on the FGUs, unless Floquet crystals are explicitly specified. (See Supplementary Note 2 for details.)
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C. Symmetry Data of Quasi-energy Band Structure

As the first step of our topological classification, let us describe the symmetry data for the quasi-energy band
structure of the FGU U(k, t).

First, owing to the inversion invariance, U(k, t) commutes with uP(k) at an inversion-invariant momentum k0 as

uP(k0)U(k0, t)u
†
P(k0) = U(k0, t), (13)

where k0 is Γ (k = 0) or X (k = π). Then, the eigenvectors for the quasi-energy bands at k0 (or equivalently
the eigenvectors of U(k0, T )) have definite parities α = ±, as shown in Fig. 2(a). For each quasi-energy band Em,k,
we can count the number of eigenvectors carrying parity α at each k0, denoted by nmk0,α. As a result, we have a
four-component vector for the m-th quasi-energy band as

Am = (nmΓ,+, n
m
Γ,−, n

m
X,+, n

m
X,−)T , (14)

of which the values can be read out from Fig. 2(a) as

A1 = (1, 0, 1, 0)T , A2 = (0, 1, 0, 1)T . (15)

The symmetry data is the matrix A that has A1 and A2 as its two columns

A = (A1 A2) . (16)

We emphasize that the four components of Am in Supplementary Eq. (14) are not independent, as they satisfy the
following compatibility relation [4, 5]

nmΓ,+ + nmΓ,− = nmX,+ + nmX,− , (17)

or equivalently

CAm = 0 (18)

with the compatibility matrix C as

C =
(

1 1 −1 −1
)
. (19)

For a given choice of PBZ (as in Fig. 2(a)), the derivation of symmetry data for the quasi-energy band structure
is exactly the same as that for a static crystalline system [4, 5]. However, the freedom of choosing PBZ for Floquet
crystals leads to an additional subtlety in determining the symmetry data, which is absent in dealing with static
crystals. As shown in Fig. 2(b), we can legitimately shift the PBZ lower bound to Φk = π/4, which relabels the

quasi-energy bands as 1→ 2 and 2→ 1. As a result, the new Ãm for Φk = π/4 is related to Supplementary Eq. (15)

as Ã1 = A2 and Ã2 = A1, and the new symmetry data Ã is related to Supplementary Eq. (16) by a cyclic permutation

Ã = A

0 1

1 0

 for Φk = π/4 . (20)

Therefore, the symmetry data of a Floquet crystal depends on the artificial choice of PBZ. This is in contrast to the
static case where the symmetry data of a given static crystal is uniquely determined by the Fermi energy.

We remove this artificial PBZ-dependent ambiguity by defining an equivalence among symmetry data of different
FGUs. Recall that we use U ′(k, t) to label another G-invariant two-band FGU. We define U ′(k, t) and U(k, t) to have
equivalent symmetry data iff we can find PBZs to make their symmetry data exactly the same. In practice, we can first
pick a PBZ lower bound Φ′k for U ′(k, t) and get its symmetry data A′. Then we check whether A′ = A (Supplementary

Eq. (16)) or A′ = Ã (Supplementary Eq. (20)); if one of them is true, U ′(k, t) and U(k, t) have equivalent symmetry
data, otherwise inequivalent. Here we use the fact that Supplementary Eq. (16) and Supplementary Eq. (20) are the
only two possible symmetry data for U(k, t), since the symmetry data is invariant under 2πn-shift of the PBZ lower
bound (n is any integer).

Despite the ambiguity of the symmetry data, whether two FGUs have equivalent symmetry data or not is indepen-
dent of the artificial PBZ choice. The equivalence reflects the inherent topological property of FGUs. If two FGUs
U ′(k, t) and U(k, t) have inequivalent symmetry data, they must be topologically inequivalent. Therefore, we can per-
form a topological classification for FGUs—therefore for Floquet crystals—solely based on the symmetry data, similar
to what we did for static crystals. However, such symmetry-data-based classification only involves the time-evolution
matrix at t = T , missing essential information about the quantum dynamics. In other words, even if U ′(k, t) and
U(k, t) have equivalent symmetry data, different quantum dynamics can still make them topologically distinct [1, 6].
Thus, we require the dynamical information on the entire time period to classify the dynamics of Floquet crystals
with equivalent symmetry data.



5

D. Winding Data

A direct visualization of the quantum dynamics for the given FGU U(k, t) is its phase band spectrum φm,k(t) of
the time-evolution matrix (Supplementary Eq. (9)). In particular, we focus on the phase bands at two inversion-
invariant momenta, which we plot in Fig. 2(c) for Φk = −π. Owing to Supplementary Eq. (13), the eigenvectors for
the phase bands at Γ/X can have definite parties. We plan to construct a quantized index that can capture the key
information of the quantum dynamics at Γ/X. For this purpose, it turns out to be inconvenient to directly use U(k, t)
in Supplementary Eq. (9) or phase bands in Fig. 2(c), which are not time-periodic. We need a periodized version of
them.

The time-periodic return map [1, 3] Uε(k, t) is what we seek. To construct it, we first expand U(k, T ) as

U(k, T ) =

2∑
m=1

e−iEm,kTPk,m(T ) , (21)

where Pk,m(T ) is the projection matrix given by the eigenvector of U(k, T ) for e−iEm,kT . With the above expression,
the return map reads

Uε(k, t) = U(k, t) [U(k, T )]
−t/T
ε , (22)

where

[U(k, T )]
−t/T
ε =

2∑
m=1

exp

[
− t

T
logεk(e−iEm,kT )

]
Pk,m(T ). (23)

Here εk serves as the branch cut of the logarithm [7] by requiring i logεk(x) ∈ [εk, εk+2π) for all x ∈ U(1). Throughout
this work, we always set the branch cut to be equal to the PBZ lower bound (i.e., ε = Φ) unless specified otherwise.
Then we have

i logεk=Φk
(e−iEm,kT ) = Em,kT. (24)

Furthermore, Supplementary Eq. (22) shows that Uε=Φ(k, t + T ) = Uε=Φ(k, t), Uε=Φ(k + G, t) = Uε=Φ(k, t) for all
reciprocal lattice vectors G, and Uε=Φ(k, t) is a continuous function of (k, t) ∈ R× R.

The return map also commutes with the inversion symmetry representation at k0 = Γ/X

uP(k0)Uε=Φ(k0, t)u
†
P(k0) = Uε=Φ(k0, t) . (25)

Combined with the representation of inversion symmetry in Supplementary Eq. (6), the return map at k0 has two
blocks with opposite parties

Uε=Φ(k0, t) =

Uε=Φ,k0,+(t)

Uε=Φ,k0,−(t)

 . (26)

Then we can define the following U(1) winding number for each block

νk0,α =
i

2π

∫ T

0

dtTr
[
U†ε=Φ,k0,α

(t)∂tUε=Φ,k0,α(t)
]
∈ Z (27)

with α = ± again labelling the parity. In particular, the integer-valued nature of νk0,α directly comes from time-
periodic nature of the return map. Similar to the symmetry data, we can calculate all four quantized winding numbers
for our model (k0 = Γ/X and α = ±) and further group them into a vector

V = (νΓ,+, νΓ,−, νX,+, νX,−)T = (1,−1, 0, 0)T . (28)

Here we used Φk = −π for the second equality. We call V the winding data of the given FGU U(k, t) for Φk = −π.
Pictorially, the winding number νk0,α can be understood in the following way. Similar to the time-evolution unitary,

the return map Uε(k, t) is also unitary. Thereby, its eigenvalues are U(1) numbers exp[−iφε,m,k(t)] with m = 1, 2, and
φε,m,k(t) are the phase bands of the return map. Supplementary Eq. (25) suggests that the eigenvectors for the phase
bands of the return map at k0 also have definite parities, as shown in Fig. 2(e) for Φk = −π. Compared with phase
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bands in Fig. 2(c), the time-periodic phase bands in Fig. 2(e) can be naively viewed as pushing the quasi-energies in
Fig. 2(c) to zero. The pictorial meaning of νk0,α is simply the total winding (along t) of the phase bands of Uε=Φ(k0, t)
with parity α. Then the calculated values of νk0,α in Supplementary Eq. (28) can be directly read out from Fig. 2(e).

Furthermore, as exemplified by Supplementary Eq. (28), the four winding numbers satisfy a compatibility relation

νΓ,+ + νΓ,− = νX,+ + νX,− , (29)

since the total winding of all phase bands at each momentum is the same. As a result, the winding data share the
same compatibility relation as that of the symmetry data (see Supplementary Eq. (18))

CV = 0 , (30)

indicating that the winding data takes value in the following set

{V } = Z4 ∩ ker C
= {(q1, q2, q3, q1 + q2 − q3)T |q1, q2, q3 ∈ Z} ≈ Z3 .

(31)

The same compatibility relation for the winding data and the symmetry data holds for all crystalline symmetry groups
in all spatial dimensions (up to three), which is discussed in Supplementary Note 3 and Supplementary Note 8.

Shifting the PBZ changes the winding data. For example, if we shift the PBZ lower bound from Φk = −π to
Φk = π/4, the phase bands of time-evolution unitary and return map become Fig. 2(d-f), and from Fig. 2(f), we know
the winding data becomes

Ṽ = (0,−1,−1, 0)T = V −A1 . (32)

Unlike the symmetry data, a 2π-shift of the PBZ Φk → Φk + 2π can also change the winding data

V → V − (1, 1, 1, 1)T = V − Ā (33)

where

Ā = A1 +A2 = (1, 1, 1, 1)T . (34)

Supplementary Eq. (33) suggests that the given FGU U(k, t) can have an infinite number of different winding data,
which explicitly depend on the artificial choice of PBZ. This is different from the fact that U(k, t) only has two (which is
finite) different symmetry data. Such difference makes it hard to directly generalize the equivalence among symmetry
data to define an equivalence among the winding data, since finding a single proper PBZ among an infinite number
of possible choices is not straightforward. Nevertheless, Supplementary Eq. (32) and Supplementary Eq. (33) indicate
that the infinitely many winding data are related by the symmetry data (which will also be generally demonstrated
in Supplementary Note 3). This relation inspires us to define the quotient winding data below, in order to resolve the
infinity problem.

E. Quotient Winding Data

For the given FGU U(k, t), the number of different symmetry data is finite because the symmetry data is invariant
under 2πn-shifts of the PBZ. Then, in order to have a finite number of different quotient winding data, we can define
the quotient winding data to be invariant under all PBZ shifts that keep the symmetry data. Specifically, we define
the quotient winding data VQ by modding out Ā (Supplementary Eq. (34)) from the winding data,

VQ = V mod Ā (35)

In practice, the modulo operation can be taken for the first nonzero component of Ā as discussed in the following.
Supplementary Eq. (34) shows that the first nonzero element of Ā is the its first element ĀΓ,+ = 1, and then VQ =
V + jĀ with integer j satisfying

VQ,Γ,+ = vΓ,+ + jĀΓ,+ = vΓ,+ mod ĀΓ,+ = 0 . (36)

For the two winding data in Supplementary Eq. (28) and Supplementary Eq. (32) given by two PBZ lower bounds, we
have

VQ = V mod Ā = (0,−2,−1,−1)T for Φk = −π ,

ṼQ = Ṽ mod Ā = (0,−1,−1, 0)T for Φk = π/4 .
(37)
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As 2πn-shifts of the PBZ can only change V by multiples of Ā according to Supplementary Eq. (33), VQ defined in
Supplementary Eq. (35) is indeed invariant under 2πn-shifts of the PBZ, just like the symmetry data. As a result, the
FGU U(k, t) only has two different quotient winding data in Supplementary Eq. (37), which are related by

ṼQ = VQ −A1 mod Ā . (38)

We emphasize that although Ā used in Supplementary Eq. (35) happens to be the sum of all columns of A in this
specific 1 + 1D example, Ā in general might only involve a portion of columns of the symmetry data since sometimes
PBZ shifts other than 2πn-shifts also leave the symmetry data invariant, as discussed in Supplementary Note 3.

We have shown that U(k, t) has only two different quotient winding data given by changing the PBZ, and next we
show how to remove the remaining PBZ-dependent ambiguity by defining an equivalence among quotient winding data
of different FGUs. Recall that the quotient winding data is introduced for a classification of FGUs with equivalent
symmetry data, since inequivalent symmetry data already infers topological distinction. Then, let us suppose that
the two different FGUs U(k, t) and U ′(k, t) have equivalent symmetry data. According to Supplementary Note 1 C,
we can always pick PBZ choices Φ′k and Φk for U ′(k, t) and U(k, t), respectively, such that they have exactly the same
symmetry data A′ = A. Then, we check whether the quotient winding data of U ′(k, t) for Φ′k is the same as that
of U(k, t) for Φk; if so (not), we call U ′(k, t) and U(k, t) have equivalent (inequivalent) quotient winding data. The
above equivalence among quotient winding data is defined only for FGUs with equivalent symmetry data, and we
will not attempt to compare the quotient winding data when the PBZ choices for U ′(k, t) and U(k, t) yield different
symmetry data, since the quotient winding data can be changed by the PBZ shift that changes symmetry data.

Given two FGUs with equivalent symmetry data, the artificial PBZ choice has no influence on whether they have
equivalent quotient winding data or not. In particular, they must have equivalent quotient winding data if they are
topologically equivalent, meaning that inequivalent quotient winding data provide a topological classification of FGUs
(and thereby of Floquet crystals) with equivalent symmetry data.

To illustrate the classification, let us consider all FGUs that have symmetry data equivalent to the given FGU

U(k, t), indicating that the symmetry data of each FGU is either A in Supplementary Eq. (16) or Ã in Supplementary
Eq. (20) depending on the PBZ choice. Based on the winding data set {V } in Supplementary Eq. (31) and Ā in
Supplementary Eq. (34), the quotient winding data of those FGUs take values in the following set

{VQ} = {(0, q2, q3, q2 − q3)T |q2, q3 ∈ Z} ≈ {V }
ĀZ

≈ Z2 , (39)

where ĀZ = {qĀ = (q, q, q, q)T |q ∈ Z}. To compare the quotient winding data, we always choose the PBZs to yield the
same symmetry data for all those FGUs. With this requirement, we still have two inequivalent types of PBZ choices:

(i) the PBZ choices that yield A in Supplementary Eq. (16) for all those FGUs, and (ii) the PBZ choices that yield Ã
in Supplementary Eq. (20). For the type-A PBZ choices, the quotient winding data of each FGU would take a unique
value in {VQ}, since the quotient winding data is invariant under the PBZ change that keeps the symmetry data. In
this case, if two FGUs have different quotient winding data, they must be topologically inequivalent according to the

above discussion, meaning that {VQ} serves as a topological classification for those FGUs. Similarly, for the type-Ã
PBZ choices, {VQ} also serves as a topological classification. Since the quotient winding data for the two types are
related according to Supplementary Eq. (38), the two topological classifications for two types are equivalent, i.e., the

quotient winding data of two FGUs are the same for the type-A PBZ choices iff they are the same for the type-Ã
PBZ choices. As a result, {VQ} provides a topological classification for all FGUs (and thus for all Floquet crystals)
that have equivalent symmetry data to the given FGU U(k, t), as long as the comparison of VQ is done for the PBZ
choices that yield the same symmetry data for all those FGUs.

Up to now, we have shown the scheme shown in Fig. 1(a), which suggests that the symmetry data and the quotient
winding data together provide a classification of FGU and thereby of Floquet crystals. We emphasize that in general,
it is possible that two FGUs with equivalent symmetry and quotient winding data are topologically distinct, indicating
that the corresponding classification is not necessarily complete.

F. DSI

While the (A, VQ)-based classification can tell the relative topological distinction between two FGUs, it fails to tell
which FGU is essentially static and which has obstruction to static limits. Here static limits are Floquet crystals that
have time-independent Hamiltonians, and picking bases for a static limit can give a static FGU. (See more details in
Supplementary Note 2 D.) The obstruction to static limits means the given Floquet crystal (FGU) with crystalline
symmetry group G is topologically distinct from the all G-invariant static limits (static FGUs). If picking bases for a
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G-invariant Floquet crystal gives a FGU that has obstruction to static limits, the Floquet crystal must be topologically
distinct from all G-invariant static limits and thereby must have obstruction to static limits. Thereby, we can focus
on the obstruction for FGUs to derive sufficient indices. In this part, we will define DSI that can sufficiently indicate
the obstruction for the FGU U(k, t) (and thereby for the underlying Floquet crystal Û(t)).

To determine the obstruction to static limits for our example, we only need to consider the G-invariant static FGUs
that have symmetry data equivalent to U(k, t), since U(k, t) must be topologically distinct from all other G-invariant
static FGUs. We then check whether U(k, t) has quotient winding data equivalent to any of those static FGUs; if not,
U(k, t) must have obstruction to static limits.

To be more specific, recall that we compare quotient winding data by choosing PBZs to yield the same symmetry
data. Let us focus on the PBZ choice Φk = −π for U(k, t), which yields symmetry data A in Supplementary Eq. (16),
winding data V in Supplementary Eq. (28), and quotient winding data VQ in Supplementary Eq. (37). In the following,
we will try to find the set {VQ,SL} of all quotient winding data of all static FGUs that have equivalent symmetry data
to U(k, t), under the constraint that their PBZ choices yield symmetry data equal to A. Then, we can check whether
VQ is in {VQ,SL} or not; if not, the given FGU U(k, t) must have obstruction to static limits.

To achieve this, let us first consider a subset of those static FGUs, which satisfy USL(k, t) = exp[−ihSL(k)t] with

hSL(k) =

2∑
m=1

(Em,k + qm
2π

T
)Pk,m(T ) , (40)

where q1, q2 ∈ Z, and Em,k and Pk,m(T ) are shown in Supplementary Eq. (21). The above equation suggests
USL(k, T ) = U(k, T ), meaning that USL(k, t) has the same quasi-energy band structure as U(k, t). By choosing
the PBZ lower bound for USL(k, t) to be the same as Φk = −π for U(k, t), the symmetry data of USL(k, t) become
equal to A in Supplementary Eq. (16). The return map of USL(k, t) with the PBZ lower bound Φk = −π reads

USL,ε=Φ(k, t) =

2∑
m=1

e−iqm
2π
T tPk,m(T ) , (41)

As a result, the winding data of static FGUs in the chosen subset with Φk = −π must take the form

VSL = q1A1 + q2A2 = (q1, q2, q1, q2)T , (42)

and the static winding data set reads

{VSL} = {q1A1 + q2A2|q1, q2 ∈ Z} , (43)

where A1 and A2 are two columns of A in Supplementary Eq. (16). We can see that {VSL} only depends on the
symmetry data, and thus {VSL} stays invariant even if we include all static FGUs that have equivalent symmetry
data to U(k, t), as long as we choose their PBZs to yield symmetry data equal to A. (See a more general and rigorous
derivation in Supplementary Note 3 D and Supplementary Note 9.)

Based on {VSL}, we can further derive the desired set of quotient winding data as

{VQ,SL} = {(0, q, 0, q)T |q ∈ Z} . (44)

Then, we can check whether the quotient winding data VQ of U(k, t) for Φk = −π (Supplementary Eq. (37)) is an
element of {VQ,SL}, and we find that the answer is no, meaning that U(k, t) must have the obstruction to static limits.
Supplementary Eq. (43) suggests that {VSL} is invariant under the relabelling of the quasi-energy bands (i.e. 1↔ 2)
due to a shift of Φk, indicating that {VQ,SL} does not depend on the PBZ choice Φk. Therefore, we are allowed to

adopt any PBZ choice for U(k, t) to check the above criterion, i.e., allowed to use either VQ or ṼQ in Supplementary
Eq. (37), and we will get the same result that U(k, t) has the obstruction to static limits.

The above procedure can be greatly simplified by noting that VQ /∈ {VQ,SL} is equivalent to V /∈ {VSL}. Here we
use V and VQ to respectively label the winding data and quotient winding data of the 1+1D U(k, t) for a generic PBZ
choice Φk, and the equivalence can be derived from Supplementary Eq. (31), Supplementary Eq. (39), Supplementary
Eq. (43) and Supplementary Eq. (44). In fact, the Φk-independent nature of {VSL} suggests that {VSL} contains all
winding data of all G-invariant static FGUs that have symmetry data equivalent to U(k, t), regardless of the PBZ
choices for those static FGUs; then V /∈ {VSL} means that V cannot exist in any of those static FGUs, and thus
sufficiently indicates that U(k, t) has obstruction to static limits. To exploit this fact, we define the DSI to take values
from the following set X

X =
{V }
{VSL}

≈ {νΓ,+ − νX,+ ∈ Z} , (45)
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Floquet Crystal ෡𝑈(𝑡) or FGU 𝑈(𝒌, 𝑡)
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Quotient Winding 

Data 𝑉𝑄

Supplementary Fig. 1. Relations among the key concepts.

where the last step uses Supplementary Eq. (31) and Supplementary Eq. (43). Specifically, the DSI for U(k, t)—as well
as all other FGUs that have symmetry data equivalent to U(k, t)—is (νΓ,+ − νX,+). Nonzero DSI means V /∈ {VSL}
and thus infers the obstruction to static limit, which is equivalent to the above procedure of comparing quotient
winding data. According to Supplementary Eq. (28), Supplementary Eq. (32) and Supplementary Eq. (33), U(k, t) has
PBZ-independent νΓ,+ − νX,+ = 1, coinciding with the above conclusion that U(k, t) has obstruction to static limits.

It turns out that even for a generic FGU, the evaluation of DSI is independent of PBZ as discussed in Supplementary
Note 3 D. We emphasize that a zero DSI does not rule out possible obstruction for a FGU, as shown in Fig. 1(b),
meaning that DSI is a possibly-incomplete topological invariant. Different DSI values infer topological distinction for
FGUs with the same crystalline symmetry group and equivalent symmetry data. Although the classification given
by DSIs is a subset of that given by quotient winding data (like this 1+1D inversion-invariant case), DSIs have the
advantage of being PBZ-independent.

At the end of this part, we would like to compare our proposed formalism of DSIs for FGUs (and thus for Floquet
crystals) to that of the symmetry indicator [4] for static crystals. To construct the symmetry indicator, Ref. [4]
focused on two sets: the set of all possible symmetry contents for a given crystalline symmetry group, and its subset
that is given by the atomic limits. Ref. [4] first extended the two sets to two groups by artificially adding negative
numbers of bands, and then took the quotient between the two resultant groups to derive the symmetry indicator,
which indicates the Wannier obstruction (or equivalently obstruction to atomic limits). In this work, the quotient
in the construction of DSIs is taken between the winding data set Supplementary Eq. (31) and its subset given by
static limits Supplementary Eq. (43), in order to indicate the obstruction to static limits. As the winding number
can naturally take negative values, Supplementary Eq. (31) and Supplementary Eq. (43) themselves are groups, and
thereby we do not need to extend them. In short, although both Ref. [4] and our work used the mathematical concept
of quotient group, the quotient is taken for completely different physical quantities and the resultant indicators have
completely different physical meanings: the symmetry indicator in Ref. [4] is for static band topology while our DSI
is for periodic quantum dynamics.

G. Section Summary

The key concepts introduced in this section are summarized in Supplementary Fig. 1. We start by defining a set of
bases Supplementary Eq. (1) for the time-evolution operator Û(t), which gives us the time-evolution matrix U(k, t)
in Supplementary Eq. (9) and the symmetry representation of the crystalline symmetry group G like Supplementary
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Eq. (6). We choose both the quasi-energy band gaps to be relevant for the topologically equivalent deformation,

resulting in the Floquet crystal Û(t) and the FGU U(k, t).
On one hand, we combine U(k, T ) with the inversion representation Supplementary Eq. (6) to derive the symmetry

data A in Supplementary Eq. (16) for a PBZ lower bound Φk = −π. On the other hand, we combine the return map
Uε=Φ(k, t) in Supplementary Eq. (22) with the inversion representation Supplementary Eq. (6) to obtain the winding
data V in Supplementary Eq. (28). To resolve the infinite ambiguity of the winding data, we construct Ā from A and
mod Ā out of the winding data V , resulting in the quotient winding data VQ in Supplementary Eq. (37). We can use

the symmetry and quotient winding data to distinguish U(k, t) (Û(t)) from other FGUs (Floquet crystals) with the
same crystalline symmetry group according to Fig. 1(a).

From the symmetry data, we further derive the static winding data set {VSL} in Supplementary Eq. (43), and we
combine {VSL} with the winding data V to obtain the DSI. The nonzero value of the DSI indicates the obstruction to
static limits (Fig. 1(b)). The evaluation of all indices—including symmetry data, quotient winding data, and DSI—is
computationally efficient as they only involve two inversion-invariant momenta in 1BZ.

Supplementary Note 2. More Details on General Definitions

In Supplementary Note 1, we use a two-band inversion-invariant example in 1+1D to illustrate the main idea of the
topological classification and DSI. In this and next section, we will describe the general framework for the topological
classification and DSI, which is applicable to Floquet crystals living in arbitrary spatial dimensions (up to three) with
an arbitrary crystalline symmetry group. We start with the basic definitions in this section. Although most of the
concepts have been introduced in Supplementary Note 1, we, in this section, will re-discuss them in a general and
detailed manner.

We are interested in noninteracting Floquet crystals described by single-particle Hamiltonians Ĥ(t) that satisfy

Ĥ(t) = Ĥ(t+ T ) (46)

with the time period T > 0 (always chosen to be positive throughout the work), and their unitary time-evolution
operators have the form

Û(t) = T exp

[
−i

∫ t

0

dt′Ĥ(t′)

]
, (47)

where this time-ordered form should be replaced by the more general Dyson series when t < 0. For convenience,
we throughout this work imply that all expressions hold for all values of unspecified parameters, e.g., the above two
expressions are implied to hold for all t ∈ R. Owing to Supplementary Eq. (46), Û(t+ T ) is related to Û(t) as

Û(t+ T ) = Û(t)Û(T ) . (48)

Thus, as mentioned in Supplementary Note 1, all essential information of the dynamics is included in one time period
t ∈ [0, T ]. We set the underlying single-particle Hilbert space, in which the operators Ĥ(t) and Û(t) are defined, to
be time-independent.
Ĥ(t) may have various types of symmetries, such as space-time symmetries [8], crystalline symmetries, and internal

symmetries that define the ten-fold way [1–3, 7]. In this work, we only consider the time-independent crystalline

symmetries of Ĥ(t), which form a time-independent crystalline symmetry group G, and allow all other symmetries
to be freely broken while preserving the particle number and keeping the underlying single-particle Hilbert space
well-defined. In terms of the ten-fold way [1–3, 7], we only consider the symmetry class A. Then, for any element g
in G, g can always be expressed as a combination of a point group operation R and a translation by τ , denoted by
g = {R|τ} [9]. The time-evolution operator Û(t) is also invariant under G, i.e.,

[g, Û(t)] = 0 (49)

for all g ∈ G, and again we only care about the symmetries of Û(t) within G. G contains a lattice translation subgroup,
and we denote the number of primitive lattice vectors by d. d is no larger than the spatial dimension of system, and
together with the extra time dimension, we call the system d + 1D. In this work, we require the spatial dimension
of the system to be no larger than 3, thus d ≤ 3; examples of G include spatially-three-dimensional space groups,
spatially-two-dimensional plane groups, and spatially-one-dimensional line groups.
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Owing to the lattice translation symmetry, the Bloch momentum k ∈ 1BZ is a good quantum number. Then, we
can choose the orthonormal bases of the underlying Hilbert space as |ψk,a〉 with a taking N different values for all
other degrees of freedom like spin, orbital, and so on. In this work, we require N to be a finite number, and we
always imply k ∈ 1BZ unless k ∈ Rd is explicitly specified. As the underlying Hilbert space is time-independent,
we always choose |ψk,a〉 to be independent of time. We further choose |ψk,a〉 = |ψk+G,a〉 to hold for all reciprocal
lattice vectors G. To study the topology, we require the periodic parts of |ψk,a〉, exp[−ik · r̂]|ψk,a〉, to be smooth
functions of k ∈ Rd. Such smooth choice always exists in one spatial dimension; in two and three spatial dimensions,
the smooth choice exists when the total Chern numbers of all bands are vanishing [10]. The above requirements for
bases can always be satisfied by a proper Fourier transformation of the real-space bases of any tight-binding model,
just like Supplementary Eq. (1) in Supplementary Note 1. Nevertheless, our discussion includes the case where the
bases cannot be reproduced by physical atomic orbitals or equivalently do not form a band representation [5]. Owing

to the smoothness requirement, |ψk,a〉 may not be the eigenstates of Ĥ(t) or Û(t), and thus they are in general called
quasi-Bloch states [10, 11]. For convenience, we define a row vector |ψk〉 = (..., |ψk,a〉, ...).

With |ψk〉 as bases, Û(t) can be represented as

Û(t) =
∑
k

|ψk〉U(k, t)〈ψk| (50)

with [U(k, t)]aa′ = 〈ψk,a|Û(t)|ψk,a′〉. We extend the domain of k in U(k, t) from 1BZ to Rd by U(k + G, t) = U(k, t),
and the same convention is implied for all other matrix representations furnished by |ψk〉 in this work. We require
U(k, t) to be a continuous (not necessarily smooth) function of (k, t) ∈ Rd × R, though the matrix representation of
the Hamiltonian can be discontinuous along time [6]. Supplementary Eq. (48) suggests

U(k, t+ T ) = U(k, t)U(k, T ) . (51)

The time-evolution matrix U(k, t) for the 1+1D example in Supplementary Note 1 is shown in Supplementary Eq. (9).
For any g = {R|τ} ∈ G, g is represented as

g|ψk〉 = |ψkg 〉ug(k) , (52)

where kg = Rk and ug(k) is unitary. In the remaining of this work, all symmetry representations (like ug(k) above)
are implied to be unitary. Owing to the periodicity in reciprocal lattice vectors and the smoothness requirement of
the bases, ug(k+G) = ug(k), and ug(k) is a smooth function of k ∈ Rd. As a representation of G, ug(k) also satisfies

ug1g2(k) = ug1(kg2)ug2(k) ∀g1, g2 ∈ G . (53)

Furthermore, Supplementary Eq. (49) infers

ug(k)U(k, t)u†g(k) = U(kg, t) . (54)

For the 1+1D example in Supplementary Note 1, we only show the symmetry representation for g = P in Supplemen-
tary Eq. (6), as the representations of other symmetry operations in G can be derived from it using Supplementary
Eq. (53).
|ψk〉 has a U(N) gauge freedom:

|ψk〉 → |ψk〉W (k) , (55)

where the U(N) gauge transformation matrix W (k) is a time-independent U(N) matrix that satisfies W (k + G) =

W (k) and is a smooth function of k ∈ Rd. To make sure that Û(t) and g are invariant under the gauge transformation
Supplementary Eq. (55), U(k, t) and ug(k) should simultaneously transform as

U(k, t)→W †(k)U(k, t)W (k)

ug(k)→W †(kg)ug(k)W (k) .
(56)

Any physical or topological property of the system should be gauge-invariant.

A. Phase Band and Quasi-energy Gap

We label the eigenvalues of the unitary U(k, t) as e−iφm,k(t) with m = 1, 2, ..., N , and the quasi-energy bands
are Em,k = φm,k(T )/T . By definition, e−iEm,kT are the eigenvalues of U(k, T ). Throughout this work, we only
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Supplementary Fig. 2. Schematic quasi-energy band structures for a 1+1D 4-band model, where the blue solid lines are
the quasi-energy bands within the PBZ and the numbers on the blue solid lines stand for the m index. In (a), the lower and
upper dashed lines are Φk and Φk + 2π, respectively, and the orange-shaded region is the PBZ. The gray solid lines are their
redundant copies shifted by multiples of 2π. In (b), we only show the quasi-energy bands in the PBZ, and the dashed lines
mark the boundary of the PBZ. “R.G.”, “I.G.”, and “I.S.” stand for relevant gap, irrelevant gap, and isolated set, respectively.

consider U(k, t) with at least one quasi-energy gap, i.e., there exists Φk such that (i) Φk is a real continuous function
of k ∈ Rd, (ii) Φk+G = Φk, (iii) Φkg = Φk, and (iv) e−iΦk 6= e−iEm,kT for all m and for all k (or equivalently

det[e−iΦk − U(k, T )] 6= 0 for all k). The 2π redundancy of phase bands, as well as the 2π/T redundancy of quasi-
energy bands, can be removed by requiring φm,k(t) to take values only in the PBZ [Φk,Φk + 2π). Two k-independent
examples of Φk have been shown in Fig. 2(a-b), and here we show a schematic k-dependent Φk for a 1 + 1D 4-band
U(k, t) in Supplementary Fig. 2(a).

As exemplified by Supplementary Fig. 2(a), we can always order the band index m according to the values of Em,k
in the PBZ as Em+1,k ≥ Em,k. With this convention, we would have Em,k+G = Em,k, Em,kg = Em,k, and Em,k
is continuous in Rd. Furthermore, a quasi-energy gap exists between two quasi-energy bands Em,k and Em−1,k iff
Em,k > Em−1,k for all k, where E0,k = EN,k − 2π/T . In general, U(k, t) can have more than one quasi-energy gaps in
the PBZ, and Φk can be chosen to lie in any of them. For example, Supplementary Fig. 2(a) shows three quasi-energy
gaps: one at the PBZ lower bound, one between the bands 1 and 2, and one between the bands 3 and 4. While the
choice of the PBZ should have no influence on any physical and topological properties of the system, a good choice
would simplify the derivation, and thus we, in this work, always set the PBZ lower bound in one of the relevant gaps
as carefully discussed below.

B. Topological Equivalence

The topology in Floquet crystals is related to the topology in static crystals [12, 13], and thereby let us start with a
brief review on the latter. The static crystals are governed by Bloch Hamiltonian, and we care about the symmetry-
preserving continuous deformation of the Bloch Hamiltonian. The deformation may close certain Bloch band gaps,
and the key question is whether such a deformation drives a static insulator to a new phase with the same symmetry
but different band topology. The answer lies in a special band gap, which is the gap between the valence (highest
occupied) band and conduction (lowest unoccupied) band. Only this gap is relevant, while all other gaps, either
between two occupied bands or between two unoccupied bands, are irrelevant. As long as the symmetry-preserving
continuous deformation of the Bloch Hamiltonian does not close the relevant band gap, the band topology must stay
unchanged no matter how many irrelevant gaps are closed [14].

I. Floquet Crystal and FGU

Based on the above brief review, we can see the relevant gaps play a crucial role in the topological equivalence. So
to define the topological equivalence for Floquet crystals, we need to first define the relevant gaps for them. In Floquet
crystals, we care about the deformation of time-evolution operator/matrix instead of the Hamiltonian. Unlike the
static case, it is unintuitive to define the occupied quasi-energy bands for a Floquet crystal that is not in equilibrium.
In this case, we may choose certain number L of the quasi-energy gaps in a PBZ to be the relevant gaps [2, 3], and the
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rest of the quasi-energy gaps are irrelevant. In the schematic example Supplementary Fig. 2(b), we choose two of the
three quasi-energy gaps to be relevant, resulting in L = 2. For the two-band 1+1D example in Supplementary Note
1, we choose both quasi-energy gaps in Fig. 2(a,b) to be relevant, also resulting in L = 2. If we know the relevant
gaps for one PBZ and then change the PBZ choice, the new quasi-energy gaps in the new PBZ must be unique
2πn-shifted copies (for n ∈ Z with n = 0 corresponding the unshifted case) of those in the original PBZ, and then
a new quasi-energy gap is relevant iff the corresponding original one is relevant. As a result, the number of relevant
gaps is always L for any PBZ choice.

The L relevant gaps in a PBZ separate the quasi-energy bands into L isolated sets, labeled by l = 1, 2, ..., L.
Throughout the work, when we talk about a set of bands, we strictly mean a multiset of bands since two degenerate
bands are counted as two instead of one. We emphasize that the quasi-energy bands in each isolated set might not
be fully connected due to the possible existence of irrelevant gaps, but quasi-energy bands in different isolated sets
must be disconnected owing to the relevant gaps. As mentioned above, we always set the PBZ lower-bound in one
of the relevant gaps in this work. With this convention, the L isolated sets can be ranked such that the l + 1th set
always has higher quasi-energies than the lth set at the same k, and the lth relevant gap is right beneath the lth
isolated set. In the schematic example Supplementary Fig. 2(b), the first and second isolated sets contain m = 1 and
m = 2, 3, 4 quasi-energy bands, respectively, and the first (second) relevant gap is right beneath the first (second)
isolated set of quasi-energy bands. For the two-band 1+1D example in Supplementary Note 1, either of the two
isolated sets in Fig. 2(a,b) contain only one quasi-energy band. By definition, an irrelevant gap can only exist between
two quasi-energy bands within the same isolated set.

After picking the relevant gaps, we now are ready to provide explicit definitions for the Floquet crystal and the
FGU.

Definition 1 (Floquet Crystals). A Floquet crystal is defined to be a time-evolution operator Û(t) (Supplementary
Eq. (47)) equipped with a time period T (Supplementary Eq. (48)), a relevant gap choice, and a crystalline symmetry

group G (Supplementary Eq. (49)), which is in short denoted by Û(t).

In the definition of a Floquet crystal, we have implied (and will always imply) that Û(t) is unitary and its matrix
representation for any bases is continuous.

Definition 2 (FGUs). A FGU is defined to be a time-evolution matrix U(k, t) (Supplementary Eq. (50)) equipped with
a time period T (Supplementary Eq. (51)), a relevant gap choice, a crystalline symmetry group G, and a symmetry
representation ug(k) (Supplementary Eq. (53) and Supplementary Eq. (54)), which is in short denoted by U(k, t).

In the definition of a FGU, we have implied (and will always imply) that U(k, t) and ug(k) are unitary, continuous
(smooth for ug(k)), and invariant under the shift of k by reciprocal lattice vectors. By choosing bases for a Floquet
crystal, we naturally get a FGU with the same time period, relevant gaps and crystalline symmetry group as the
Floquet crystal. When referring to the gauge transformation of FGU, we mean the simultaneous gauge transformation
in Supplementary Eq. (56). So FGUs given by the same Floquet crystal with different choices of bases are related by
gauge transformations.

We emphasize that changing the relevant gap choice would give a different Floquet crystal or FGU, even if we
keep all other parts (including time-evolution operator/matrix) invariant, since it would dramatically change the
topological properties as discussed in Supplementary Note 2 B II. Moreover, the specified G does not need to include
all crystalline symmetries of a Floquet crystal or a FGU, meaning that the crystalline symmetries outside G are
allowed to be broken for the study of topology. The choice of G depends on the physics of interest.

II. Topological Equivalence Among FGUs

With the definition of relevant gaps and FGUs, we next discuss the topological equivalence. Before addressing
the topological equivalence among Floquet crystals, let us first focus on the topological equivalence among FGUs.
Suppose we have two FGUs U(k, t) (with T , relevant gaps, G, and ug(k)) and U ′(k, t) (with T ′, relevant gaps, G, and
u′g(k)). Note that the two FGUs are invariant under the same crystalline symmetry group G. In analogy to the static
case, we can operationally define the topological equivalence for FGUs as the following.

Definition 3 (Topological Equivalence for FGUs). The two FGUs U(k, t) and U ′(k, t) are defined to be topologically
equivalent under the crystalline symmetry group G iff there exists a continuous deformation that connects them,
preserves G and preserves all relevant gaps.

As long as the crystalline symmetry group G for the topological equivalence is specified, we may refer to “topolog-
ically equivalent under G” as “topologically equivalent” in short. The topological equivalence defined in Def. 3 is an
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Supplementary Fig. 3. A schematic plot of topologically equivalent continuous deformation Us(k, t) for U(k, t) and U ′(k, t)
having three relevant gaps (R.G.). The orange dashed lines are Φk,s and Φk,s + 2π. In (a), we schematically plot the quasi-
energy bands given by Us(k, Ts) at a fixed s with three deformed relevant gaps (D.R.G.). Here we assume that all gaps are
indirect at each s, while in general direct gaps are enough. In (b), we show the quasi-energy range of the quasi-energy bands
in (a) by the purple region. The nonzero width of the purple region is given by the dispersion of the quasi-energy bands with
respect to k, while the white parts indicate the deformed relevant gaps. We group the (b)-type plots for all values of s to get
(c). In (c), the three purple regions show how three isolated sets of quasi-energy bands evolve along s, and the white regions
stand for three deformed relevant gaps which are not closed during the entire deformation. The indirect gaps allow us to always
make Φk,s independent of k (thus of zero width in the quasi-energy).

equivalence relation. Specifically, a FGU is always topologically equivalent to itself; if a FGU U(k, t) is equivalent
to another FGU U ′(k, t), then U ′(k, t) is equivalent to U(k, t); if U(k, t) is equivalent to U ′(k, t) and U ′(k, t) is
equivalent to U ′′(k, t), then U(k, t) is equivalent to U ′′(k, t). The relation between Def. 3 and the related previous
literature [1–3, 7] will be addressed in Supplementary Note 2 B IV. In the rest of this part, we elaborate on each part
of Def. 3.

A continuous deformation between U(k, t) and U ′(k, t) is a unitary matrix function Us(k, t) with s ∈ [0, 1] such
that (i) Us(k+G, t) = Us(k, t) and Us(k, t+Ts) = Us(k, t)Us(k, Ts), (ii) Us(k, t) is a continuous function of (k, t, s) ∈
Rd × R × [0, 1] and Ts > 0 is continuous in [0, 1], and (iii) Ts=0 = T , Ts=1 = T ′, and there exist U(N) gauge
transformation matrices W0,1(k) such that

Us=0(k, t) = W †0 (k)U(k, t)W0(k)

Us=1(k, t) = W †1 (k)U ′(k, t)W1(k) .
(57)

The existence of Us infers that U(k, t) and U ′(k, t) must have the same matrix dimension.

Preserving G means that there exist unitary us,g(k) such that (i) us,g(k) is a continuous function of (k, s) ∈ Rd×[0, 1]
and us,g(k + G) = us,g(k), (ii) us,g(k) satisfies Supplementary Eq. (53) for each value of s, (iii)

us,g(k)Us(k, t)u
†
s,g(k) = Us(kg, t) , (58)
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and (iv)

us=0,g(k) = W †0 (kg)ug(k)W0(k)

us=1,g(k) = W †1 (kg)u
′
g(k)W1(k) .

(59)

Owing to Supplementary Eq. (57) and Supplementary Eq. (59), the topological equivalence between FGUs is U(N)
gauge invariant.

Preserving all relevant gaps first requires that there exist a proper Φk,s that allows us to plot the quasi-energy
bands given by Us(k, Ts) within (Φk,s,Φk,s + 2π). Then, preserving all relevant gaps further requires that if we
track the relevant gaps of U(k, t) as varying s from 0 to 1, (i) none of the relevant gaps close and (ii) the deformed
relevant gaps of U(k, t) would exactly coincide with the relevant gaps of U ′(k, t) as s reaches 1. To be more specific,
a proper Φk,s is required to satisfy that Φk+G,s = Φk,s, it is a real continuous function of (k, s) ∈ Rd × [0, 1],
Φkg,s = Φk,s, det(e−iΦk,s − Us(k, Ts)) 6= 0, and Φk,s=0 is a PBZ lower bound of U(k, t). If the relevant gaps are
preserved, Φk,s=1 must lie in a relevant gap of U ′(k, t). Owing to this requirement, two topologically equivalent
FGUs must have the same number of relevant gaps. Supplementary Fig. 3 schematically shows an example of the
topologically continuous deformation for the case with three indirect relevant gaps, though in general direct gaps
are enough. In particular, the three white regions in Supplementary Fig. 3(c) show that the three relevant gaps of
U(k, t) keep open as s continuously increases and eventually become the three relevant gaps of U ′(k, t). A more
mathematical but equivalent way to express this requirement is that U(k, t) and U ′(k, t) have L relevant gaps, and
for any PBZ lower bound Φk of U(k, t), there exists Φl,k,s with l = 1, 2, ..., L such that (i) Φl,k,s is a continuous
function of (k, s) ∈ Rd × [0, 1] and satisfies Φl,k+G,s = Φl,k,s and Φl,kg,s = Φl,k,s, (ii) Φl,k,s=0 lies in the lth relevant
gap of U(k, t) and Φ1,k,s=0 = Φk, (iii) Φl,k,s=1 (l = 1, ..., L) respectively lie in all L relevant gaps of U ′(k, t), and (iv)
det
(
e−iΦl,k,s − Us(k, Ts)

)
6= 0. Another equivalent statement can be obtained by replacing “for any PBZ lower bound

Φk of U(k, t)” by “for at least one PBZ lower bound Φk of U(k, t)” in the above requirement.
We emphasize that the choice of relevant gaps is crucial for determining whether two FGUs are topologically

equivalent according to Def. 3. Even if two FGUs have exactly the same time-evolution matrix U(k, t) = U ′(k, t),
different choices of relevant gaps can make them topologically distinct. As mentioned above, if we choose different
numbers of relevant gaps for U(k, t) and U ′(k, t), they must be topologically distinct since no continuous deformation
can change the number of relevant gaps without closing any of them.

Even if we choose the same number of relevant gaps for U(k, t) = U ′(k, t), it is still possible to make them
topologically distinct by choosing different quasi-energies for the relevant gaps. Let us consider two 0 + 1D two-band
FGUs with trivial G, and suppose they have the same time-evolution matrix U(t) = U ′(t) (the Bloch momentum is
not needed) as schematically shown in Supplementary Fig. 4(a). Suppose we only pick one of the two quasi-energy
gaps to be relevant. If we choose different relevant gaps for the two FGUs, it is impossible to establish the topological
equivalence between them according to Def. 3, since it is impossible to continuously deform the relevant gap of U into
the relevant gap of U ′ without closing it. In reality, choosing the relevant gaps normally requires careful consideration
based on the physics of interest. One common choice is to treat all quasi-energy gaps as relevant, just like the 1+1D
example in Supplementary Note 1. In the remaining of this work, we will not address the issue of choosing the relevant
gaps, and we always discuss FGUs with relevant gaps already specified, unless specified otherwise.

III. Topological Equivalence Among Floquet Crystals

Now let us turn to the topological equivalence among Floquet crystals. Suppose we have two Floquet crystals Û(t)

(with T , a relevant gap choice, and G) and Û ′(t) (with T ′, a relevant gap choice, and G). Similar to Def. 3, we have
the following definition for Floquet crystals.

Definition 4 (Topological Equivalence for Floquet Crystals). The two Floquet crystals Û(t) and Û ′(t) are defined to
be topologically equivalent iff there exists a continuous deformation that connects them, preserves G and preserves all
relevant gaps.

Specifically, the deformation that connects Û(t) and Û ′(t) is a unitary operator Ûs(t) depending on s ∈ [0, 1] such

that (i) Ûs=0(t) = Û(t) and Ûs=1(t) = Û ′(t), (ii) Ûs(t + Ts) = Ûs(t)Ûs(Ts) with Ts > 0 satisfying Ts=0 = T and

Ts=1 = T ′. The deformation being continuous means that there exist |ψk,s〉 serving as bases of Ûs(t) at each value
of s (thus satisfying all requirements for bases at each value of s) such that (i) 1BZ is independent of s and the
periodic part of the bases e−ik·r̂|ψk,s〉 is a continuous function of (k, s) ∈ Rd× [0, 1], and (ii) the matrix representation

of Ûs(t), denoted by Us(k, t), is a continuous function of (k, t, s) ∈ Rd × R × [0, 1], and (iii) Ts is continuous in

[0, 1]. The deformation preserving symmetry means that [Ûs(t), g] = 0 and g|ψk,s〉 = |ψkg,s〉us,g(k). The deformation
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Supplementary Fig. 4. Schematic plots of the phase bands for 0+1D class-A models. “R.G.” and “I.G.” stand for relevant
gap and irrelevant gap, respectively. In (a), we consider two 0 + 1D class-A 2-band FGUs with the same time-evolution matrix
U(t) = U ′(t). Due to the different choices of the relevant gaps, the two FGUs are topologically distinct according to Def. 3.
In (b), we schematically show the continuous deformation described in Supplementary Eq. (61) for a 0 + 1D class-A case:

Us(t) = e−iφs(t) with φs(t) = φ(t) + 2πst/T . From blue to red, s varies from 0 to 1. The deformed PBZ [Φs,Φs + 2π) (bounded
by the dashed orange lines) is given by Φs = φs(T )− π, which always lies in the only quasi-energy gap. The quasi-energy gap
is kept open along the deformation as φs(T )− Φs cannot pass through 0.

preserving the relevant gaps means that after choosing the relevant gaps of Us=0(k, t) (Us=1(k, t)) to be the same as

Û(t) (Û ′(t)), the relevant gaps of Us=0(k, t) are kept open as s increases from 0 and eventually becomes the relevant
gaps of Us=1(k, t) as s reaches 1.

The defined topological equivalence between two Floquet crystals is a equivalence relation, i.e., (i) a Floquet crystal

is always equivalent to itself, (ii) Û(t) being equivalent to Û ′(t) infers that Û ′(t) being equivalent to Û(t), and (iii)

Û(t) being equivalent to Û ′(t) and Û ′(t) being equivalent to Û ′′(t) infer that Û(t) being equivalent to Û ′′(t).
As discussed in Supplementary Note 2 B II, we can naturally define a FGU for any given Floquet crystal upon

choosing bases. If two Floquet crystals are topologically equivalent, they must have topologically equivalent FGUs
for any bases choices, where the equivalence between the FGUs is established by Us(k, t) (together with Ts) and
us,g(k) furnished by |ψk,s〉 in the above discussion. Therefore, the topological distinction among FGUs must infer the
topological distinction among the underlying Floquet crystals, and all topological invariants of FGUs can be applied
to Floquet crystals. As we do not require the completeness of the topological invariants, we in this work focus on the
topological equivalence among FGUs unless specified otherwise.

IV. Comparison to Previous Literature

Def. 3 for FGUs is similar to the definition in Sec. 2 of Ref. [1], except the following two key differences. First,
Def. 3 allows the deformation to deviate from the topologically equivalent FGUs by U(N) gauge transformations
(Supplementary Eq. (57) and (59)) so that the defined topological equivalence is gauge invariant. Second, Def. 3
allows the symmetry representation and time period to vary along the deformation, and also allows the symmetry
representation to depend on momenta. Next, we discuss the possible difference between the topological classification
based on Def. 3 and the classification in Ref. [2, 3, and 7].

For the topological equivalence defined in Def. 3, the PBZ is allowed to continuously evolve along with the defor-
mation Us(k, t) (e.g., Supplementary Fig. 3), or in other words the quasi-energy bands (times Ts) given by Us(k, Ts)
do not need to be confined in a s-independent 2π range (like [−π, π)). The reason for us to adopt this definition is
demonstrated by the following deformation.

Let us consider a Floquet Hamiltonian in class A parametrized by s ∈ [0, 1] as

Ĥs(t) = Ĥ(t) +
2π

T
s , (60)

where Ĥ(t + T ) = Ĥ(t) and different values of s just correspond to different calibrations of the energy (or different
global energy shifts). We emphasize that even in the Fock space for many-body Hamiltonians, 2πs/T should still be
proportional to the identity operator instead of the particle-number operator, and thus it does not change the particle



17

number. Therefore, varying s in Ĥs(t) should not change any physical property (like the crystalline symmetry group
G) or topological property (like topological distinction).

We can choose a set of s-independent bases, and then the corresponding time-evolution matrix reads

Us(k, t) = U0(k, t) exp

(
−i

2πs

T
t

)
, (61)

and the representation of G reads ug(k). Let us focus on U0(k, t) and U1(k, t). Since U0(k, T ) = U1(k, T ), we can
choose the same relevant gaps for U0(k, t) and U1(k, t). Then, we have two FGUs U0(k, t) and U1(k, t) with the same
T , same relevant gap choice, same G, and same ug(k), provided that all other requirements are satisfied. Us(k, t) in
Supplementary Eq. (61), together with Ts = T and us,g(k) = ug(k), establishes the topological equivalence between
U0(k, t) and U1(k, t), since the relevant gaps are preserved and all other conditions are satisfied. Specifically for the
relevant gaps, suppose Φk is a PBZ lower bound of U0(k, T ), and we can choose the deformed PBZ lower-bound during
the deformation to be Φk,s = Φk + 2πs, resulting in the deformed quasi-energy bands Esm,k = E0

m,k + 2πs/T within

[Φk,s,Φk,s + 2π)/T . Then, varying s can only shift all quasi-energy bands simultaneously by the same amount and
thus cannot close any of the quasi-energy gaps. Moreover, Es=1

m,k = E0
m,k + 2π/T means that the quasi-energy gaps at

s = 1 are nothing but 2π-shifts of those at s = 0. As a result, the relevant gaps of U0(k, t) are kept open and eventually
coincide with the relevant gaps of U1(k, t) as s reaches 1, since U0(k, t) and U1(k, t) have the same relevant gaps.
The topological equivalence between U0(k, t) and U1(k, t) according to Def. 3 coincides with above statement that the
global energy shift should not change any physical or topological property in class A. As all quasi-energy bands are
continuously shifted by 2π/T as s changes from 0 to 1, no bands (times Ts) can be confined in a s-independent 2π
range during this deformation.

Owing to Def. 3, the topological classification that we obtain might differ from the previous classification [2, 3, 7].
One example would be 0 + 1D one-band class-A case without any crystalline symmetries. In this case, the Bloch
momentum is not needed, and we consider a FGU with a 1 × 1 time-evolution matrix U0(t) = e−iφ(t), where φ(t)
is real and U0(t + T ) = U0(t)U0(T ). For the PBZ lower bound Φ = φ(T ) − π, we have only one quasi-energy φ(T )
and only one quasi-energy gap—the one between φ(T ) and φ(T ) − 2π—which we have chosen to be relevant. Let
us again shift the global energy to give a deformation Us(t) = e−iφ(t)−i2πst/T with s ∈ [0, 1], which is a special case
of Supplementary Eq. (61). As schematically shown in Supplementary Fig. 4(b), the deformation indeed does not
close the quasi-energy gap, and thereby U0(t) is topologically equivalent to U1(t) as long as we also choose the only
quasi-energy gap of U1(t) to be relevant, according to Def. 3 and the above discussion. In contrast, according to the
classification in Ref. [2, 3, and 7], U0(t) and U1(t) are topologically distinct since they have different winding numbers
if we impose the same branch cut for their return maps. Such a difference arises from the different definition of
topological equivalence in Ref. [2, 3, and 7].

C. Return Map

The definition of the return map has been discussed in Supplementary Note 1 D. Here we just need to generalize
it from the 1 + 1D two-band case to a N -band FGU U(k, t) with T , a relevant gap choice, a generic G, and ug(k).
Specifically, we replace k by k and replace 2 bands by N bands in Supplementary Eq. (21)-(23) to get the return map

Uε(k, t) = U(k, t) [U(k, T )]
−t/T
ε , (62)

where

[U(k, T )]
−t/T
ε =

N∑
m=1

exp

[
− t

T
logεk(e−iEm,kT )

]
Pk,m(T ) , (63)

and Pk,m(T ) is the projection matrix given by the eigenvector of U(k, T ) for e−iEm,kT . Under the gauge transformation
Supplementary Eq. (56), Uε(k, t) transforms as

Uε(k, t)→W †(k)Uε(k, t)W (k) . (64)

Recall that we always choose the PBZ lower bound Φk as the branch cut εk = Φk unless specified otherwise. Then,
Uε=Φ(k, t+ T ) = Uε=Φ(k, t), Uε=Φ(k, t) is a continuous function of (k, t) ∈ Rd ×R, Uε=Φ(k + G, t) = Uε=Φ(k, t), and
Uε=Φ(k, t) is G-invariant

ug(k)Uε=Φ(k, t)u†g(k) = Uε=Φ(kg, t) . (65)
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(See more details in Supplementary Note 8.) Since the PBZ lower bound Φk is required to lie in a relevant gap,
Uε=Φ(k, t) is continuously deformed under any topologically equivalent continuous deformation of U(k, t), as long as
we continuously deform the PBZ lower bound along with the deformed relevant gap.

D. Obstruction to Static Limits

Def. 3 only defines the relative topological equivalence, but it does not tell us which side is topologically nontrivial.
In static crystals, the obstruction to the atomic limits is used to define the topologically nontrivial systems [4, 5]. As
mentioned in Supplementary Note 1 F, here we are interested in the obstruction to static limits for the characterization
of Floquet dynamics. Specifically, a Floquet crystal Û(t) has obstruction to static limits iff given any continuous

deformation that starts from Û(t) and ends as the time-evolution operator of a static Hamiltonian, the deformation

must break certain symmetries or close certain RGs of Û(t). It turns out that for later derivations, it is more convenient
to use an equivalent formal definition of obstruction to static limits based on a formal definition of static limits, which
are discussed below.

The explicit definition that we adopt for static limits and static FGUs in this work is the following.

Definition 5 (Static Limits and Static FGUs). A static limit is a Floquet crystal with static Hamiltonian; a static
FGU is a FGU with static matrix Hamiltonian.

As a static limit (static FGU) satisfies the definition of Floquet crystal (FGU), we can study its topological properties
according to proposed definition of topological equivalence.

Now we discuss how to construct static limits given a static Hamiltonian ĤSL. The time-evolution operator
ÛSL(t) = exp(−iĤSLt) and crystalline symmetry group G can be naturally determined from ĤSL. However, to make
it a static limit that satisfies the definition of a Floquet crystal, we need to have the time period and the relevant
gaps. This is where a subtlety appears. When we refer to the period T of a Floquet crystal, we actually mean
the fundamental period—the smallest positive T that satisfies Ĥ(t + T ) = Ĥ(t). Static Hamiltonians do not have
a fundamental period since they are invariant under any time shift. To resolve this issue, we can assign a period
TSL > 0 to a given ÛSL(t), and determine the quasi-energy bands and pick the relevant gaps according to ÛSL(TSL).
Another way to fix this issue is to add an infinitesimal drive with period TSL to the static Hamiltonian and define the
Floquet crystal based on the resultant driven Floquet system. Both ways are equivalent, and we, in this work, stick

to assigning TSL to ÛSL(t). The resultant static limit is just the time-evolution operator ÛSL(t) = e−iĤSLt with the

assigned TSL, the relevant gaps chosen according to ÛSL(TSL), and the crystalline symmetry group G of ĤSL. The
same procedure can be applied to a static matrix Hamiltonian HSL(k) with a crystalline symmetry group G and the
representation ug(k), resulting in a static FGU as USL(k, t) = e−iHSL(k)t with the assigned TSL, the relevant gaps
chosen according to USL(k, TSL), G, and ug(k). A static FGU can be naturally given by picking bases for a static
limit. We emphasize that different assigned TSL’s or different relevant gap choices by definition give different static
limits (or static FGUs).

Definition 6 (Obstruction to Static Limits). A Floquet crystal (a FGU) with G is defined to have obstruction to
static limits iff it is topologically distinct from all static limits (static FGUs) with G.

According to the definition, it seems that we need take into account all possible choices of TSL to determine
the obstruction. It turns out that given a FGU with time period T and crystalline symmetry group G, we can
neglect static FGUs with TSL 6= T in order to determine the obstruction for the FGU. It is because for any static
FGU USL(k, t) = e−iHSL(k)t with TSL, relevant gap choice, G, and ug(k), we always have another static FGU

U ′SL(k, t) = e−iHSL(k)
TSL
T t with T , relevant gap choice same as USL, G, and ug(k), such that USL(k, t) and U ′SL(k, t)

are topologically equivalent. The same relevant gap choice is allowed by USL(k, TSL) = U ′SL(k, T ), and the topological

equivalence is established by Us(k, t) = e−iHs(k)t with s ∈ [0, 1], Ts = (1 − s)TSL + sT , Hs(k) = HSL(k)TSL/Ts,
and us,g(k) = ug(k). In other words, to have obstruction to static limits, a G-invariant FGU with period T must
and only need to be topologically distinct from all G-invariant static FGUs with TSL = T . The same conclusion can
also be drawn for the Floquet crystals. Furthermore, if a FGU of a G-invariant Floquet crystal for certain bases has
obstruction to static limits, the Floquet crystal then must be topologically distinct from all G-invariant static limits,
and thus has obstruction to static limits. Therefore, in the remaining of this work, we will focus on the obstruction
of FGUs, and when determining the obstruction for a FGU with period T , we always assign TSL = T to all static
FGUs unless specified otherwise.

In contrast to Def. 5 adopted in this work, the static limit was sometimes implied as the T → 0 limit in previous
literature [15]. According to Def. 5, T → 0 is just one way to make a Floquet crystal (or FGU) static, while there
are infinite many other ways, including continuously decreasing the driving amplitude to zero while fixing T . In this
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work, if a Floquet crystal (or FGU) has the obstruction to static limits, all continuous deformations that make it
static are forbidden (or equivalently must break certain symmetries or close certain relevant gaps).

Supplementary Note 3. Details on General Framework

In this section, we follow Supplementary Fig. 1 to introduce the symmetry data, the quotient winding data, and
the DSI for class-A d + 1D FGUs (and thus for Floquet crystals) with a generic crystalline symmetry group G and
d ≤ 3. Henceforth, when we discuss different FGUs, we always imply that they have the same crystalline symmetry
group G.

A. Symmetry Data of Quasi-energy Band Structure

We start with introducing the symmetry data of the quasi-energy bands. We first follow Ref. [4, 5, and 9], and then
discuss the subtlety that is absent in static crystals.

Let us first consider a generic FGU U(k, t) with time period T , a relevant gap choice, a generic crystalline symmetry
group G and a symmetry representation ug(k). According to Supplementary Eq. (52), an element g = {R|τ} of the
crystalline symmetry group G can change the Bloch momentum k to kg = Rk. Iff there exists a reciprocal lattice
vector G such that kg = k + G, we say g leaves k invariant. For any k ∈1BZ, all elements of G that leave k invariant
form a group, which is called the little group [9] of k and denoted by Gk. Gk must contain all lattice translations in G;
if Gk contains more than lattice translations, such as the little groups for Γ and X discussed in Supplementary Note
1 C, we call k a high-symmetry momentum [9].

Now we focus on Gk. When restricting g ∈ Gk, the representation ug(k) satisfies a simpler version of Supplementary
Eq. (53), which reads

ug1g2(k) = ug1(k)ug2(k) ∀g1, g2 ∈ Gk , (66)

where the Bloch momenta other than k are not involved. Supplementary Eq. (66) suggests ug(k) with fixed k is
a representation of Gk, which is called a small representation of Gk. In particular, the small representation ug(k)
commutes with the time-evolution matrix U(k, t):

ug(k)U(k, t)u†g(k) = U(k, t) ∀g ∈ Gk . (67)

Supplementary Eq. (67) suggests that each eigenvector of U(k, T ) participates in furnishing a definite small irreducible
representation (irrep) of Gk, and thereby we can associate each quasi-energy band in a given PBZ with a small irrep
of Gk.

Let us now pick a generic PBZ lower bound Φk for the given FGU U(k, t). Recall that the quasi-energy bands in
the Φk-PBZ are separated into isolated sets by the relevant gaps. For each small irrep α of Gk, we can count the
number of quasi-energy bands in the lth isolated set that are associated with it, labelled as ñlk,α, where α ranges

over all inequivalent small irreps of Gk. For convenience, we do not directly use ñlk,α but use the number of copies of

irreps, which is nlk,α = ñlk,α/dα with dα the dimension of the small irrep α of Gk. In the 1 + 1D example discussed in
Supplementary Note 1 C, the small irreps at high-symmetry momenta are labelled by the parity and have dimension
1, resulting in nlk,α = ñlk,α. nlk,α is invariant under the gauge transformation Supplementary Eq. (56), since it is
derived from the trace of symmetry representations.

For the given crystalline symmetry group G, we do not need to include all momenta in 1BZ for the study of nlk,α. To
see this, we classify the momenta in 1BZ into a finite number of types based on the following definition. Two momenta
k and k′ in 1BZ are defined to be of the same type iff there exists a symmetry g ∈ G, a reciprocal lattice vector G,
and a continuous path ks with s ∈ [0, 1] such that (i) ks=0 = kg + G and ks=1 = k′, and (ii) Gks=0

= Gks=1
⊂ Gks .

There are two elementary cases: (i) G = 0 and g is identity, meaning that ks=0 = k and ks=1 = k′, and (ii) ks = k′

is constant in s, meaning that kg + G = k′. Note that the path ks is allowed to take values outside of 1BZ if
needed. Moreover, we allow Gks to be larger than Gks=0

and Gks=1
(e.g., even if Gks=0

and Gks=1
only contain lattice

translations, the path is allowed to pass a mirror plane), though we typically do not need a larger Gks . According
to the definition, being in the same type is an equivalence relation, and thereby the types of momenta are just the
corresponding equivalence classes. It turns out nlk,α = nlk′,α as long as k and k′ are of the same type, and thus we
only need to consider one representative in each type of momenta.
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Now turn to the symmetry data of the given FGU U(k, t) for the given PBZ choice Φk. The symmetry content for
the lth isolated set of quasi-energy bands is the vector

Al = (..., nlα,k, ...)
T , (68)

where k and α respectively range over all types of Bloch momenta and all inequivalent small irreps of Gk. All
components of Al are non-negative integers. As exemplified by Supplementary Eq. (19), not all components of Al are
independent, as they satisfy the compatibility relation C

CAl = 0 . (69)

The compatibility relations of all crystalline symmetry groups (spatial dimensions up to three) can be found on the
website of Bilbao Crystallographic Server [5]. Owing to the compatibility relation, we are allowed to omit certain
types of momenta (especially those whose little groups are not maximal subgroups of G) without affecting the results.
As a result, only a small number of high-symmetry momenta are included in general, like the 1+1D example discussed
in Supplementary Note 1 C; if G has no high-symmetry momenta, we only need to pick one generic momentum. After
picking the momentum types, the number of components of Al is fixed for the given G, which we label as K. Then,
combined with Supplementary Eq. (69), we have

Al ∈ {BS} ≡ NK ∩ ker C . (70)

The symmetry data A of U(k, t) for Φk is the K × L matrix with Al as its columns

A =
(
A1 A2 ... AL

)
, (71)

where L is the total number of isolated sets in any PBZ.
The above discussion of symmetry data is for a fixed PBZ choice, which is the same as the discussion for static

crystals [4, 5]. As discussed in Supplementary Note 1 C, the freedom of choosing PBZ for FGUs leads to a subtlety
that is absent in static crystals. Specifically, changing the artificial PBZ choice might change the symmetry data by
a cyclic permutation. Nevertheless, a given FGU can only have a finite number of different symmetry data given by
varying PBZ choices, as discussed below.

Suppose Φ̃k is another possible PBZ lower bound of the given FGU U(k, t), which yields symmetry data Ã. To

relate Ã to the symmetry data A given by Φk, we can consider a continuous deformation (1 − s)Φk + sΦ̃k which

connects Φk to Φ̃k as s continuously evolves from 0 to 1. We define L̃ as the number of isolated sets of quasi-energy
bands, as well as their 2πn-copies (with n integer), swept through by the deformation as s continuously increases from

0 to 1. When L̃ 6= 0, sgn(L̃) = sgn(Φ̃k−Φk). For examples, L̃ = 0 iff Φ̃k lies in the same relevant gap as Φk, L̃ = nL

if Φ̃k = Φk + n2π, and L̃ = l− 1 (l = 2, ..., L) iff Φ̃k lies in the lth relevant gap in the PBZ defined by Φk. With this

convention, we say Φ̃k is given by a L̃-shift of Φk, and then 2πn-shifts are equivalent to nL-shifts. For example, the

PBZ lower bound in Fig. 2(b) is given by a 1-shift of that in Fig. 2(a). In general, a L̃1-shift followed by a L̃2-shift is

always equivalent to a (L̃1 + L̃2)-shift.

Suppose Φ̃k is given by a L̃-shift of Φk with 0 < L̃ < L. Then, Φ̃k lies in the (L̃+ 1)th relevant gap of the Φk-PBZ,

and the first isolated set of quasi-energy bands in the Φ̃k-PBZ would be the (L̃ + 1)th isolated set of quasi-energy

bands in the Φk-PBZ. As a result, the symmetry data Ã for Φ̃k should have AL̃+1 as its first column and reads

Ã =
(
AL̃+1 ... AL A1 ... AL̃

)
. (72)

Furthermore, adding nL to L̃ is equivalent to further shifting Φ̃k by 2πn, which leaves the symmetry data invariant.

Then, for general L̃ ∈ Z, we have

Ã = APL̃ , (73)

where PL̃ is a L× L cyclic permutation matrix taking the form[
PL̃
]
ij

= δi,j+(L̃modL) + δi,j−L+(L̃modL) . (74)

As shown by Supplementary Eq. (74), the symmetry data for Φ̃k is determined by L̃ and the symmetry data for

Φk, without caring about the detailed forms of Φk and Φ̃k. It is because the symmetry data is invariant under any
deformation of PBZ lower bound within one relevant gap. Supplementary Eq. (74) also suggests that

PL̃1
PL̃2

= PL̃1+L̃2
= PL̃2

PL̃1
, (75)
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Supplementary Fig. 5. Two schematic quasi-energy band structures for 1 + 1D inversion-invariant FGUs. In both (a) and
(b), all quasi-energy gaps are relevant, and ± indicate the parities. The orange and purple dashed lines indicate two different
choices of PBZ that yield the same symmetry data, and there are four isolated sets of quasi-energy bands (each set has one
band) for each choice of PBZ. In (a), moving a PBZ lower-bound through LKSD = 1 isolated set (purple arrow) leaves the
symmetry data invariant. In (b), moving a PBZ lower-bound through 2 isolated sets (purple arrow) leaves the symmetry data
invariant while moving through 1 isolated set fails, resulting in LKSD = 2.

which coincides with the additive nature of PBZ-shifts.
For the given FGU U(k, t), we focus on the smallest positive L̃ that satisfies A = APL̃, which we label as LKSD

with “KSD” short for keeping-symmetry-data. An L̃-shift of Φk leaves A invariant iff L̃modLKSD = 0, because if

AP(L̃modLKSD) = A holds for 0 < L̃modLKSD < LKSD, LKSD cannot be smallest. Thus, the number of different

symmetry data given by changing PBZ is just LKSD. For examples, LKSD = 1 for Supplementary Fig. 5(a), LKSD = 2
for Supplementary Fig. 5(b), and LKSD = 2 for the 1+1D example discussed in Supplementary Note 1 C. Although
we derive LKSD from the symmetry data A given by the PBZ lower bound Φk, LKSD is in fact independent of PBZ
choices, owing to the commutation relation of the cyclic permutations in Supplementary Eq. (75). It coincides with
the fact that the number of different symmetry data possessed by a FGU should not rely on specific PBZ choices.

The finite LKSD allows us to define the equivalent symmetry data to remove the artificial ambiguity of the symmetry
data brought by changing PBZ, as discussed in Supplementary Note 1 C. We define two FGUs U(k, t) and U ′(k, t)
to have equivalent symmetry data iff there exist PBZ choices that yield exactly the same symmetry data for them.
Alternatively, we can define [A] to be the set of all symmetry data of U(k, t) given by varying PBZ, similarly [A′] for
U ′(k, t). Then, having equivalent symmetry data is equivalent to [A] = [A′]. Based on this equivalent statement, the
equivalence among symmetry data of FGUs does not depend on specific PBZ choices, and is an equivalence relation.

As shown in Supplementary Fig. 3, given two topologically equivalent FGUs U(k, t) and U ′(k, t), we can always pick
a PBZ lower bound Φk,0 for U(k, t), and continuously deform Φk,0 into a PBZ lower bound Φk,1 for U ′(k, t) without
touching the deformed quasi-energy bands. Since no relevant gaps are closed during the deformation, we know
the symmetry data are exactly the same for U(k, t) with Φk,0 and U ′(k, t) with Φk,1, meaning that topologically
equivalent FGUs must have equivalent symmetry data. As the contrapositive, inequivalent symmetry data infers
topological distinction among FGUs (thus among Floquet crystals) and provides a topological classification that only
involves the time-evolution operators at t = T . For two FGUs with equivalent symmetry data, they must have the
same number of bands and the same number of relevant gaps, but the dynamics can still make them topologically
distinct. Next, we will introduce the quotient winding data that can help classify the dynamics of FGUs (thus of
Floquet crystals) with equivalent symmetry data.

B. Winding Data

To introduce quotient winding data, we first discuss the winding data for a generic FGU U(k, t) with time period
T , a relevant gap choice, a generic crystalline symmetry group G and a symmetry representation ug(k). By picking a
generic PBZ lower bound Φk, Supplementary Note 3 A suggests that we can derive the symmetry data A of U(k, t).
As exemplified in Supplementary Note 1 D, the winding data is derived from the return map Uε=Φ(k, t). Since the
return map is invariant under G as discussed in Supplementary Note 2 C, we have

ug(k)Uε=Φ(k, t)u†g(k) = Uε=Φ(k, t) ∀g ∈ Gk . (76)
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It enables us to simultaneously block diagonalize Uε=Φ(k, t) and ug(k) (for all g ∈ Gk) according to inequivalent small
irreps of Gk:

W †GkUε=Φ(k, t)WGk =


. . .

Uε=Φ,k,α(t)

. . .



W †Gkug(k)WGk =


. . .

ũαg (k)

. . .

 ,

(77)

where WGk is a unitary matrix, and Uε=Φ,k,α(t) and ũαg (k) are the blocks of the return map and the symmetry
representation that correspond to the small irrep α of Gk, respectively. Specifically, ũαg (k) is a small representation
of Gk that can be unitarily transformed to 1nk,α

⊗ uαg (k) in a g-independent way, where uαg (k) is the small irrep α of

Gk, nk,α =
∑L
l=1 n

l
k,α is the total number of copies of small irrep α that occur in ug(k), and L is the total number of

isolated sets in any PBZ. For the 1+1D example in Supplementary Note 1 D, WGk happens to be an identity matrix.
Based on Supplementary Eq. (77), we can define the following U(1) winding number

νk,α =
i

2π

1

dα

∫ T

0

dtTr[U†ε=Φ,k,α(t)∂tUε=Φ,k,α(t)] , (78)

where dα was defined as the dimension of small irrep α in Supplementary Note 3 A. We emphasize that this expression
of νk,α requires Uε=Φ,k,α(t) to be a piece-wise differentiable function of t, while a more general definition of νk,α is the
winding number of the continuous phase angle of det[Uε=Φ,k,α(t)] divided by dα. The integer-valued νk,α is invariant
under the gauge transformation Supplementary Eq. (56) and Supplementary Eq. (64), as discussed in Supplementary
Note 8.

Interestingly, νk,α = νk′,α if k and k′ are in the same type, and νk,α has the same compatibility relation as the
symmetry content Al in Supplementary Eq. (69). (See more details in Supplementary Note 8.) Therefore, we can pick
the same momentum types as the symmetry data, and get the winding data of the given FGU U(k, t) for the given
PBZ choice Φk as

V = (..., νk,α, ...)
T , (79)

where k and α respectively range over all chosen types of Bloch momenta and all inequivalent small irreps of Gk. As
a result, V has the same number K of components as the symmetry content Al, and the compatibility relation reads

CV = 0 . (80)

However, unlike Al, the components of V are allowed to take negative values.
Besides the compatibility relation, there is a possible extra constraint on V imposed by the symmetry data A,

which is

nk,α = 0⇒ νk,α = 0 . (81)

Specifically, nk,α = 0 means that the block-diagonalized ug(k) in Supplementary Eq. (77) has no blocks for the small
irrep α of Gk, and thereby Uε=Φ,k,α(t) has zero dimension, resulting in νk,α = 0. This extra constraint can be expressed
in terms of a diagonal matrix D

DV = 0 , (82)

where a diagonal element of D is 0 (1) if the corresponding nk,α is nonzero (zero). Combining Supplementary Eq. (80)
with Supplementary Eq. (82), the winding data takes value from the following group {V }

{V } ≡ ZK ∩ ker C ∩ kerD . (83)

As K, C, and D are independent of PBZ choices, so is {V }. Therefore, all winding data of all FGUs with equivalent
symmetry data should belong to the same {V }.
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P.G. p1 p2 pm pg cm p2mm p2mg p2gg c2mm p4 p4mm p4gm p3 p3m1 p31m p6 p6mm

{V } for spinless P.G. Z Z5 Z3 Z Z2 Z9 Z4 Z3 Z6 Z8 Z9 Z6 Z7 Z5 Z5 Z9 Z8

{V } for spinful P.G. Z Z5 Z3 Z Z2 Z Z4 Z3 Z2 Z8 Z3 Z4 Z7 Z5 Z5 Z9 Z4

Supplementary Table 1. The largest winding data sets {V } (Supplementary Eq. (84)) for all spinless and spinful plane

groups. “P.G.” means plane group. Note that {V } does not provide a topological classification, while the quotient group

{V }/ĀZ does as shown in Supplementary Eq. (89).

In general, for a given crystalline symmetry group G, the largest winding data set {V } occurs when the FGUs of
interest contain all inequivalent small irreps of Gk for all chosen momenta k. In this case, the constraint Supplementary
Eq. (82) disappears, and the winding data set {V } becomes {V } as

{V } ≡ ZK ∩ ker C . (84)

This is what happens for the 1+1D example Fig. 2(a) discussed in Supplementary Note 1 D, where we do not need to

consider the D constraint. We further list {V } for all spinless and spinful 2D plane groups in Supplementary Tab. 1,
which can be reproduced by artificially allowing the negative numbers of band in the {BS} set [4, 16] (Supplementary
Eq. (70)).

Nevertheless, as mentioned in Supplementary Note 1 D, {V } does not give topological classifications since different

the PBZ choices can result in different winding data. Specifically for the given FGU U(k, t), a L̃-shift of the PBZ
lower bound Φk leads to

V → V − L̃− (L̃modL)

L

L∑
l=1

Al −
L̃modL∑
l=1

Al , (85)

where Al are labelled according to the original Φk. (See more details in Supplementary Note 8.) Therefore, a FGU
has infinitely many different winding data given by varying the PBZ, causing difficulty for comparing winding data
to determine topological distinction. Next, we introduce the quotient winding data to resolve this issue.

C. Quotient Winding Data

The quotient winding data is defined as the following. Let us consider a FGU U(k, t), and by choosing a PBZ lower
bound Φk, we can derive symmetry data A and winding data V of U(k, t). As discussed in Supplementary Note 3 A,
the symmetry data is invariant and only invariant under nLKSD-shifts of Φk (with n integer). Then, similar to the
discussion in Supplementary Note 1 E, we want to make the quotient winding data VQ also invariant under all the
nLKSD-shifts. According to Supplementary Eq. (85), we can achieve the invariance for VQ by defining

VQ = V mod Ā , (86)

where

Ā =

LKSD∑
l=1

Al . (87)

By exploiting Supplementary Eq. (74), one can show that Ā is independent of PBZ choices, and in fact Ā is the same
for all FGUs with equivalent symmetry data. The modulo operation in Supplementary Eq. (86) can be taken for the
first nonzero component of Ā as specified in Supplementary Note 1 E. In contrast to the winding data, the given FGU
U(k, t) only has LKSD different quotient winding data upon changing the PBZ, just like the symmetry data. As
discussed in Supplementary Note 1 E, we can then define an equivalence among quotient winding data of FGUs with
equivalent symmetry data as the following.

For two FGUs with equivalent symmetry data, we define them to have equivalent quotient winding data iff they
have the same quotient winding data for all PBZ choices that yield the same symmetry data. We do not compare
the quotient winding data when the PBZ choices yield different symmetry data, since the quotient winding data
can be changed by any artificial PBZ shift that changes symmetry data. In the following, we provide two other
equivalent definitions for equivalent quotient winding data. Given a FGU U(k, t), we can pick a PBZ lower bound
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Φk to get the symmetry and quotient winding data (A, VQ); similarly, for another FGU U ′(k, t), we have (A′, V ′Q)

for a Φ′k. Then, U(k, t) and U ′(k, t) have equivalent symmetry and quotient winding data iff there exist Φk and
Φ′k such that (A, VQ) = (A′, V ′Q). Moreover, by varying the PBZ lower bound Φk of U(k, t), we can get a set

[(A, VQ)] of all symmetry and quotient winding data of U(k, t); similarly [(A′, V ′Q)] for U ′(k, t). Then, U(k, t) and

U ′(k, t) have equivalent symmetry and quotient winding data iff [(A, VQ)] = [(A′, V ′Q)]. The equivalence among the

three definitions relies on the correlated changes of the symmetry data Supplementary Eq. (74) and winding data
Supplementary Eq. (85) given by the PBZ shifts.

The first two definitions provide an efficient way to determine equivalent quotient winding data. Provided that
U(k, t) and U ′(k, t) have equivalent symmetry data and we have picked Φk and Φ′k to yield A = A′, then the first
definition suggests that VQ 6= V ′Q infers inequivalent quotient winding data, and the second definition suggests that

VQ = V ′Q infers equivalent quotient winding data. The third definition shows that having equivalent symmetry and
quotient winding data is independent of the specific PBZ choices and is an equivalence relation.

As discussed in Supplementary Note 1 E, the equivalence of the quotient winding data should be related to the
topological equivalence. Suppose the above-mentioned U(k, t) and U ′(k, t) are topologically equivalent. Then, ac-
cording to Supplementary Fig. 3, we have a continuously evolving in-gap Φk,s with Φk,s=0 = Φk, and we can always
pick Φk,s=1 as Φ′k. With this choice, we would have A = A′ and the same winding data V = V ′, resulting in Ā = Ā′

and VQ = V ′Q. Therefore, two topologically equivalent FGUs have equivalent symmetry and quotient winding data.
The contrapositive suggests if two FGUs have equivalent symmetry data but have inequivalent quotient winding data,
they must be topologically distinct.

The quotient winding data does not lose any essential information compared to the winding data, because if two
FGUs have equivalent symmetry and quotient winding data, there must exist PBZ choices for them to have the
same symmetry and winding data. To be more specific, when PBZ choices give the same symmetry and quotient
winding data for two FGUs, the two FGUs must have the same Ā, L and LKSD, always allowing us to compensate
the difference in winding data by performing a nLKSD-shift on the PBZ lower bound of one FGU without changing
the symmetry data. Nevertheless, the quotient winding data has the advantage of directly providing a topological
classification for FGUs (and thus for Floquet crystals) with equivalent symmetry data, as discussed in the following.

Let us consider all FGUs that have symmetry data equivalent to a given FGU U(k, t), and we can always choose PBZs
for them such that they have the same symmetry data. As mentioned in Supplementary Note 1 E and Supplementary
Note 3 A, we still have LKSD different types of the PBZ choices, which respectively yield the LKSD different symmetry
data of U(k, t) for all those FGUs. For each type of PBZ choices, the quotient winding data of each FGU takes a
unique value in the following set

{VQ} = {V mod Ā|V ∈ {V }}

≈ {V }
ĀZ

=
ZK ∩ ker C ∩ kerD

ĀZ
,

(88)

where ĀZ = {qĀ|q ∈ Z}. As different VQ in this case infers topological distinction, {VQ} serves as a topological
classification of those FGUs for each type of PBZ choices. Since the winding data given by different PBZs are related
(Supplementary Eq. (85)), the quotient winding data for different types of PBZs are also related, suggesting that the
{VQ}-based classifications for different types of PBZ choices are equivalent. Specifically, for any two types of PBZ
choices, two of those FGUs have the same quotient winding data for one type iff they have the same quotient winding
data for the other type. Therefore, {VQ} provides a topological classification for FGUs with equivalent symmetry
data, as long as the comparison of VQ is done for the PBZ choices that yield the same symmetry data.

The classification Supplementary Eq. (88) given by {VQ} is fully determined by the symmetry group G and the
PBZ-independent Ā of the FGUs with equivalent symmetry data. To see the reason, recall that D is determined
by whether the copy number nk,α of each small irrep α at each k is zero, and then nk,α = (L/LKSD)Āk,α suggests
that D can be fully determined by Ā. Supplementary Note 3 A further suggests that K and C are determined by G,
resulting in the above statement. It is worth mentioning that if the FGUs contain all inequivalent small irreps at all
chosen momenta like Fig. 2(a), we have D = 0, and the classification becomes

{V }
ĀZ

=
ZK ∩ ker C

ĀZ
. (89)

As discussed in Supplementary Note 1 E, the symmetry data and quotient winding data together provide a topolog-
ical classification of FGUs (and thus of Floquet crystals). However, the classification is not necessarily complete, i.e.,
if two FGUs have equivalent symmetry and quotient winding data, they can still be topologically distinct. We do not
resolve this completeness issue in this work as it is in general highly nontrivial. On the other hand, Supplementary
Eq. (88) only gives a relative classification without telling us which side is nontrivial. Next, we will resolve this issue
by constructing the DSI.
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D. DSI

In this part, we will construct the DSI to sufficiently indicate the obstruction to static limits for a given FGU U(k, t)
with G its crystalline symmetry group.

In order to determine the obstruction to static limits, we only need to consider G-invariant static FGUs with
symmetry data equivalent to U(k, t) since inequivalent symmetry data must infer topological distinction. Then,
based on the classification in Supplementary Note 3 C, if all those G-invariant static FGUs have quotient winding
data inequivalent to U(k, t), then U(k, t) must have obstruction to static limits. Specifically, we can pick a PBZ lower
bound Φk for the FGU U(k, t) to get its symmetry data A, winding data V , and quotient winding data VQ. We
further enumerate all winding data VSL and quotient winding data VQ,SL of all those static FGUs for all PBZ choices
that yield symmetry data ASL = A, resulting in a static winding data set {VSL} and a static quotient winding data
set {VQ,SL}. Then, if VQ /∈ {VQ,SL}, we know U(k, t) has obstruction to static limits.

It turns out for the obstruction to static limits, we can use the winding data instead of the quotient winding data
owing to

VQ /∈ {VQ,SL} ⇔ V /∈ {VSL} , (90)

which saves us from an extra modulo operation. The reasoning is the following. Since the static FGUs have symmetry
data equivalent to U(k, t), the static FGUs have the same Ā as U(k, t). If V = VSL, we have VQ = V mod Ā =
VSL mod Ā = VQ,SL; if VQ = VQ,SL, the difference in the winding data can always be compensated by a PBZ shift for
the static FGU without changing the symmetry data, as discussed in Supplementary Note 3 C. Therefore, a sufficient
condition for U(k, t) to have the obstruction to static limits is V /∈ {VSL}, which is the underlying idea for constructing
DSI. As discussed in Supplementary Note 1 F, besides indicating obstruction to static limit, DSI is also a topological
invariant—its different values infer topological distinction for FGUs (and thus for Floquet crystals) with equivalent
symmetry data—though the resultant classification is a subset of that given by quotient winding data. Although
the idea of constructing DSI is the same as Supplementary Note 1 F, there are some subtleties in the construction of
{VSL} and the derivation of DSI, which will be discussed below.

I. Positive Affine Monoid and Hilbert Bases

To derive {VSL} for the given FGU U(k, t) with Φk, let us first discuss several properties of the symmetry contents
Al of isolated sets of quasi-energy bands. As shown in Supplementary Eq. (70), the symmetry content compatible
with the given crystalline symmetry group G always takes value from the set {BS}. We call a nonzero element in
{BS} irreducible [17] if it cannot be expressed as the sum of any two other elements in {BS}; otherwise, it is called
reducible. If an isolated set of quasi-energy bands has an irreducible symmetry content Al, the quasi-energy bands in
the isolated set must be connected, since if there is a gap that splits the isolated set into two isolated subsets of bands,
the symmetry contents of the two subsets, labeled as Al,1 and Al,2, would satisfy Al = Al,1 +Al,2 and Al,1 6= Al and
Al,2 6= Al, violating Al being irreducible. We further define the symmetry data A of U(k, t) for Φk to be irreducible
if all its columns are irreducible symmetry contents; otherwise, A is reducible.

For the given G, the irreducible symmetry contents form a unique set of bases of {BS} [17, 18]. Mathematically
speaking, {BS} is a monoid because {BS} has an identity for the addition and the addition is closed and associative
in {BS}, while all symmetry contents have non-negative integer components and thus typically have no inverse. More
specifically, {BS} is a positive affine monoid [17, 18], whose irreducible elements form a unique minimal set of bases
of the monoid. Here “affine” means the monoid is a finitely generated submonoid of ZK , “positive” means that only
the zero element in the affine monoid has inverse, and “bases” means that any element of the positive affine monoid
can be expressed as the linear combination of the bases with non-negative integer coefficients. The irreducible bases
are called the Hilbert bases, and all irreducible symmetry contents are just the Hilbert bases of the {BS}, labeled as
ai with i = 1, 2, ..., I. Here I is the total number of distinct Hilbert bases. For the 1+1D inversion-invariant case in
Supplementary Note 1 C, there are four Hilbert bases given by four ways of assigning ± parities to Γ/X, which read

a1 = (1, 0, 1, 0)T ,

a2 = (0, 1, 1, 0)T ,

a3 = (1, 0, 0, 1)T ,

a4 = (0, 1, 0, 1)T .

(91)

In general, we can obtain the Hilbert bases using the SageMath software [19], together with the 4ti2 package [20] and
the data [5] of atomic limits from Bilbao Crystallographic Server. We have obtained the Hilbert bases for all spinless
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and spinful 2D plane groups as mentioned in Tab. 1-2 and listed in Supplementary Note 10. Next we will discuss how
we use the Hilbert bases to construct the {VSL} and DSI.

II. DSI for Irreducible Symmetry Data

We start with the case where the symmetry data A of the given FGU U(k, t) for the PBZ choice Φk is irreducible,
such as Fig. 2(a). Owing to the irreducible symmetry data, each isolated set of the quasi-energy bands is connected;
thereby, there are no irrelevant gaps and all quasi-energy gaps are relevant. In this case, the static winding data set
{VSL} in Supplementary Eq. (90) has the following expression

{VSL} = {
L∑
l=1

Alql|ql ∈ Z} , (92)

where Al is the lth column of A and L is the number of isolated sets (or equivalently the number of relevant gaps) in
any PBZ. (See Supplementary Note 9 for details.)

Supplementary Eq. (92) can be simplified. For Al = Al′ , qlAl + ql′Al′ = (ql + ql′)Al means that only the sum
(ql + ql′) contributes to the winding data, allowing us to only include the distinct columns of A for {VSL}. Then, we
can list all different Al, relabeled as aj with j taking J different values in {1, 2, ..., I}, which are the Hilbert bases
involved in the irreducible symmetry data of U(k, t). Here I is the total number of distinct Hilbert bases for G. As a
result, Supplementary Eq. (92) is simplifed to

{VSL} = {
∑
j

ajqj |qj ∈ Z} . (93)

Combined with the winding data set {V } in Supplementary Eq. (83), the DSI takes values in the following quotient
group

X =
{V }
{VSL}

. (94)

Strictly speaking, each element of X is a set of winding data; for the given winding data V of U(k, t) for Φk, we can
find the x in X such that V ∈ x, and then x is the DSI of U(k, t). We label x in X as zero iff x contains 0. Then, the
zero DSI for U(k, t) means V − 0 ∈ {VSL}; nonzero DSI infers V /∈ {VSL} and thus infers the obstruction to static
limits for the FGU (and thus for the underlying Floquet crystal). Normally, we can use certain simple index to label
x, just like the expression used for the 1+1D example in Supplementary Eq. (45).

Recall that the symmetry data A is derived after a PBZ lower bound Φk is picked for U(k, t). Therefore, the
above discussion is for a particular PBZ choice Φk for U(k, t). If we change Φk, {VSL} stays invariant since any
cyclic permutation of columns of A leaves Supplementary Eq. (92) invariant. In other words, all winding data of all
G-invariant static FGUs with symmetry data equivalent to the given FGU U(k, t) belong to the same {VSL}, even if
the PBZ choices for static FGUs yield symmetry data ASL 6= A. Combined with the fact that {V } is PBZ-independent
(Supplementary Note 3 B), we know X is PBZ-independent. The change of the winding data brought by changing
Φk is a linear combination of symmetry contents (Supplementary Eq. (85)), which is contained in {VSL}. Therefore,
the evaluation of DSI is independent of PBZ choice Φk for U(k, t).

Supplementary Eq. (93) suggests that {VSL} only depends on the set of Hilbert bases {aj} involved in the irreducible
symmetry data. On the other hand, as the vanishing components of

∑
lAl are the same as the vanishing components

of
∑
j aj , the D constraint in Supplementary Eq. (83) is also determined by the set {aj}. Specifically, a diagonal

element of D is 0 (1) if the corresponding component of
∑
j aj is nonzero (zero). Therefore, if two FGUs have the

same G and have irreducible symmetry data that involve the same set of Hilbert bases, they have the same {VSL},
{V }, and X , no matter whether the two FGUs have equivalent symmetry data. This simplification allows us to
enumerate all possible DSI sets for irreducible symmetry data by considering all possible combinations of Hilbert
bases of a given crystalline symmetry group G. All possible combinations of Hilbert bases can be enumerated by
considering the presence and absence of each Hilbert basis, resulting in 2I −1 nontrivial combinations, where the only
trivial one corresponds to the absence of all bases. We emphasize that not all the combinations of Hilbert bases can
be reproduced by FGUs since certain symmetry contents are forbidden for isolated sets of bands [21]. Nevertheless,
the above derivation can guarantee none of the physical combinations of Hilbert bases are missed.

We perform this derivation for the 1 + 1D inversion-invariant class-A FGUs with irreducible symmetry data, and
obtain only two nontrivial DSI sets. One is for the case where the irreducible symmetry data is spanned by a1 and
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a4 in Supplementary Eq. (91), which is just Fig. 2(a) and the DSI is shown in Supplementary Eq. (45). The other one
is for the irreducible symmetry data spanned by a2 and a3 in Supplementary Eq. (91), and the DSI set reads

X ≈ {νΓ,+ − νX,− ∈ Z} . (95)

We further derive the DSI sets for all nontrivial combinations of Hilbert bases for all spinless and spinful 2D plane
groups, and list the numbers of nontrivial DSI sets in Tab. 1-2. We do not list the exact forms of DSIs since the paper
would be too long otherwise, but we present in Supplementary Note 9 the detailed method that we adopt to obtain
Tab. 1-2. Rigorously speaking, the final results given by the method are not exactly equal to the DSI sets, but there
are one-to-one correspondences (bijections) between them.

III. DSI for Reducible Symmetry Data

In this part, we discuss the DSI for the case where the symmetry data A of the given FGU U(k, t) for Φk is reducible.
As we can see below, the DSI sets for irreducible symmetry data actually serve as elementary building blocks for the
construction of DSIs for reducible symmetry data.

Two examples of reducible symmetry data for 1+1D inversion-invariant case are shown in Supplementary Fig. 6.
Suppose the lth isolated set of quasi-energy bands of U(k, t) has reducible symmetry content Al and contains irrelevant
gaps. The irrelevant gaps separate the lth isolated set into isolated connected subsets, and we label the symmetry
content of the rlth connected subset as Al,rl , which satisfies Al =

∑
rl
Al,rl . As a result, the relevant gaps and

irrelevant gaps together reduce the symmetry data A into a finer matrix (...Al,rl ...), and we call (...Al,rl ...) a reduction
of A. We emphasize that the definition of a reduction (...Al,rl ...) of A requires and only requires that

∑
rl
Al,rl = Al

and Al,rl ∈ {BS} is nonzero, while we do not require that (...Al,rl ...) can be reproduced by a FGU. A is also a
reduction of A, since rl is allowed to take only one value. Supplementary Fig. 6 provides two different reductions
of the same reducible symmetry data. Owing to the existence of the reduction of A, the winding data VSL of any
G-invariant static FGU with any PBZ yielding symmetry data A takes value in the following set

{VSL} =
⋃

(...Al,rl ...) reduces A

{
∑
l,rl

Al,rlql,rl |ql,rl ∈ Z} , (96)

and we have

{VSL} ⊂ {VSL} . (97)

(See Supplementary Note 9 for more details.)
Unlike Supplementary Eq. (92) where each Al is reproducible by an isolated set of bands since it appears in the

given FGU, it is possible that not all reduction of A can be reproduced by FGUs, and thus it is possible that {VSL}
is strictly larger than {VSL}. Nevertheless, for the winding data V of the FGU U(k, t), V /∈ {VSL} infers V /∈ {VSL}
and thus sufficiently indicates the obstruction to static limits. Since we only require DSIs to be sufficient indices for
obstruction to static limits, we in this part use {VSL} instead of {VSL}.
{VSL} can be simplified by the irreducible inductions of A, i.e., each column of those reductions is irreducible. For

each irreducible induction of A, the story becomes similar to Supplementary Note 3 D II. We can use {aj} to label
the set of all distinct columns of an irreducible reduction (...Al,rl ...) of A, and then

{
∑
l,rl

Al,rlql,rl |ql,rl ∈ Z} = {
∑
j

qjaj |qj ∈ Z} (98)

similar to Supplementary Eq. (93). The {aj} is a set of Hilbert bases, and we say {aj} spans A since {aj} consists
of all distinct columns of an irreducible reduction (...Al,rl ...) of A. Suppose Ai = Aj + Aj′ , then AiZ ⊂ {q1Aj +
q2Aj′ |q1, q2 ∈ Z}, indicating that {

∑
l,rl

Al,rlql,rl |ql,rl ∈ Z} constructed from a reducible reduction must be a subset

of that constructed from certain irreducible reduction. Then, {VSL} can be simplified to

{VSL} =
⋃

{aj} spans A

{
∑
j

qjaj |qj ∈ Z} . (99)

Similar to the discussion in Supplementary Note 3 D II, {VSL} is actually independent of the PBZ choice Φk for
U(k, t), and contains all winding data of all G-invariant static FGUs with symmetry data equivalent to the given FGU
U(k, t), regardless of the PBZ choices for static FGUs.
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Supplementary Fig. 6. The schematic quasi-energy band structure (blue) for two 1 + 1D inversion-invariant FGUs with the
same reducible symmetry data. “R.G.”, “I.G.”, and “I.S.” stand for relevant gap, irrelevant gap, and isolated set, respectively.
The dashed lines mark the boundary of the PBZ, and ± mark the parity. In either (a) or (b), there is one isolated set of quasi-
energy bands with symmetry content A1 = (1, 1, 1, 1)T , which is separated into two connected subsets by one irrelevant gap. The
symmetry contents for the connected subsets are A1,1 = (0, 1, 0, 1)T and A1,2 = (1, 0, 1, 0)T for (a), and are A1,1 = (0, 1, 1, 0)T

and A1,2 = (1, 0, 0, 1)T for (b).

Let us take Supplementary Fig. 6 as an example. The reducible symmetry data shown in Supplementary Fig. 6 has
four irreducible reductions (a1 a4), (a4 a1), (a2 a3), and (a3 a2), where ai are shown in Supplementary Eq. (91). As a

result, only two sets of Hilbert bases—{a1, a4} and {a2, a3}—span the symmetry data, and {VSL} for Supplementary
Fig. 6 would just be

{VSL} = {VSL}
′
∪ {VSL}

′′
, (100)

where

{VSL}
′

= {q1a1 + q2a4|q1, q2 ∈ Z}

{VSL}
′′

= {q1a2 + q2a3|q1, q2 ∈ Z} .
(101)

(See Supplementary Note 9 for a general method of determining Hilbert bases sets that span symmetry data.)
If all irreducible reductions of the reducible A correspond to the same set of Hilbert bases (or equivalently only one

set of Hilbert bases that spans A), then {VSL} is still a group for addition and we can calculate the DSI according

to Supplementary Eq. (94). If more than one sets of Hilbert bases are involved, it is very likely that {VSL} is not a
group anymore. In this case, we can define the DSI set for each set of Hilbert bases {aj} that spans A as

X [{aj}] =
{V }

{
∑
j qjaj |qj ∈ Z}

. (102)

Since the DSI for one set of Hilbert bases has been addressed in Supplementary Note 3 D II, we only need to find out
all distinct sets that span A to specify {aj} for Supplementary Eq. (102). For example, we know {a1, a4} and {a2, a3}
are the two sets of Hilbert bases that span the symmetry data for Supplementary Fig. 6, and the corresponding DSI
sets X [{a1, a4}] and X [{a2, a3}] are given in Supplementary Eq. (45) and Supplementary Eq. (95), respectively.

We focus on the direct product of the DSI sets for all sets of Hilbert bases that span A, which reads

X =
∏

{aj} spans A

X [{aj}]

= X [{aj}]×X [{aj′}]×X [{aj′′}]× ... .
(103)

It means that element x̄ in X is a vector, and each component of x̄ is an element of Supplementary Eq. (102). Similar
to the irreducible case Supplementary Note 3 D II, X and the evaluation of x̄ are independent of the PBZ choice Φk

for the given U(k, t). Moreover, X provides a topological classification for FGUs with equivalent symmetry data.
The given FGU (and thus its underlying Floquet crystal) must have obstruction to static limits if all components of

its x̄ are nonzero. Then, we can define the DSI for the given FGU as the product of all components of its x̄, meaning
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that nonzero DSI infers obstruction to static limits. (If certain components of x̄ are vectors, we can treat both numbers
and vectors as matrices, and use the more general Kronecker product to define DSI.) For Supplementary Fig. 6, the
X set is

X ≈ {νΓ,+ − νX,+ ∈ Z} × {νΓ,+ − νX,− ∈ Z} , (104)

and then the DSI is (νΓ,+ − νX,+)(νΓ,+ − νX,−). Then, a 1+1D inversion-invariant FGU with the symmetry data
shown in Supplementary Fig. 6 must have obstruction to static limits if (νΓ,+ − νX,+)(νΓ,+ − νX,−) 6= 0.

Supplementary Note 4. Details on DSI For A 2+1D Anomalous Flo-
quet First-order Topological Insulator

In this section, we construct a 2+1D model with plane group p2, which has chiral edge modes in the absence of
nonzero Chern numbers. Plane group p2 is spanned by a two-fold rotation C2 and the 2D lattice translations. Since
spinless p2 is equivalent to spinful p2, we will focus on the spinless p2 in the following, i.e., G = spinless p2. We will
use the DSI to indicate its obstruction to static limits.

We consider a 2D square lattice with lattice constant being 1, and each lattice site consists of one spinless s orbital
and one spinless p orbital at the same position. We use |R, a〉 to label the Wannier bases, where a = s,p and R the
2D lattice vector, and then the Bloch bases are

|ψk,a〉 =
1√
N

∑
R

|R, a〉eik·R . (105)

With |ψk〉 = (|ψk,s〉, |ψk,p〉), C2 is represented as

uC2
(k) = σz , (106)

according the Supplementary Eq. (52).
The Floquet Hamiltonian that we choose has the form

Ĥ(t) =
∑
k

|ψk〉H(k, t)〈ψk| (107)

with

H(k, t) =

 1
4 [1− 2 cos kx − 2 cos ky − 2 cos(kx + ky)]σz , 0 ≤ t < T

2

1
2 [sin(kx)σx + sin(ky)σy] , T

2 ≤ t < T
. (108)

The construction of the above model is inspired by the quantum-anomalous-Hall-effect model in Ref. [13]. The
time-evolution matrix U(k, t) can be derived from Supplementary Eq. (108) based on Supplementary Eq. (47). For
concreteness, we choose T = 2π in the following.

As shown in Supplementary Fig. 7(a), the system has two quasi-energy bands, and we choose both quasi-energy
gaps to be relevant. Then, the two quasi-energy bands are separated into two isolated sets, of which each contains
one band. According to Bilbao Crystallographic Server [5], we only need to consider four C2-invariant momenta for
p2 in the study of the symmetry data, namely Γ(0, 0), X(π, 0), Y (0, π), and M(π, π). Then, the symmetry content
of each isolated set should have the form

Al = (nlM,+, n
l
M,−, n

l
X,+, n

l
X,−, n

l
Γ,+, n

l
Γ,−, n

l
Y,+, n

l
Y,−)T , (109)

where l = 1, 2 labels the isolated sets of quasi-energy bands, and nlk,α represents the number of parity-α states at k

in the lth set of quasi-energy bands. According to Supplementary Fig. 7(a), we have the symmetry data A of U(k, t)
for Φk = −π as

A =
(
A1 A2

)
, (110)

where

A1 = (0, 1, 0, 1, 0, 1, 0, 1)T

A2 = (1, 0, 1, 0, 1, 0, 1, 0)T .
(111)
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Supplementary Fig. 7. The symmetry data, winding data and boundary modes for the 2+1D anomalous Floquet first-order
topological insulator (Supplementary Eq. (108)). “R.G.” and “I.S.” stand for relevant gap and isolated set, respectively. In (a),
we plot the two quasi-energy bands in [−π, π). Both quasi-energy gaps are chosen as relevant gaps, resulting in two isolated sets
of quasi-energy bands, and Φk = −π is the PBZ lower bound. The C2-parities for each band at Γ, X, Y and M are marked.
In (b), we plot the phase bands of the return map at Γ, X, Y and M for εk = Φk = −π. The dashed lines label the boundary
of the PBZ. In (c), we plot quasi-energy bands for open boundary condition along y with Ny = 20 layers along y. The orange
(green) lines mark the chiral modes at y = 20 (y = 1). The dashed lines label the boundary of the PBZ.

Then, according to the list of HBs in Supplementary Note 10 for plane group p2, the symmetry data is irreducible.
(When comparing to Supplementary Note 10, we should perform X → B, M → A, + → 1 and − → 2 on our
convention to match the convention in Supplementary Note 10.)

As discussed in Supplementary Note 3 B, the momenta and irreps for winding data V are the same as those for the
symmetry data, and we derive the winding data from the return map at those momenta. Based on Supplementary
Eq. (78), we have the winding data of U(k, t)

V = (νM,+, νM,−, νX,+, νX,−, νΓ,+, νΓ,−, νY,+, νY,−)T , (112)

which can be intuitively read out from the winding of the phase bands of the return map for each irrep. Then,
Supplementary Fig. 7(b) suggests

V = (0, 0, 0, 0,−1, 1, 0, 0)T (113)

for Φk = −π. Indeed, direct calculation based on Supplementary Eq. (78) also yields Supplementary Eq. (113). With
this preparation, we next derive the DSI.

According to Bilbao Crystallographic Server, the compatibility relation for spinless p2 reads

nlΓ,+ + nlΓ,− = nlX,+ + nlX,− = nlY,+ + nlY,− = nlM,+ + nlM,− , (114)
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or equivalently the compatibility relation matrix C reads

C =


1 1 −1 −1 0 0 0 0

1 1 0 0 −1 −1 0 0

1 1 0 0 0 0 −1 −1

 . (115)

According to Supplementary Eq. (110), U(k, t) contains all inequivalent small irreps, and thereby the D matrix in
Supplementary Eq. (83) is zero. Then, all winding data of all G-invariant FUGs with symmetry data equivalent to
U(k, t) belong to the following set

{V } = Z8 ∩ ker C =


(
A2 A1 Vec3 Vec4 Vec5

)


νΓ,+

νΓ,−

νM,+ − νΓ,+

νX,+ − νΓ,+

νY,+ − νΓ,+



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
νΓ,+, νΓ,−, νX,+, νY,+, νM,+ ∈ Z


, (116)

where Vec3 = (1,−1, 0, 0, 0, 0, 0, 0)T , Vec4 = (0, 0, 1,−1, 0, 0, 0, 0)T , and Vec5 = (0, 0, 0, 0, 0, 0, 1,−1)T . Since the
symmetry data is irreducible, according to Supplementary Eq. (92), all winding data of all G-invariant static FGUs
with symmetry data equivalent to U(k, t) belong to

{VSL} = {q1A1 + q2A2|q1, q2 ∈ Z} . (117)

As a result, the DSIs for all G-invariant FUGs with symmetry data equivalent to U(k, t) take values in

X =
{V }
{VSL}

≈ {(νM,+ − νΓ,+, νX,+ − νΓ,+, νY,+ − νΓ,+) ∈ Z3} , (118)

meaning that the DSI is (νM,+ − νΓ,+, νX,+ − νΓ,+, νY,+ − νΓ,+). In fact, this is one example for the Z3 DSI set of
spinless p2 in Tab. 1. Then, according to Supplementary Eq. (113), we know the DSI of the FGU U(k, t) is (1, 1, 1) 6= 0,
indicating the obstruction to static limits.

One signature of the obstruction to static limits is the anomalous edge modes shown in Supplementary Fig. 7(c).
The edge modes are anomalous because both bulk bands have zero Chern numbers [22]. The π3 winding number
defined in Ref. [6] is evaluated as W = 1 for the model, where

W =
1

24π2

∫ T

0

dt

∫
dkxdkyε

i1i2i3 Tr[U†ε ∂i1UεU
†
ε ∂i2UεU

†
ε ∂i3Uε] (119)

with i1, i2, i3 ∈ {0, 1, 2}, (∂0, ∂1, ∂2) = (∂t, ∂kx , ∂ky ) and ε = Φ = −π, verifying the anomalous nature of the chiral
modes. Furthermore, we can see in this specific model, all components of the DSI take the same value of the π3

winding number W , implying a relation between the DSI and W . Nevertheless, the evaluation of DSI is more efficient
than that of W , since the former only cares about four C2-invariant momenta while the latter needs the entire 1BZ.

Supplementary Note 5. Details on DSI For A 2+1D Anomalous Flo-
quet Higher-order Topological Insulator

In this section, we derive the DSI for the 2+1D model proposed in Ref. [23], which has an anomalous Floquet
higher-order topological insulator phase. We will show that DSI is indeed nonzero in the anomalous phase, even if we
only consider the crystalline symmetries in the model and neglect the internal symmetries like chiral symmetry.

The model in Ref. [23] is a dynamical version of the static quadruple insulator model proposed in Ref. [24], which
is constructed on a square lattice with four sublattices at each lattice site. As a result, we have a 4 × 4 matrix
Hamiltonian [23]
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Supplementary Fig. 8. The symmetry data and winding data for the 2 + 1D anomalous Floquet higher-order topological
insulator (Supplementary Eq. (120) with Supplementary Eq. (122)). “R.G.” and “I.S.” stand for relevant gap, and isolated set,
respectively. In (a), we plot the two doubly-degenerate quasi-energy bands in [−π, π). Both quasi-energy gaps are chosen as
relevant gaps, resulting in two isolated sets of quasi-energy bands, and Φk = −π is the PBZ lower bound. The black dots label
Γ, M , and X, and the irreps at the three momenta for each isolated set are marked. In (b), we plot the phase bands of the
return map at Γ, M , and X for εk = Φk = −π. Each phase band is doubly degenerate, and the corresponding irrep is marked.
The dashed lines label the boundary of the PBZ.

h(k, t) =


γ(τxσ0 − τyσy) , t ∈ [0, T4 ]

λ [cos(kx)τxσ0 − sin(kx)τyσz − cos(ky)τyσy − sin(ky)τyσx] , t ∈ (T4 ,
3T
4 ]

γ(τxσ0 − τyσy) , t ∈ ( 3T
4 , T )

, (120)

where h(k, t) = h(k, t + T ), τ ’s are also Pauli matrices, and the lattice constant is set to be 1. The time-evolution
matrix U(k, t) can be derived from Supplementary Eq. (120) based on Supplementary Eq. (47).

The model effectively has the spinful p4mm plane group as the crystalline symmetry group G, which is spanned by
a four-fold rotation C4 along z, a mirror my perpendicular to y, and lattice translations. Specifically, C4 and my are
represented as

uC4
(k) =

 iσy

σ0


umy (k) = −iτxσx .

(121)

The model also has other symmetries like the chiral symmetry, but we choose to omit them, meaning that we allow
the continuous deformation of U(k, t) to break chiral symmetry, as well as other symmetries that are not in G. In this
case, the model can be treated as a class-A system with a time-independent crystalline symmetry group G.

For concreteness, we choose

T = 2,
√

2γ =
π

2
,
√

2λ = π , (122)

for which the model is in the anomalous Floquet higher-order topological insulator phase according to Ref. [23].
We emphasize that the topological properties of U(k, t) determined with Supplementary Eq. (122) should hold for
the entire phase, since other parameter values in the same phase should be topological equivalent to Supplementary
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Eq. (122). With Supplementary Eq. (122), U(k, T ) can be analytically diagonalized, and we get two doubly degenerate
eigenvalues ±i at each k. In Supplementary Fig. 8(a), we plot the two doubly degenerate flat quasi-energy bands of
U(k, t) in [−π, π), showing two quasi-energy gaps. According to Ref. [23], both quasi-energy gaps are relevant, and
then combined with time period T , G = spinful p4mm and the symmetry representations like Supplementary Eq. (121),
we have a FGU U(k, t). Furthermore, Φk = −π is a legitimate PBZ lower bound for U(k, t) since it lies in a relevant
gap. As shown in Supplementary Fig. 8(a), we have two isolated sets of quasi-energy bands, and each set consists of
one doubly degenerate band.

According to Bilbao Crystallographic Server [5], we only need to consider three momenta for spinful p4mm in the
study of the symmetry data, namely Γ(0, 0), M(π, π) and X(0, π), which are shown as black dots in Supplementary
Fig. 8(a). Here picking X as (0, π) for spinful p4mm is the convention used in Bilbao Crystallographic Server, since
(0, π) and (π, 0) are equivalent owing to C4. At each of the three momenta, the little group only has two-dimensional
small irreps. Specifically, we have two small irreps Γ6 and Γ7 for GΓ = G, two small irreps M6 and M7 for GM = G,
and one small irrep X5 for GX = spinful p2mm. Moreover, trace of the representation of C4 distinguishes i6 (Tr(C4) =

−
√

2) from i7 (Tr(C4) =
√

2), where i = Γ,M . As a result, the symmetry content of each isolated set should be

Al = (nl
Γ6
, nl

Γ7
, nl
M6
, nl
M7
, nl
X5

)T , (123)

where l = 1, 2 labels the two isolated sets, recall that nlk,α labels the copy number of the small irrep α at k in the lth
isolated set, and we do not need to separately label the momentum for each component of Al since the name of each
irrep contains the label of the momentum. According to Supplementary Fig. 8(a), we have the symmetry data A of
U(k, t) for Φk = −π as

A =
(
A1 A2

)
, (124)

where

A1 = (0, 1, 0, 1, 1)T

A2 = (1, 0, 1, 0, 1)T .
(125)

As discussed in Supplementary Note 3 B, the momenta for winding data V are the same as those for the symmetry
data, and we derive the winding data from the return map at those momenta. Based on Supplementary Eq. (78), we
have the winding data of U(k, t)

V = (νΓ6
, νΓ7

, νM6
, νM7

, νX5
)T , (126)

which can be intuitively read out from the winding of the phase bands of the return map for each irrep. Then,
Supplementary Fig. 8(b) suggests

V = (−1, 1, 0, 0, 0)T (127)

for Φk = −π. Indeed, direct calculation based on Supplementary Eq. (78) also yields Supplementary Eq. (127). With
this preparation, we next derive the DSI.

According to Bilbao Crystallographic Server, the compatibility relation for spinful p4mm reads

nl
Γ6

+ nl
Γ7

= nl
M6

+ nl
M7

= nl
X5

, (128)

or equivalently the compatibility relation matrix C reads

C =

1 1 −1 −1 0

1 1 0 0 −1

 . (129)

According to Supplementary Eq. (124), U(k, t) contains all inequivalent small irreps, and thereby the D matrix in
Supplementary Eq. (83) is zero. Then, all winding data of all G-invariant FUGs with symmetry data equivalent to
U(k, t) belong to the following set

{V } = Z5 ∩ ker C = {νΓ6
A2 + νΓ7

A1 + (νΓ6
− νM6

)(0, 0,−1, 1, 0)T |νΓ6
, νΓ7

, νΓ6
− νM6

∈ Z} . (130)
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On the other hand, both columns of A in Supplementary Eq. (124) are Hilbert bases according to Supplementary
Note 10, and thereby A is irreducible. Then, according to Supplementary Eq. (92), all winding data of all G-invariant
static FGUs with symmetry data equivalent to U(k, t) belong to

{VSL} = {q1A1 + q2A2|q1, q2 ∈ Z} . (131)

As a result, the DSIs for all G-invariant FUGs with symmetry data equivalent to U(k, t) take values in

X =
{V }
{VSL}

≈ {νΓ6
− νM6

∈ Z} , (132)

meaning that the DSI is νΓ6
− νM6

. In fact, this is one example for the Z DSI set of spinful p4mm in Tab. 2. Then,

according to Supplementary Eq. (127), we know the DSI of the FGU U(k, t) in the anomalous Floquet higher-order
topological phase is νΓ6

− νM6
= −1 6= 0, indicating the obstruction to static limits.

The above analysis shows that the anomalous Floquet higher-order topological insulator phase in Ref. [23] has
obstruction to static limits as long as the spinful p4mm is preserved, regardless of the chiral symmetry. In other
words, although the chiral symmetry is needed to pin the corner modes in the quasi-energy spectrum, it is not
essential for the “inherently dynamical” nature of the phase. Furthermore, to determine the obstruction, the DSI
only requires three momenta in the 1BZ, saving us from evaluating the quantized dynamical quadrupole momoent
proposed in Ref. [23], which involves all momenta in the entire 1BZ.

Supplementary Note 6. Details on The 3+1D AFSOTI

In this section, we construct a 3+1D model with space group P1, which has chiral hinge modes in the absence of
nonzero axion angles. P1 is space group #2, and is spanned by the inversion P and the 3D lattice translations. Since
spinless P1 is the same as spinful P1, we will focus on the spinless P1 in the following, i.e., G = spinless P1. We will
use the DSI to indicate its obstruction to static limits.

We consider a 3D cubic lattice with lattice constant being 1, and each lattice site consists of two spinless s orbitals
and two spinless p orbitals at the same position. We use |R, a〉 to label the Wannier bases, where a = s1, s2,p1,p2,
s1,2 labels the two s orbitals, p1,2 labels the two p orbitals, and R is the 3D lattice vector. Then, the Bloch bases are

|ψk,a〉 =
1√
N

∑
R

|R, a〉eik·R . (133)

With |ψk〉 = (|ψk,s1〉, |ψk,s2〉, |ψk,p1
〉, |ψk,p2

〉), the inversion P is represented as

uP(k) = τzσ0 , (134)

based on the convention Supplementary Eq. (52). Here τ ′s are also the Pauli matrices.
The Floquet Hamiltonian that we choose has the form

Ĥ(t) =
∑
k

|ψk〉H(k, t)〈ψk| (135)

with

H(k, t) =

 1
4 [2 + cos kx + cos ky + cos(kz)]τzσ0 + 0.02(τ0σx + τ0σy + τ0σz) , 0 ≤ t < T

2

1
4 [sin(kx)τyσx + sin(ky)τyσy + sin(kz)τyσz] + 0.02(τ0σx + τ0σy + τ0σz) , T

2 ≤ t < T
. (136)

The time-evolution matrix U(k, t) can be derived from Supplementary Eq. (136) based on Supplementary Eq. (47).
For concreteness, we choose T = 2π in the following.

As shown in Supplementary Fig. 9, the system has four quasi-energy bands, and two quasi-energy gaps at 0 and
π. We choose both quasi-energy gaps to be relevant, and then, the four quasi-energy bands are separated into two
isolated sets, of which each consists of two bands. According to Bilbao Crystallographic Server [5], we only need to
consider eight inversion-invariant momenta for P1 in the study of the symmetry data, namely Γ(0, 0, 0), X(π, 0, 0),
Y (0, π, 0), Z(0, 0, π), V (π, π, 0), U(π, 0, π), T (0, π, π), and R(π, π, π). Then, the symmetry content of each isolated
set should have the form

Al = (nlΓ,+, n
l
Γ,−, n

l
X,+, n

l
X,−, n

l
Y,+, n

l
Y,−, n

l
Z,+, n

l
Z,−, n

l
V,+, n

l
V,−, n

l
U,+, n

l
U,−, n

l
T,+, n

l
T,−, n

l
R,+, n

l
R,−)T , (137)
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Supplementary Fig. 9. The bulk quasi-energy bands for the 3 + 1D inversion-invariant AFSOTI (Supplementary Eq. (136))
at kz = 0 in [−π, π). “R.G.”, and “I.S.” stand for relevant gap and isolated set, respectively. Both quasi-energy gaps are
chosen as relevant gaps, resulting in two isolated sets of quasi-energy bands; each isolated set consists of two quasi-energy
bands. Φk = −π is the PBZ lower bound. Although we only plot the quasi-energy bands at kz = 0, the relevant gap choice,
the separation of isolated sets, and the PBZ lower bound hold for the entire 1BZ.

where l = 1, 2 labels the isolated sets of quasi-energy bands, and nlk,α represents the number of parity-α states at k

in the lth set of quasi-energy bands. Direct calculation yields the symmetry data A of U(k, t) for Φk = −π as

A =
(
A1 A2

)
, (138)

where

A1 = (2, 0, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 2, 0)T

A2 = (0, 2, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 0, 2)T .
(139)

As discussed in Supplementary Note 3 B, the momenta and irrep labels for winding data V are the same as those for
the symmetry data, and we derive the winding data from the return map at those momenta. Based on Supplementary
Eq. (78), we have the winding data of U(k, t)

V = (2,−2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T (140)

for Φk = −π. With this preparation, we next derive the DSI.
The compatibility matrix reads

C =



1 1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1


. (141)

According to Supplementary Eq. (138), U(k, t) contains all inequivalent small irreps, and thereby the D matrix in
Supplementary Eq. (83) is zero. Then, all winding data of all G-invariant FUGs with symmetry data equivalent to
U(k, t) belong to the following set
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{V } = Z16 ∩ ker C =



M



νΓ,+

νΓ,−

νΓ,+ − νX,−
νΓ,+ − νY,−
νΓ,+ − νZ,−
νΓ,+ − νV,−
νΓ,+ − νU,−
νΓ,+ − νT,−
νR,− − νΓ,−



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

νΓ,+, νΓ,−, νX,−, νY,−, νZ,−, νV,−, νU,−, νT,−, νR,− ∈ Z



, (142)

where

M =
(
a1 a2 Vec3 Vec4 Vec5 Vec6 Vec7 Vec8 Vec9

)
(143)

with

Vec3 = (0, 0, 1,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T

Vec4 = (0, 0, 0, 0, 1,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T

Vec5 = (0, 0, 0, 0, 0, 0, 1,−1, 0, 0, 0, 0, 0, 0, 0, 0)T

Vec6 = (0, 0, 0, 0, 0, 0, 0, 0, 1,−1, 0, 0, 0, 0, 0, 0)T

Vec7 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,−1, 0, 0, 0, 0)T

Vec8 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,−1, 0, 0)T

Vec9 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 1)T .

(144)

According to the compatibility matrix, P1 has 256 Hilbert bases, which are given by the 256 permutations of the
following vector

(1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0) , (145)

where the 256 permutations are given by permuting any two elements with the same momentum. Then, the symmetry
data Supplementary Eq. (138) is reducible, but it is can be spanned by only one set of Hilbert basis {a1, a2}, where

a1 = (1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0)T

a2 = (0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1)T .
(146)

According to Supplementary Eq. (99), all winding data of all G-invariant static FGUs with symmetry data equivalent
to U(k, t) belong to

{VSL} = {q1a1 + q2a2|q1, q2 ∈ Z} , (147)

where we have used the fact that the symmetry data is spanned by only one Hilbert basis set. Combined with
Supplementary Eq. (103), we have

X =
{V }

{q1a1 + q2a2|q1, q2 ∈ Z}
≈ {(νΓ,+ − νX,−, νΓ,+ − νY,−, νΓ,+ − νZ,−, νΓ,+ − νV,−, νΓ,+ − νU,−, νΓ,+ − νT,−, νR,− − νΓ,−) ∈ Z7} ,

(148)

meaning that the DSI is (νΓ,+−νX,−, νΓ,+−νY,−, νΓ,+−νZ,−, νΓ,+−νV,−, νΓ,+−νU,−, νΓ,+−νT,−, νR,−−νΓ,−) since
there is only one Hilbert basis set that spans A. In fact, this is one example for the Z7 DSI set of P1. Then, according
to Supplementary Eq. (140), we know the DSI of the FGU U(k, t) is (2, 2, 2, 2, 2, 2, 2) 6= 0, indicating the obstruction
to static limits.
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One signature of the obstruction to static limits is the anomalous chiral hinge modes shown in Fig. 3. The hinge
modes are anomalous because both bulk bands have zero axion angle θmod 2π. The axion angle for each isolated set
can be derived from the symmetry data Supplementary Eq. (138) according to the following expression [21, 25, 26]

θl
π

mod 2 =
∑
K

nlK,+ − nlK,−
4

mod 2 = 0 , (149)

where K ranges over all eight inversion-invariant momenta, and θl is the axion angle of the lth isolated set.
At last of this section, we specify the parameters that we use to plot Fig. 3 of the main text. In Fig. 3(a-b), we choose

Nx = 11 and Ny = 11, where Ni is the number of lattice sites along i direction with i ∈ {x, y, z}. In Fig. 3(a-b), the red
color is marked when the mode has total probability at (x, y) = (1, Ny), (1, Ny−1), (2, Ny), (2, Ny−1) larger than 1/2,
and the purple color is marked when the mode has total probability at (x, y) = (Nx, 1), (Nx, 2), (Nx−1, 1), (Nx−1, 2)
larger than 1/2. In Fig. 3(c), we choose Nx = Ny = Nz = 11.

Supplementary Note 7. Nonzero Initial Time

In this section, we will show that setting the initial time to zero does not lose any generality for the study of
topology. We will focus on the FGUs, since a similar argument can be applied to Floquet crystals.

Consider a time-evolution matrix U(k, t) with zero initial time, time period T , a crystalline symmetry group G,
and a symmetry representation ug(k). It is not a FGU yet since we have not picked the relevant gaps. Let us now
shift the initial time to t0, and the time-evolution matrix then reads

U(k, t+ t0, t0) = T e−i
∫ t0+t
t0

dt′H(k,t′) , (150)

where H(k, t) is the underlying matrix Hamiltonian. By defining Ht0(k, t) = H(k, t + t0), we have an equivalent
expression of Supplementary Eq. (150) as

U(k, t+ t0, t0) = Ut0(k, t) ≡ T e−i
∫ t
0
dt′Ht0 (k,t′) , (151)

and U(k, t) = Ut0=0(k, t). Based on Supplementary Eq. (151), we can view Ut0(k, t) as the time-evolution ma-
trix of a new matrix Hamiltonian Ht0(k, t) for zero initial time. Ut0(k, t) still has time period T as Ut0(k, t +
T ) = Ut0(k, t)Ut0(k, T ), and has crystalline symmetry group G and symmetry representation ug(k) owing to
ug(k)Ut0(k, t)u†g(k) = Ut0(kg, t).

The quasi-energy bands given by Ut0(k, T ) are the same as those given by U(k, T ). To see this, first note that

U(k, T + t0, t0) = U(k, t0 + T, T )U(k, T, 0)U(k, 0, t0) . (152)

Combined with H(k, t+ T ) = H(k, t) and U†(k, t0, t+ t0) = U(k, t+ t0, t0), we have

U(k, T + t0, t0) = U(k, t0, 0)U(k, T, 0)U†(k, t0, 0) , (153)

resulting in

Ut0(k, T ) = U(k, t0)U(k, T )[U(k, t0)]† . (154)

Owing to the same quasi-energy bands, we can always choose the same relevant gaps for Ut0(k, t) and U(k, t).
Therefore, we have two FGUs—one is U(k, t) (with T, a relevant gap choice, G, ug(k)) and the other one is Ut0(k, t)
(with T , the relevant gap choice same as U(k, t), G, ug(k))—which are related by a shift of the initial time.

It turns out Ut0(k, t) is topologically equivalent to U(k, t). The deformation that establishes the topological equiv-
alence is Us(k, t) = U(k, t+ st0, st0), Ts = T , and us,g(k) = ug(k) with s ∈ [0, 1]. Since s is just changing the initial
time, Us(k, t) is a continuous function of (k, t, s) ∈ Rd ×R× [0, 1], and the quasi-energy bands given by Us(k, Ts) are
the same as those of Us=0(k, t) = U(k, t) for all s ∈ [0, 1]. It means that all relevant gaps of U(k, t) will be kept open as
s continuously increases and eventually become the relevant gaps of Us=1(k, t) = Ut0(k, t). All other requirements of
the continuous deformation for topological equivalence in Def. 3 can be straightforwardly checked. Therefore, shifting
the initial time of a FGU while keeping the relevant gap choice always results in an topologically equivalent FGU. A
similar argument can show that the same conclusion holds for Floquet crystals. Then, for the study of topology of
FGUs and Floquet crystals, we only need to consider t0 = 0.
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Supplementary Note 8. Details on Return Map and Winding Data

In this section, we present more details on the return map and winding data. Within this section, we allow the
return map to have branch cut εk different from the PBZ lower bound. We still require the continuous real εk (i) to
lie either in a relevant gap in the PBZ or in a redundant 2πn-copy of a relevant gap, (ii) to satisfy εk+G = εk for all
reciprocal lattice vectors G, and (iii) to satisfy εkg = εk for all g ∈ G. In other words, εk is required to satisfy the
requirement for PBZ lower bounds.

A. Return Map: Symmetry Properties and Change of Branch Cut

Let us start with the return map of a given FGU U(k, t) with time period T , a relevant gap choice, a crystalline
symmetry group G, and a symmetry representation ug(k). After picking the PBZ lower bound Φk, we can label the
quasi-energy bands and their projection matrices as discussed in Supplementary Note 2. For the convenience of latter
discussion, we relabel the quasi-energy bands and their corresponding projection matrices as Ek,l,ml and Pk,l,ml(T ),
respectively, where l = 1, 2, ..., L labels the isolated sets of quasi-energy bands, ml = 1, 2, ..., nl labels the quasi-energy
bands in the lth isolated set, and nl is the total number of quasi-energy bands in the lth isolated set. The relabelling
is required to make sure

Ek,l+1,ml+1
> Ek,l,ml

Ek,l,ml+1 ≥ Ek,l,ml .
(155)

As mentioned in Supplementary Note 2, each quasi-energy band is a continuous function of k ∈ Rd, is G-periodic
(Ek+G,l,ml = Ek,l,ml), and is G-symmetric (Ekg,l,ml = Ek,l,ml).

With the relabelling, the definition of [U(k, T )]
−t/T
ε in Supplementary Eq. (62) is re-expressed as

[U(k, T )]−t/Tε

=

L∑
l=1

nl∑
ml=1

exp

[
− t

T
logεk(e−iEk,l,mlT )

]
Pk,l,ml(T ) ,

(156)

where

i logεk(e−iEk,l,mlT ) = Ek,l,mlT + 2πjl ∈ [εk, εk + 2π) (157)

and jl ∈ Z. jl does not depend on ml or k since εk lies in a relevant gap (or one of its redundant copies) and thus εk
and Ek,l,ml are continuous. Then, the return map defined in Supplementary Eq. (62) becomes

Uε(k, t) = U(k, t)

L∑
l=1

nl∑
ml=1

eiEk,l,ml t+i2πjlt/TPk,l,ml(T ) . (158)

Since eiEk,l,ml t+i2πjlt/T has the same degeneracy property as e−iEk,l,mlT , [U(k, T )]
−t/T
ε should have the same symmetry

and continuity properties as U(k, T ). Therefore, [U(kg, T )]
−t/T
ε is continuous in Rd × R, is G-periodic, and satisfies

ug(k)[U(k, T )]−t/Tε u†g(k) = [U(kg, T )]−t/Tε ∀g ∈ G . (159)

As a result, combined with Supplementary Eq. (54), we know Uε(k, t) is continuous, is G-periodic, and satisfies

ug(k)Uε(k, t)u
†
g(k) = Uε(kg, t) ∀g ∈ G , (160)

which further yields Supplementary Eq. (76) after choosing ε = Φ.
According to Supplementary Eq. (158), changing the branch cut can only change jl. Specifically, when the branch

cut lies in the lth relevant gap in the PBZ, denoted by εl, jl′ = 0 for l′ ≥ l and jl′ = 1 for l′ < l. If shifting the branch
cut by ε→ ε− 2πq with q integer, then jl → jl − q for all l. As a result, we have

Uεl−2πq(k, t) = Uε=Φ(k, t)e−iq2π t
T

L∑
l′=1

ei2πθ(l−l′) tT Pk,l′(T ) , (161)
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where θ(x) = 0 for x ≤ 0, θ(x) = 1 for x > 0,

Pk,l(T ) =

nl∑
ml=1

Pk,l,ml(T ) , (162)

and we use Uε1(k, t) = Uε=Φ(k, t) since the PBZ lower bound Φk lies in the first relevant gap.

B. Winding Data: Gauge Invariance and Change of Branch Cut

In order to show the effect of changing the branch cut, we will focus on the ε-dependent winding vector in the
following. First, similar to Supplementary Eq. (77), Supplementary Eq. (160) suggests that we can block diagonalize
Uε(k, t) and ug(k) simultaneously by a unitary WGk as

W †GkUε(k, t)WGk =


. . .

Uε,k,α(t)

. . .



W †Gkug(k)WGk =


. . .

ũαg (k)

. . .

 ,

(163)

where Uε,k,α(t) and ũαg (k) are the blocks of the return map and the symmetry representation that correspond to the
small irrep α of Gk, respectively. Recall that ũαg (k) is a small representation of Gk that can be unitarily transformed

to 1nk,α
⊗ uαg (k), where uαg (k) is the small irrep α of Gk, and nk,α =

∑L
l=1 n

l
k,α is the total number of copies of small

irrep α that occur in ug(k). Then, we define the following ε-dependent U(1) winding number

νε,k,α =
i

2π

1

dα

∫ T

0

dtTr[U†ε,k,α(t)∂tUε,k,α(t)] , (164)

and the ε-dependent winding vector

Vε = (..., νε,k,α, ...)
T (165)

with k and α respectively ranging over all chosen types of momenta and all inequivalent small irreps of Gk. The choice
of momenta for the winding vector is based on the fact that νε,k,α obeys all compatibility relations for symmetry
contents, which will be elaborated in the last part of this section. Vε becomes the winding data if the PBZ lower
bound Φ is chosen as the branch cut ε = Φ.
Vε is gauge invariant. The U(N) gauge transformation of Uε(k, t) is Uε(k, t) → W (k)†Uε(k, t)W (k), which can

be canceled by simultaneously performing W (k) → W †GkW (k) according to Supplementary Eq. (163). However, the
U(N) gauge freedom or the choice of bases is not the only redundancy that we need to consider. After fixing the
U(N) gauge or the choice of bases, the choice of WGk in Supplementary Eq. (163) allows a new gauge freedom

WGk →WGk


. . .

WGk,α
. . .

 , (166)

where WGk,α is a unitary matrix. Under this gauge transformation, we have

Uε,k,α(t)→W †Gk,αUε,k,α(t)WGk,α , (167)

which leaves Vε invariant according to Supplementary Eq. (164). Therefore, Vε is gauge invariant, and so does the
winding data Vε=Φ.
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Now we show the components of Vε must be integers. Owing to the gauge invariance of Vε, we can always choose
WGk such that ũαg (k) = 1nk,α

⊗ uαg (k). Then according to Schur’s Lemma [27], Uε,k,α(t) in Supplementary Eq. (163)
has the form

Uε,k,α(t) = Ũε,k,α(t)⊗ 1dα , (168)

where Ũε,k,α(t) is a nk,α × nk,α matrix, and dα is the dimension of uαg (k). Substituting the above equation into
Supplementary Eq. (164), we arrive at

νε,k,α =
i

2π

∫ T

0

dtTr[Ũ†ε,k,α(t)∂tŨε,k,α(t)] , (169)

which must be an integer since it represents the winding number of the continuous phase angle of det[Ũε,k,α(t)] over
one time period. Therefore, the components of Vε, as well as the winding data Vε=Φ, must be integers.

At the end of this part, we show how Vε changes upon changing the branch cut ε. Combining Supplementary
Eq. (161) with Supplementary Eq. (163), we have

Uεl−2πq,k,α(t) = Uε=Φ,k,α(t)e−iq2πt/TUl,α,k(t) , (170)

where Ul,α,k(t) is given by

W †Gk

L∑
l′=1

ei2πθ(l−l′) tT Pk,l′(T )WGk =


. . .

Ul,α,k(t)

. . .

 . (171)

Combined with Supplementary Eq. (164), we get

νεl−2πq,k,α = νk,α + q nk,α

+
i

2π

1

dα

∫ T

0

dtTr[U†l,α,k(t)∂tUl,α,k(t)] .
(172)

As νεl−2πq,k,α is gauge invariant, we can choose WGk such that each of its columns not only corresponds to certain
small irrep of Gk but also belongs to a definite isolated set of quasi-energy bands at k, labeled as Y αl,ml,α with

ml,α = 1, ..., nlk,αdα. Then,

Pαk,l′(T )Y αl,ml,α = δl′lY
α
l,ml,α

. (173)

We can collect all columns of WGk belonging to α irrep to form a matrix

Wα
Gk =

(
... Y αl,ml,α ...

)
, (174)

where ... ranges over l,ml,α. As a result, we have

Ul,α,k(t) = [Wα
Gk ]†

L∑
l′=1

ei2πθ(l−l′) tT Pk,l′(T )Wα
Gk

=


. . .

ei2πtθ(l−l′)/T1nlk,αdα
. . .l′

 .

(175)

Combined with Supplementary Eq. (172), we arrive at

νεl−2πq,k,α = νk,α + q nk,α −
l−1∑
l′=1

nl
′

k,α , (176)
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and thereby

Vεl−2πq = V + q

L∑
l′=1

Al′ −
l−1∑
l′=1

Al′ . (177)

The above expression suggests that we do not need to choose branch cut for the winding data different from the PBZ
lower bound since they are related by the symmetry data.

If we choose the PBZ lower bound Φk as the branch cut, a new PBZ lower bound Φ̃k given by a L̃-shift of Φk

would be equivalent to εl̃+1 + 2πq with l̃ = L̃modL and q = (L̃ − l̃)/L. (Recall that L is the number of isolated
sets of quasi-energy bands in one PBZ.) Then, the new winding data would be Vεl̃+1+2πq, resulting in Supplementary

Eq. (85).

C. Compatibility Relation of Winding Numbers

At the end of this section, we demonstrate that νε,k,α obeys all compatibility relations for symmetry contents.
Again, we demonstrate it for tunable branch cut ε. In the above discussion, when we talk about the small irreps of
Gk, we always imply those small irreps are furnished by bases at k. However, in the remaining of this section, we
sometimes need to consider the small irreps of Gk furnished by bases at another k′. Then, we need complicate our
notation to emphasize the bases: we use αk instead of α to label inequivalent small irreps of Gk furnished by bases at
k, unless specified otherwise.

I. Same Winding Numbers for Momenta of Same Type

We start with showing that the winding number νε,k,αk
is the same for two momenta of the same type. Recall

the definition of two momenta being in the same type discussed in Supplementary Note 3 A: two momenta k and k′

in 1BZ are defined to be of the same type iff there exists a symmetry h ∈ G, a reciprocal lattice vector G, and a
continuous path ks with s ∈ [0, 1] such that (i) ks=0 = kh + G and ks=1 = k′, and (ii) Gks=0

= Gks=1
⊂ Gks for all

s ∈ [0, 1]. Note that we do not need to confine ks in 1BZ. Based on the definition, we split the derivation into two
steps below.

First, we show the winding number is the same for ks=0 and ks=1 (in short denoted by k0 and k1 below, respectively)
in the definition. Since Gk0 ⊂ Gks , ks is invariant under Gk0 , and thus ug(ks) satisfies

ug1(ks)ug2(ks) = ug1g2(ks) ∀ g1, g2 ∈ Gk0
. (178)

Therefore, ug(ks) is a small representation of Gk0
furnished by bases at ks instead of k0. Recall that we use αk0

to
label the small irreps of Gk0

at k0. Owing to the continuous path, we are allowed to use the αk0
to label the small

irreps of Gk0 at ks [9]. Such a correspondence is enabled by tracking the small irreps continuously along the path
(or more mathematically based on the underlying projective representations of Gk0/T with T the lattice translation
group). In this case, we can use a unitary WGk0

(ks) to block diagonalize the return map and symmetry representation
at ks according to the inequivalent small irreps of Gk0 at ks as

[
WGk0

(ks)
]†
Uε(ks, t)WGk0

(ks) =


. . .

Uε,ks,αk0
(t)

. . .



[
WGk0

(ks)
]†
ug(ks)WGk0

(ks) =


. . .

ũ
αk0
g (ks)

. . .

 ,

(179)

where g ∈ Gk0 , ũg(ks) can be unitarily transformed to 1nk0,αk0
⊗ uαk0

g (ks) in a g-independent way, and u
αk0
g (ks) is

the small irrep αk0
of Gk0

at ks. In the above equation, we used the fact that the number of u
αk0
g (ks) in ug(ks) is

equal to nk0,αk0
that is the number of u

αk0
g (k0) in ug(k0) since the symmetry contents respect the momentum type.
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We emphasize that WGk0
(ks) is not WGks suggested in Supplementary Eq. (163) since Gks may not equal to Gk0

. We

can always choose WGk0
(ks) to be a continuous of s since the columns of WGk0

(ks) that correspond to the same small

irrep of Gk0 are sections of a vector bundle with 1D base space, resulting that Uε,ks,αk0
(t) is a continuous function of

(s, t). Based on Supplementary Eq. (179), we can further define

νε,ks,αk0
=

i

2πdαk0

∫ T

0

dtTr[Uε,ks,αk0
(t)∂tUε,ks,αk0

(t)] , (180)

where we use the fact that the dimension of u
αk0
g (ks) is equal to dαk0

that is the dimension of the αk0
small irrep

of Gk0
at k0. Since νε,ks,αk0

is a continuous function of s and is quantized to integers, we have νε,k0,αk0
= νε,k1,αk0

.
Combined with the fact that Gk0

= Gk1
and thus αk0

can enumerates all small irreps of Gk1
at k1, we arrive at

νε,k0,αk0
= νε,k1,αk0

, (181)

where the same label for small irreps of Gk0
and Gk1

is given by the continuous path as discussed above.
Second, we show the winding number is the same for k0 and k. Owing to k0 = kh + G with h ∈ G, Gk = h−1Gk0

h
and thereby Gk and Gk0

are isomorphic. Then, we know the small irreps of Gk at k are one-to-one corresponding to
those of Gk0

at k0, which can both be labeled as α. Specifically, we can choose uαg0(k0) = uαh−1g0h
(k) for all g0 ∈ Gk0

and all inequivalent α. Suppose we choose unitary WGk to give

W †Gkug(k)WGk =


. . .

1nk,α
⊗ uαg (k)

. . .



W †GkUε(k, t)WGk =


. . .

Uε,k,α(t)

. . .


(182)

for g ∈ Gk. Then, owing to uh(k)uh−1g0h(k)u†h(k) = ug0(k0) that holds for all g0 ∈ Gk0 , we can choose

WGk0
= uh(k)WGk (183)

such that

W †Gk0
ug0(k0)WGk0

=


. . .

1nk,α
⊗ uαh−1g0h

(k)

. . .

 (184)

for all g0 ∈ Gk0 , and

W †Gk0
Uε(k0, t)WGk0

=


. . .

Uε,k,α(t)

. . .

 . (185)

Owing to uαg0(k0) = uαh−1g0h
(k) and nk,α = nk0,α, we know the blocks of return map for k0 and k are equal

Uε,k0,α(t) = Uε,k,α(t). Combined with Supplementary Eq. (164), we arrive at

νε,k,α = νε,k0,α , (186)

where the same label for small irreps of Gk and Gk0 is given by the symmetry h ∈ G as discussed above.
Combining two steps, we have

νε,k,α = νε,k0,α = νε,k1,α = νε,k′,α (187)

for all α. Therefore, the winding numbers are the same for two momenta of the same type, and thus we only need to
consider one momentum for each type.
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II. Winding Numbers Obey All Compatibility Relations for Symmetry Contents

Now, we show that νε,k,αk
obeys all compatibility relations for symmetry contents. For symmetry contents, there

are two types of compatibility relations [4, 5]. The first type comes from two momenta k0 and k1 (in 1BZ) that are
connected by a continuous path ks with s ∈ [0, 1] and satisfy Gk0 ( Gk1 and Gk0 ⊂ Gks for all s. Here we require Gk1

to be strictly larger than Gk0 , since otherwise k0 and k1 become in the same type. In practice, we can try to make
k0 and k1 infinitesimally close to each other [28].

Suppose that u
αk1
g1 (k1) is the αk1

small irrep of Gk1
at k1 for g1 ∈ Gk1

. Owing to Gk0
( Gk1

, u
αk1
g0 (k1) is also a

small representation of Gk0
at k1 with g0 ∈ Gk0

. u
αk1
g0 (k1) might not be irreducible for Gk0

, and then we can express

u
αk1
g0 (k1) as the direct sum of small irreps of Gk0

at k1

u
αk1
g0 (k1) =


. . .

1wαk1
,αk0
⊗ uαk0

g0 (k1)

. . .αk0

 (188)

for all g0 ∈ Gk0
, where the diagonal blocks range over αk0

, and a proper gauge is chosen. It is the continuous path
that allows us to use αk0

, which is originally the label for the small irreps of Gk0
at k0, to label the small irreps of

Gk0 at k1 as u
αk0
g0 (k1). In particular, wαk1

,αk0
is the number of u

αk0
g0 (k1) in u

αk1
g0 (k1), which is determined by αk1 ,

αk0
, Gk1

, and Gk0
[9, 27]. Ref. [4 and 5] suggests that the symmetry data satisfies

nlk0,αk0
=
∑
αk1

wαk1
,αk0

nlk1,αk1
, (189)

where l labels the isolated set of quasi-energy bands, and nlk,αk
was defined in Supplementary Note 3 A.

We want to demonstrate that the relation Supplementary Eq. (189) holds between νε,k0,αk0
and νε,k1,αk1

, where

νε,k,αk
was defined in Supplementary Eq. (164). According to Supplementary Eq. (180), we can construct νε,k1,αk0

,
which is the winding number of the return map block for the αk0

small irrep of Gk0
at k1, and we have

νε,k0,αk0
= νε,k1,αk0

(190)

with αk0 ranging over all inequivalent small irreps of Gk0 . However, since Gk1 is strictly larger than Gk0 , αk0 cannot
be used to label all small irreps of Gk1 at k1. Thus, we need to connect νε,k1,αk0

to νε,k1,αk1
.

To do so, we can use a special unitary WGk1
to give Supplementary Eq. (188) as well as

W †Gk1
Uε(k1, t)WGk1

=


. . .

Ũε,k1,αk1
(t)⊗ 1dαk1

. . .



W †Gk1
ug1(k1)WGk1

=


. . .

1nk1,αk1
⊗ uαk1

g1 (k1)

. . .

 ,

(191)

where g1 ∈ Gk1 . νε,k1,αk1
is given by Ũε,k1,αk1

(t) according to Supplementary Eq. (169). The nk1,αk1
dαk1

columns in

WGk1
that furnish the copies of αk1 small irrep of Gk1 can be labeled as Y

αk1

k1,jk1,αk1
,iαk1

with jk1,αk1
= 1, ..., nk1,αk1

labels the copies of the small irrep and iαk1
= 1, ..., dαk1

labels the components for each copy. Owing to the Sup-

plementary Eq. (188), the iαk1
index can be relabeled as (αk0

, jαk1
,αk0

, iαk0
) with jαk1

,αk0
= 1, ..., wαk1

,αk0
and

iαk0
= 1, ..., dαk0

. Then, we have Y
αk1

,αk0

k1,jk1,αk1
,jαk1

,αk0
,iαk0

as columns of WGk1
satisfying

Uε(k1, t)Y
αk1

,αk0

k1,jk1,αk1
,jαk1

,αk0
,iαk0

=
∑

j′k1,αk1

Y
αk1

,αk0

k1,j′k1,αk1
,jαk1

,αk0
,iαk0

[Ũε,k1,αk1
(t)]j′k1,αk1

jk1,αk1

ug0(k1)Y
αk1

,αk0

k1,jk1,αk1
,jαk1

,αk0
,iαk0

=
∑
i′αk0

Y
αk1

,αk0

k1,jk1,αk1
,jαk1

,αk0
,i′αk0

[u
αk0
g0 (k1)]i′αk0

iαk0
∀g0 ∈ Gk0 .

(192)
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We can then regroup Y
αk1

,αk0

k1,jk1,αk1
,jαk1

,αk0
,iαk0

with the same αk0
together and give a unitary WGk0

(k1) that satisfies

W †Gk0
(k1)ug0(k1)WGk0

(k1) =


. . .

1nk1,αk0
⊗ uαk0

g0 (k1)

. . .

 ∀g0 ∈ Gk0

W †Gk0
(k1)Uε(k1, t)WGk0

(k1) =


. . .

Uε,k1,αk0
(t)

. . .

 ,

(193)

where nk1,αk0
=
∑
αk1

wαk1
,αk0

nk1,αk1
is the number of u

αk0
g0 (k1) in ug0(k1), and

Uε,k1,αk0
(t) =


. . .

Ũε,k1,αk1
(t)⊗ 1wαk1

,αk0
dαk0

. . .αk1

 . (194)

We then have

νε,k1,αk0

=
i

2π

1

dαk0

∫ T

0

dtTr[U†ε,k0,αk0
(t)∂tUε,k0,αk0

(t)]

=
∑
αk1

wαk1
,αk0

i

2π

∫ T

0

dtTr[Ũ†ε,k1,αk1
(t)∂tŨε,k1,αk1

(t)]

=
∑
αk1

wαk1
,αk0

νε,k1,αk1
.

(195)

Combined with Supplementary Eq. (190), we arrive at

νε,k0,αk0
= νε,k1,αk0

=
∑
αk1

wαk1
,αk0

νε,k1,αk1
, (196)

which is the same as Supplementary Eq. (189) for symmetry contents.
The first type of compatibility relation is enough for all symmorphic crystalline groups. For non-symmorphic

crystalline groups, we need to include the second type. To introduce the second type, first note that Gk = Gk+G. The
compatibility relation arises when k and k + G can be connected by a continuous path ks with s ∈ [0, 1] such that
k0 = k, k1 = k + G, and Gk ⊂ Gks for all s. Then, according to the first part of the definition of the momentum
type, the small irreps of Gk+G at k + G can be labeled by αk (originally for the small irreps of Gk at k) based on the
continuous path, and we know

νε,k,αk
= νε,k+G,αk

. (197)

With this convention, for certain momentum k whose little group Gk contains non-symmorphic symmetries, the αk

small irrep of Gk+G at k + G, labeled as uαk
g (k + G), may not equal to the αk small irrep of Gk at k, labeled as

uαk
g (k) for g ∈ Gk = Gk+G; instead they satisfy (up to a g-independent unitary transformation)

uαk
g (k + G) = upG(αk)

g (k) (198)

for all g ∈ Gk, where pG labels a permutation of the small irreps. As a result, we have

νε,k+G,αk
= νε,k,pG(αk) , (199)
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where the G-periodic nature of ug(k) and Uε(k, t) is used. Combining this equation with Supplementary Eq. (197),
we arrive at

νε,k,αk
= νε,k,pG(αk) . (200)

On the other hand the symmetry contents also obey nlk,αk
= nlk,pG(αk), showing that the winding numbers possess

the second type of compatibility relation of the symmetry contents. In short, there are two ways of labelling small
irreps at k + G: one is based on the continuous path, and the other is to make small irreps G-periodic. The second
type of compatibility relation is nothing but the result of compromising these two ways.

Since the winding numbers obey all compatibility relations for the symmetry contents, we can choose the same
types of momenta for the symmetry data and winding data.

Supplementary Note 9. Details on Static Winding Data Set and DSI

In this section, we present more details on the static winding data set {VSL} for a given FGU U(k, t) with time
period T , a relevant gap choice, a crystalline symmetry group G, and a symmetry representation ug(k) of G. Then,
we elaborate the core method for the calculation of the DSI set given the Hilbert bases. At last, we discuss how to
determine the Hilbert bases sets that span a given symmetry data.

A. {VSL}

In this part, we show how to construct {VSL} for the given FGU U(k, t). Let us pick a PBZ choice for U(k, t) that
yields symmetry data A. As discussed in Supplementary Note 2 D and Supplementary Note 3 D, we only need to
consider the G-invariant static FGUs with time period TSL = T and symmetry data equivalent to U(k, t), labelled as
USL(k, t) = e−iHSL(k)t with the corresponding relevant gap choice and symmetry representation.

HSL(k) can always be expanded by the projection matrices as

HSL(k) =

R∑
r=1

Mr∑
mr=1

Ek,r,mrPk,r,mr , (201)

where Pk,r,mr is the time-independent projection matrix onto the subspace corresponding to the band Ek,r,mr . Here
we use r to label the isolated connected set of bands and use mr to label the bands in the rth isolated connected set.
Being connected means the for any mr < Mr, there exist k0 such that Ek0,r,mr+1 = Ek0,r,mr . We can always choose
Ek,r,mr to be continuous in Rd, G-periodic, and G-symmetric for all r,mr, and we also choose Ek,r+1,mr+1

> Ek,r,mr

and Ek,r,mr+1 ≥ Ek,r,mr . Then, the time-evolution matrix reads

USL(k, t) =
∑
r,mr

e−iEk,r,mr tPk,r,mr . (202)

The relevant gaps of the static FGU are picked based on the quasi-energy band structure given by USL(k, T ). We
further choose a PBZ lower bound ΦSL,k for the static FGU. As a result, we can have the quasi-energy bands as

Ek,r,mr =
i

T
logεk=ΦSL,k

e−iEk,r,mrT = Ek,r,mr +
2π

T
qr , (203)

where qr ∈ Z realizes Ek,r,mrT ∈ [ΦSL,k,ΦSL,k + 2π). Here qr is independent of mr and k because (i) ΦSL,k lies
in a gap of USL(k, T ), (ii) ΦSL,k and Ek,r,mr are continuous functions of k, and (iii) Ek,r,mr (mr = 1, ...,Mr) is a
connected set for each r. Although Ek,r,mr and Ek,r′,m′

r′
have no definite relations for r 6= r′ before determining qr,

Ek,r,mr with mr = 1, ...,Mr, denoted by Ek,r, must always be a connected set. Then, each connected set Ek,r must lie
in a unique isolated set of quasi-energy bands of USL(k, t), and thereby we can relabel the index r as (l, rl), where l
labels the isolated set of quasi-energy bands in which Ek,r lies, and rl is the index of Ek,r in the lth isolated set. With
this notation, the bands of HSL(k) are now labeled as Ek,l,rl,ml,rl

with (l, rl) still labelling the isolated connected set
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of bands of HSL(k), and we have

HSL(k) =

L∑
l=1

∑
rl,ml,rl

Ek,l,rl,ml,rl
Pk,l,rl,ml,rl

USL(k, t) =

L∑
l=1

∑
rl,ml,rl

e
−itEk,l,rl,ml,rl Pk,l,rl,ml,rl

Ek,l,rl,ml,rl = Ek,l,rl,ml,rl
+

2π

T
ql,rl .

(204)

To derive the corresponding VSL, we need to make sure the relevant gap choice and the PBZ choice give ASL = A.
Since (l, rl) labels the isolated connected set of bands of HSL(k), Pk,l,rl =

∑
ml,rl

Pk,l,rl,ml,rl
provides a nonzero

symmetry content Al,rl ∈ {BS}, which is also the symmetry content of Ek,l,rl . Owing to ASL = A, we have∑
rl
Al,rl = Al, and therefore (...Al,rl ...) is a reduction of A. (See the definition of reduction in Supplementary Note

3 D III.) On the other hand, VSL is directly derived from the return map, which is given by Supplementary Eq. (62)
as

USL,ε=ΦSL(k, t) =
∑
l,rl

eiql,rl
2π
T tPk,l,rl . (205)

Based on a derivation similar to Supplementary Eq. (175), we have

VSL = −
∑
l,rl

ql,rlAl,rl . (206)

Since (...Al,rl ...) is a reduction of A and −ql,rl ∈ Z, we arrive at

{VSL} ⊂ {VSL} (207)

with {VSL} defined in Supplementary Eq. (96).
The above derivation does not specify whether A is irreducible or not. (Recall that we define the symmetry data

A of a FGU to be irreducible if all its columns are irreducible symmetry contents; otherwise, A is reducible.) If A is

reducible, it is possible that {VSL} is strictly larger than {VSL} since certain reduction of A might be not reproducible
by isolated sets of bands. If A is irreducible, then we only have one reduction of A, which is A itself, and this reduction
can be reproduced by isolated sets of bands since U(k, t) has it, resulting in Supplementary Eq. (92).

B. DSI Set for Irreducible Symmetry Data

In this part, we will derive Supplementary Eq. (94) from Supplementary Eq. (83) and Supplementary Eq. (93) given
the set of Hilbert bases {aj} with J elements. The derivation will show how to construct the DSI set for FGUs with
irreducible symmetry data.

The winding data set in Supplementary Eq. (83) can be rewritten as

{V } = ZK ∩ ker

C
D

 , (208)

and Supplementary Eq. (93) gives {VSL}. Recall that the diagonal D is determined as: a diagonal element of D is 0
(1) if the corresponding component of

∑
j aj is nonzero (zero). To derive Supplementary Eq. (94), let us first define

a matrix with aj as its columns:

Ma =
(
...aj ...

)
. (209)

Since Ma is a K × J matrix with integer elements, it always has the so-called Smith normal form (SNF) [18, 29], i.e.,
there exists a unimodular K ×K matrix UL and a unimodular J × J matrix UR such that

Ma = ULΛUR , (210)
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where the K × J matrix Λ satisfies

Λij =

 λi , i = j ∈ {1, 2, ..., r}

0 , otherwise
, (211)

λ1,..,r are positive integers, r is the matrix rank of Ma, and λi+1/λi is a positive integer for all i = 1, ..., r − 1. Here
being unimodular means that (i) the square matrix is invertible and (ii) itself and its inverse are all matrices with
integer elements. Then, the DSI set reads

X =
{V }
{VSL}

≈ ZK−r̃−r × Zλ1×λ2×...×λr , (212)

where r̃ is the rank of

C
D

. In the following, we derive Supplementary Eq. (212) explicitly.

Let us focus on the first r columns of UL, denoted by UL,1, ..., UL,r, which form a matrix B

B =
(
UL,1...UL,r

)
. (213)

Combining this definition with Supplementary Eq. (210), we have

MaqJ = BΛrqr , (214)

where

Λr =


λ1

λ2

. . .

λr

 , (215)

qJ ∈ ZJ , and qr ∈ Zr consists of the first r components of URqJ . As qJ ranges over ZJ , qr ranges over Zr, resulting in

{VSL} = {BΛrq|q ∈ Zr} . (216)

Since the SNF Supplementary Eq. (210) is a special type of singular value decomposition, we have

{Bx|x ∈ Rr} = col(Ma) , (217)

with col(Ma) the column space of Ma. Therefore, we have {Bq|q ∈ Zr} ⊂ ZK ∩ col(Ma). On the other hand, since
all columns of UL form a set of bases for ZK , all elements in ZK ∩ col(Ma) can be expressed as linear combinations
of columns of UL with integer coefficients. Since the last K − r columns of UL are not in col(Ma), all elements in
ZK ∩ col(Ma) can be expressed as linear combinations of the first r columns of UL with integer coefficients, i.e.,
ZK ∩ col(Ma) ⊂ {Bq|q ∈ Zr}. Moreover, since {Bq|q ∈ Zr} and ZK ∩ col(Ma) have the same definition of addition
and scalar multiplication, we have {Bq|q ∈ Zr} = ZK ∩ col(Ma). Eventually combined with CMa = 0 and DMa = 0,
we arrive at

{VSL} ⊂ {Bq|q ∈ Zr} = ZK ∩ col(Ma) ⊂ {V } . (218)

Supplementary Eq. (218) suggests us to derive the DSI set in two steps based on the following expression

X =
{V }
{VSL}

≈ {V }
ZK ∩ col(Ma)

× ZK ∩ col(Ma)

{VSL}
. (219)

In the first step, we derive ZK∩col(Ma)
{VSL} from Supplementary Eq. (216) and Supplementary Eq. (218), which reads

ZK ∩ col(Ma)

{VSL}
≈ Zλ1×λ2×...×λr . (220)
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So the second step is to derive

{V }
ZK ∩ col(Ma)

=

ZK ∩ ker

C
D


ZK ∩ col(Ma)

. (221)

To do so, let us first look at the SNF of

C
D


C
D

 = ŨLΛ̃ŨR . (222)

The last K − r̃ columns of Ũ−1
R spans {V } with r̃ the rank of

C
D

. We label the matrix formed by the last K − r̃

columns of Ũ−1
R as S, and label the matrix formed by the last K − r̃ rows of ŨR as S−1

L , where S−1
L is the left inverse

of S

S−1
L S = 1K−r̃ . (223)

{V } can be rewritten as

{V } = {Sq|q ∈ ZK−r̃} , (224)

we have

{V } ∼= S−1
L {V } = ZK−r̃

col(Ma) ∩ ZK ∼= S−1
L (col(Ma) ∩ ZK) = {S−1

L Bq|q ∈ Zr} ,
(225)

resulting in

{V }
col(Ma) ∩ ZK

≈ ZK−r̃

{S−1
L Bq|q ∈ Zr}

. (226)

Here ∼= means being isomorphic. On the other hand, since S−1
L aj ∈ S−1

L {V } = ZK−r̃ and the rank of S−1Ma is still
r, we have

ZK−r̃

ZK−r̃ ∩ col(S−1
L Ma)

≈ ZK−r̃−r , (227)

which can be straightforwardly derived by the SNF of S−1
L Ma. So as long as we can verify

S−1
L (col(Ma) ∩ ZK) = ZK−r̃ ∩ col(S−1

L Ma) , (228)

we have

{V }
col(Ma) ∩ ZK

≈ ZK−r̃−r , (229)

which, combined with Supplementary Eq. (220) and Supplementary Eq. (219), gives Supplementary Eq. (212).
To verify Supplementary Eq. (228), let us recall Supplementary Eq. (218). Any element y of S−1

L (col(Ma) ∩ ZK)
satisfies

y = S−1
L Max and Max ∈ ZK , (230)

where x ∈ RJ . Since S−1
L is a (K − r̃) × K integer matrix, Max ∈ ZK infers S−1

L Max ∈ ZK−r̃ and thereby

y ∈ ZK−r̃ ∩ col(S−1
L Ma), resulting in

S−1
L (col(Ma) ∩ ZK) ⊂ ZK−r̃ ∩ col(S−1

L Ma) . (231)
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On the other hand, for any element y in ZK−r̃ ∩ col(S−1
L Ma), y has the form

y = S−1
L Max and y ∈ ZK−r̃ , (232)

where x ∈ RJ . Since SS−1
L V = V for any V ∈ {V }, we have SS−1

L Ma = Ma, resulting in

Max = Sy ∈ ZK . (233)

Thereby, we have y ∈ S−1
L (col(Ma) ∩ ZK) and thus ZK−r̃ ∩ col(S−1

L Ma) ⊂ S−1
L (col(Ma) ∩ ZK). Combined with that

fact that ZK−r̃ ∩ col(S−1
L Ma) and S−1

L (col(Ma)∩ZK) have the same definition of addition and scalar multiplication,
we have

ZK−r̃ ∩ col(S−1
L Ma) = S−1

L (col(Ma) ∩ ZK) . (234)

C. Hilbert Bases Sets That Span Symmetry Data

In this part, we provide a general method of finding all Hilbert bases sets that span any given symmetry data A,
for any given crystalline symmetry group G. In Supplementary Note 3 D III, a set of Hilbert bases {aj} is defined
to span A iff {aj} consists of all distinct columns of an irreducible reduction of A. However, this definition is not
convenient for general computation. Then, we use the following convenient yet equivalent definition for a Hilbert
bases set to span A. Namely, a set of Hilbert bases {aj} spans A iff there exists cjl ∈ N such that Al =

∑
j ajcjl ∀l

and
∑
l cjl 6= 0 ∀j.

Now we discuss the method. Suppose the given symmetry data A has L columns, and {BS} (the set that contains
all symmetry contents) for G in total has I Hilbert bases, labeled as ai (i = 1, ..., I). First, find all solutions to

A =
(
a1 ... ai ... aI

)
C (235)

for C ∈ NI×L, and label the solutions as Cγ with γ the index labelling the solutions. (γ should not be confused with
model parameter in Supplementary Note 5.) Second, for each solution Cγ , find all nonzero rows of Cγ , and then find
all the corresponding Hilbert bases, forming a set {ajγ}. Third, all distinct {ajγ} are all Hilbert bases sets that span
A.

As a demonstration, let us focus on the 1+1D inversion-invariant case. As shown in Supplementary Eq. (91), we
have in total four Hilbert bases (I = 4), and thus given any symmetry data A, the equation that we should solve is

A =
(
a1 a2 a3 a4

)
C (236)

with C ∈ N4×L. For the irreducible symmetry data A in Supplementary Eq. (16), we have only one solution C for
Supplementary Eq. (236), namely

C =


1 0

0 0

0 0

0 1

 , (237)

which has two nonzero rows—the first and the fourth. It means that only one Hilbert bases set {a1, a4} spans A,
coinciding with the conclusion in the main text. As another example, let us consider the reducible symmetry data in
Supplementary Fig. 6, which reads

A =


1

1

1

1

 . (238)
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In this case, we have two solutions for Supplementary Eq. (236) as

C =


0

1

1

0

 ,


1

0

0

1

 . (239)

For first solution, the nonzero rows are the second and third, giving us {a2, a3}; for the second solution, the nonzero
rows are the first and fourth, giving us {a1, a4}. Thus, the reducible symmetry data in Supplementary Fig. 6 is
spanned by {a2, a3} or {a1, a4}, coinciding with Supplementary Note 3 D III.

At last, we emphasize that if two symmetry data are given by the same FGU with different PBZ choices (thus
related by the cyclic permutation in Supplementary Eq. (74)), the method would give the same spanning Hilbert
bases sets for them. It is because the cyclic permutation can only change the order of columns of C in Supplementary
Eq. (235), and thus cannot transform a zero row to a nonzero one or vise versa. It coincides with the fact that {VSL}
in Supplementary Eq. (99) is PBZ-independent.
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Supplementary Note 10. Hilbert Bases for Plane Groups

In this part, we list the Hilbert bases of {BS} for all spinless and spinful plane groups, which are used to provide
Tab. 1-2. We label the small irreps of little groups of chosen momenta according to Bilbao Crystallographic Server [5].
Given a crystalline symmetry group, Bilbao Crystallographic Server sometimes picks more than one momenta in each
type (see the definition of type in Supplementary Note 3 A), but this redundancy can be removed by including extra
compatibility relations (or equivalently by considering a larger compatibility matrix C in Supplementary Eq. (69) and
Supplementary Eq. (80)). Therefore, the Hilbert bases and DSIs derived with a larger C would be equivalent to those
derived by picking one momentum in each chosen type.

In each of the following matrices, the first column label the small irreps of little groups of chosen momenta, and all
other columns show the Hilbert bases. Each component of a Hilbert basis labels the number of involved copies of the
corresponding small irrep.

spinless p1:


V1 1

X1 1

Y1 1

Γ1 1



spinful p1:


V2 1

X2 1

Y2 1

Γ2 1



spinless p2:



A1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

A2 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

B1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

B2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

Γ1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

Γ2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

Y1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Y2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1



spinful p2:



52

A3 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

A4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

B3 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

B4 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

Γ3 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

Γ4 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

Y3 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Y4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1


spinless pm:

C1 1 1 0 0

C2 0 0 1 1

Γ1 1 0 1 0

Γ2 0 1 0 1

Y1 1 0 1 0

Y2 0 1 0 1

Z1 1 1 0 0

Z2 0 0 1 1


spinful pm:

C3 1 1 0 0

C4 0 0 1 1

Γ3 1 0 1 0

Γ4 0 1 0 1

Y3 1 0 1 0

Y4 0 1 0 1

Z3 1 1 0 0

Z4 0 0 1 1


spinless pg:

B1 1

B2 1

D1 1

D2 1

Γ1 1

Γ2 1

Z1 1

Z2 1


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spinful pg:



B3 1

B4 1

D3 1

D4 1

Γ3 1

Γ4 1

Z3 1

Z4 1



spinless cm:



Γ1 1 0

Γ2 0 1

Y1 1 0

Y2 0 1

V1 1 1



spinful cm:



Γ3 1 0

Γ4 0 1

Y3 1 0

Y4 0 1

V2 1 1



spinless p2mm:
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Γ1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Γ2 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Γ3 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

Γ4 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

S1 1 1 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0

S2 1 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0

S3 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0

S4 0 0 1 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1

X1 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0

X2 1 0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 1 0 0 0 0

X3 0 1 0 1 0 0 0 0 1 0 1 0 0 1 0 1 1 0 1 0 0 0 0 0

X4 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1

Y1 0 1 1 0 1 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0

Y2 0 1 1 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0 1 1 0

Y3 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0

Y4 1 0 0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 0 1 0 0 1



spinful p2mm:


Γ5 1

S5 1

X5 1

Y5 1



spinless p2mg:



Γ1 1 1 1 0 0 0

Γ2 1 1 0 1 0 0

Γ3 0 0 1 0 1 1

Γ4 0 0 0 1 1 1

S1 1 1 1 1 1 1

X1 1 1 1 1 1 1

Y1 1 0 1 0 1 0

Y2 1 0 0 1 1 0

Y3 0 1 1 0 0 1

Y4 0 1 0 1 0 1



spinful p2mg:
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Γ5 1 1 1 1 1 1

S2 1 1 1 0 0 0

S3 1 0 0 1 1 0

S4 0 1 1 0 0 1

S5 0 0 0 1 1 1

X2 1 1 0 1 0 0

X3 1 0 1 0 1 0

X4 0 1 0 1 0 1

X5 0 0 1 0 1 1

Y5 1 1 1 1 1 1



spinless p2gg:



Γ1 1 1 0 0

Γ2 1 1 0 0

Γ3 0 0 1 1

Γ4 0 0 1 1

S1 1 0 1 0

S2 1 0 1 0

S3 0 1 0 1

S4 0 1 0 1

X1 1 1 1 1

Y1 1 1 1 1



spinful p2gg:



Γ5 1 1 1 1

S5 1 1 1 1

X2 1 1 0 0

X3 0 0 1 1

X4 1 1 0 0

X5 0 0 1 1

Y2 1 0 1 0

Y3 0 1 0 1

Y4 1 0 1 0

Y5 0 1 0 1



spinless c2mm:
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Γ1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

Γ2 1 1 1 0 0 1 1 0 0 0 0 0 0 0

Γ3 0 0 0 0 0 0 0 1 1 1 1 1 0 0

Γ4 0 0 0 0 0 0 0 1 1 1 0 0 1 1

Y1 0 0 0 1 1 0 0 1 1 1 0 0 0 0

Y2 0 0 0 0 0 1 1 1 1 1 0 0 0 0

Y3 1 1 1 0 0 0 0 0 0 0 1 1 0 0

Y4 1 1 1 0 0 0 0 0 0 0 0 0 1 1

S1 2 1 0 1 0 1 0 2 1 0 1 0 1 0

S2 0 1 2 0 1 0 1 0 1 2 0 1 0 1



spinful c2mm:


Γ5 1 1 1

Y5 1 1 1

S3 2 1 0

S4 0 1 2



spinless p4:



Γ1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Γ2 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Γ3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

Γ4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

M1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0

M2 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0

M3 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0

M4 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1

X1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

X2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1



spinful p4:
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Γ5 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Γ6 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Γ7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

Γ8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

M5 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0

M6 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0

M7 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0

M8 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1

X3 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

X4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1



spinless p4mm:



Γ1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Γ2 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Γ3 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0

Γ4 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0

Γ5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

M1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0

M2 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 1 1 0 0 0

M3 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0

M4 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 1 0 0 1 0 0

M5 1 0 0 1 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1

X1 1 0 1 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 1 0 0 1 0

X2 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0

X3 1 1 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1

X4 0 1 0 0 1 0 0 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 1 0 0 1



spinful p4mm:



Γ6 1 1 0 0

Γ7 0 0 1 1

M6 1 0 1 0

M7 0 1 0 1

X5 1 1 1 1



spinless p4gm:



58

Γ1 1 1 1 1 0 0 0 0 0 0 0

Γ2 0 0 0 0 1 1 1 1 0 0 0

Γ3 1 0 0 0 1 1 1 0 0 0 0

Γ4 0 1 1 1 0 0 0 1 0 0 0

Γ5 0 0 0 0 0 0 0 0 1 1 1

M1 1 1 0 0 1 0 0 0 1 0 0

M2 0 0 1 0 0 1 0 1 0 1 0

M3 1 0 1 0 0 1 0 0 0 1 0

M4 0 1 0 0 1 0 0 1 1 0 0

M5 0 0 0 1 0 0 1 0 0 0 1

X1 1 1 1 1 1 1 1 1 1 1 1



spinful p4gm:



Γ6 1 1 1 1 0 0 0 0

Γ7 0 0 0 0 1 1 1 1

M6 1 1 0 0 1 1 0 0

M7 0 0 1 1 0 0 1 1

X2 1 0 1 0 1 0 1 0

X3 0 1 0 1 0 1 0 1

X4 1 0 1 0 1 0 1 0

X5 0 1 0 1 0 1 0 1



spinless p3:



Γ1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Γ2 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

Γ3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

K1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

K2 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0

K3 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1

KA1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0

KA2 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0

KA3 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1

M1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1



spinful p3:



59

Γ4 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Γ5 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

Γ6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

K4 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

K5 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0

K6 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1

KA4 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0

KA5 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0

KA6 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1

M2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1



spinless p3m1:



Γ1 1 1 1 0 0 0 0 0 0 0 0 0

Γ2 0 0 0 1 1 1 0 0 0 0 0 0

Γ3 0 0 0 0 0 0 1 1 1 1 1 1

K1 1 0 0 1 0 0 2 1 1 0 0 0

K2 0 1 0 0 1 0 0 1 0 2 1 0

K3 0 0 1 0 0 1 0 0 1 0 1 2

M1 1 1 1 0 0 0 1 1 1 1 1 1

M2 0 0 0 1 1 1 1 1 1 1 1 1



spinful p3m1:



Γ4 1 1 1 0 0 0 0 0 0 0 0 0

Γ5 0 0 0 1 1 1 0 0 0 0 0 0

Γ6 0 0 0 0 0 0 1 1 1 1 1 1

K4 1 0 0 1 0 0 2 1 1 0 0 0

K5 0 1 0 0 1 0 0 1 0 2 1 0

K6 0 0 1 0 0 1 0 0 1 0 1 2

M3 1 1 1 0 0 0 1 1 1 1 1 1

M4 0 0 0 1 1 1 1 1 1 1 1 1



spinless p31m:



60

Γ1 1 1 1 1 0 0 0 0 0

Γ2 1 1 1 0 1 0 0 0 0

Γ3 0 0 0 0 0 1 1 1 1

K1 1 0 0 1 0 1 1 0 0

K2 1 0 0 0 1 1 1 0 0

K3 0 1 1 0 0 0 0 1 1

KA1 0 1 0 1 0 1 0 1 0

KA2 0 1 0 0 1 1 0 1 0

KA3 1 0 1 0 0 0 1 0 1

M1 1 1 1 1 0 1 1 1 1

M2 1 1 1 0 1 1 1 1 1



spinful p31m:



Γ4 1 1 1 1 0 0 0 0 0

Γ5 1 1 1 0 1 0 0 0 0

Γ6 0 0 0 0 0 1 1 1 1

K4 1 0 0 1 0 1 1 0 0

K5 1 0 0 0 1 1 1 0 0

K6 0 1 1 0 0 0 0 1 1

KA4 0 1 0 0 1 1 0 1 0

KA5 0 1 0 1 0 1 0 1 0

KA6 1 0 1 0 0 0 1 0 1

M3 1 1 1 1 0 1 1 1 1

M4 1 1 1 0 1 1 1 1 1



spinless p6:



Γ1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Γ2 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Γ3 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Γ4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Γ5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0

Γ6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

K1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0

K2 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0

K3 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1

M1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

M2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1


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spinful p6:



Γ7 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Γ8 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Γ9 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Γ10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Γ11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0

Γ12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

K4 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0

K5 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0

K6 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1

M3 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

M4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1



spinless p6mm:



Γ1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Γ2 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Γ3 0 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0

Γ4 0 0 0 1 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0

Γ5 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

Γ6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

K1 1 0 0 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 0

K2 1 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0

K3 0 1 1 1 0 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1

M1 0 1 0 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0

M2 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0

M3 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 1 0 1 0 1

M4 1 0 1 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1



spinful p6mm:



Γ7 1 1 0 0 0 0

Γ8 0 0 1 1 0 0

Γ9 0 0 0 0 1 1

K4 1 0 1 0 1 0

K5 1 0 1 0 1 0

K6 0 1 0 1 0 1

M5 1 1 1 1 1 1


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