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Supplementary Note 1. Non-Abelian topological charges in 

four-band models 

The calculation1 of non-Abelian topological charges requires lifting the Berry connection one-

form from the Lie algebra 𝔰𝔬(4) to 𝔰𝔭𝔦𝔫(4), i.e., 

𝐿!" → 𝑡!" = − #
$
.Γ! , Γ"1 ∈ 𝔰𝔭𝔦𝔫(4)    (1) 

where the corresponding coefficients 𝛽%
!" are kept as, 

[𝐴(𝑘)]% = ∑ 𝛽%
!"(𝑘)𝐿!"!&" 		

'!()
:;		 [�̅�(𝑘)]% = ∑ 𝛽%

!"(𝑘)𝑡!"!&"   (2) 

We set the basis of the Lie algebra 𝔰𝔬(4) as =𝐿!">%,+,#:$ = −𝛿!%𝛿"+ + 𝛿!+𝛿"%, the explicit forms 

are, 

L#. = B

0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

E , L#/ = B

0 0 −1 0
0 0 0 0
1 0 0 0
0 0 0 0

E , L#$ = B

0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0

E ;	

L./ = B

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

E , L.$ = B

0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0

E , L/$ = B

0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

E (3) 

We use the following Γ matrices, 

Γ# = B

0 0 0 𝑖
0 0 𝑖 0
0 −𝑖 0 0
−𝑖 0 0 0

E , Γ. = B

0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

E          	

Γ/ = B

0 0 𝑖 0
0 0 0 −𝑖
−𝑖 0 0 0
0 𝑖 0 0

E , Γ$ = B

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

E   (4) 

They are obtained from, 

Γ# = −𝜎.⨂𝜎#, Γ. = −𝜎.⨂𝜎., Γ/ = −𝜎.⨂𝜎/, Γ$ = 𝜎#⨂𝜎0  (5) 

where 𝜎!(𝑖 = 1,2,3) are Pauli matrices and 𝜎0 is the 2 × 2 identity matrix. They satisfy the 

anticommutation relations MΓ! , Γ"N = 2𝛿!". 

 

The basis of Clifford algebra 𝐶ℓ0,/ that generates the group 𝑄#1 is obtained by, 

𝑒"2# ≡ exp W− 3
$
.Γ#, Γ"1X =

#
.
.Γ" , Γ#1    (6) 

for 2 ≤ 𝑗 ≤ 4. Their explicit forms are, 
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𝑒# =
#
.
[Γ., Γ#] = B

−𝑖 0 0 0
0 𝑖 0 0
0 0 −𝑖 0
0 0 0 𝑖

E      

𝑒. =
#
.
[Γ/, Γ#] = B

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

E     

𝑒/ =
#
.
[Γ$, Γ#] = B

0 −𝑖 0 0
−𝑖 0 0 0
0 0 0 𝑖
0 0 𝑖 0

E         (7) 

with 𝑒!. = −𝐼$×$ and 𝑒!𝑒" = −𝑒"𝑒! (or we combine them two together as M𝑒! , 𝑒"N = −2𝛿!"). 

 

From the basis {𝑒#, 𝑒., 𝑒/}, we have, 

𝑄#1 = ^ M±𝑒#
5!𝑒.

5"𝑒/
5#N

5$∈{0,#}

 

= {±𝑒#, ±𝑒., ±𝑒/, ±𝑒#𝑒., ±𝑒#𝑒/, ±𝑒.𝑒/} ∪ {+1,−1,+𝑒#𝑒.𝑒/, −𝑒#𝑒.𝑒/}  (8) 

where, 

𝑒#. ≡ 𝑒#𝑒. = B

0 −𝑖 0 0
−𝑖 0 0 0
0 0 0 −𝑖
0 0 −𝑖 0

E , 𝑒#/ ≡ 𝑒#𝑒/ = B

0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

E   

𝑒./ ≡ 𝑒.𝑒/ = B

−𝑖 0 0 0
0 𝑖 0 0
0 0 𝑖 0
0 0 0 −𝑖

E , 𝑒#./ ≡ 𝑒#𝑒.𝑒/ = B

−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

E       (9) 

We rename each 𝑄#1 group element as (to be more convenient in physics analysis; also see 

Table 1 in the main text), 

𝑒# → 𝑞#., 𝑒. → 𝑞#/, 𝑒/ → 𝑞#$, 𝑒#. → 𝑞./, 𝑒#/ → 𝑞.$, 𝑒./ → 𝑞/$, 𝑒#./ → 𝑞#./$ (10) 

Finally, we have the multiplication tables as shown in Supplementary Table 1 and 2. 
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Supplementary Table 1. Multiplication table of 𝑄#1 group labelled with Clifford algebra basis. 

 
 

Supplementary Table 2. Multiplication table of 𝑄#1 group labelled with band-index. 

 
 

Supplementary Note 2. Rotations in four-dimension 

We briefly recall some facts about rotations in the four-dimension2-4. For each rotation 𝑅, there 

is at least one pair of orthogonal 2-planes (the 2-planes are also dubbed as invariant planes) - 

𝐴 and 𝐵 which are invariant under the rotation 𝑅 and span the four-dimensional space, i.e. for 

any �⃗� ∈ 𝐴 and 𝑏g⃗ ∈ 𝐵 we have �⃗� ⊥ 𝑏g⃗ , 𝑅�⃗� ∈ 𝐴 and 𝑅𝑏g⃗ ∈ 𝐵. We define the angle between �⃗� and 
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𝑅�⃗�  (𝑏g⃗  and 𝑅𝑏g⃗ ) in the 2-plane 𝐴 (𝐵) as 𝛼  (𝛽). As thus, four-dimensional rotations can be 

categorized into two types: simple rotations (𝛼 = 0  and 𝛽 ≠ 0  or 𝛼 ≠ 0  and 𝛽 = 0 ) and 

double rotations (𝛼 ≠ 0  and 𝛽 ≠ 0). When the two rotation angles satisfy |𝛼| = |𝛽| , the 

rotation 𝑅 is called isoclinic rotation, where there are infinitely many pairs of orthogonal 2-

planes. Assuming that the coordinate set is ordered as 𝑜𝑢𝑥𝑦𝑧 with 𝑜 indicating the origin, we 

consider two 2-planes 𝐴 = 𝑜𝑢𝑥 and 𝐵 = 𝑜𝑦𝑧 and set the rotation angle 𝛼 (𝛽) positive from 𝑜𝑢 

to 𝑜𝑥 (𝑜𝑦 to 𝑜𝑧). Then isoclinic rotations with 𝛼𝛽 > 0 are denoted as left-isoclinic; those with 

𝛼𝛽 < 0 as right-isoclinic. Note that the two cases with |𝛼| = |𝛽| = 0	𝑜𝑟	𝜋 are the only ones 

that are simultaneously left- and right-isoclinic. When the Bloch wave-vector runs across the 

1D first Brillouin zone (𝑘 = −𝜋 → 𝜋), the rotation matrix 𝑅(𝑘) at each 𝑘 for each charge can 

be classified to be single or double rotations. The charges ±𝑞#./$ have to be realized via double 

rotations. In some ideal cases, + −⁄ 𝑞#./$ consists of purely left/right-isoclinic rotations, where 

there are infinitely many pairs of orthogonal 2-planes. All the other charges can be ideally 

described by simple rotations. 

 

It is well known that rotations can be encoded by quaternion (ℍ) multiplication (discovered by 

Hamilton in 1843 and frequently used in engineering applications). For example, in three-

dimension the rotation 𝑟/9: = 𝑅/9𝑟/9 can be calculated with 𝑟/9: = 𝑞𝑟/9𝑞2#, where 𝑞 ∈ 𝑆𝑈(2) 

being the unit quaternion and 𝑟/9	&	𝑟/9: ∈ ℝ/ can be identified with the pure quaternion (no 

real part), i.e. 𝑟/9	&	𝑟/9: ∈ 𝐼𝑚(ℍ), respectively. Actually the calculation is made by a surjective 

homomorphism, 𝜌: 𝑞 ∈ 𝑆𝑈(2) → 𝑅/9 ∈ 𝑆𝑂(3), whose kernel is {1, −1} indicting 𝑆𝑈(2) is a 

double cover of 𝑆𝑂(3) . In four-dimension, we have similar forms like 𝑟′ = 𝑞;𝑟𝑞<  where 

𝑞;,< ∈ 𝑆𝑈(2)  and 𝑟	&	𝑟′ ∈ ℍ  are identified with 𝑟	&	𝑟′ ∈ ℝ$ , respectively. Likewise, a 

surjective homomorphism 𝜌: (𝑞; , 𝑞<) ∈ 𝑆𝑈(2) × 𝑆𝑈(2) → 𝑅 ∈ 𝑆𝑂(4)  with kernel being 

{(1,1), (−1,−1)} also enables a double-cover. All above properties can be summarized as 

𝑆𝑝𝑖𝑛(𝑁) is a double cover of 𝑆𝑂(𝑁), and there are group isomorphisms 𝑆𝑝𝑖𝑛(3) ≅ 𝑆𝑈(2) 

and 𝑆𝑝𝑖𝑛(4) ≅ 𝑆𝑈(2) × 𝑆𝑈(2). 

 

Left/right isoclinic rotations are represented by left/right multiplication of unit quaternions. 

Thus, any rotation in four-dimension can be factorized into the commutative composition of 

two isoclinic rotations, i.e. 𝑅 = 𝑅=%𝑅=& . We denote 𝑅=%(𝑟) = 𝑞;𝑟 with 𝑞; = 𝑎 + 𝑏𝑖 + 𝑐𝑗 +

𝑑𝑘 and 𝑟 = 𝑢 + 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘. Then, 
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𝑅=%(𝑟) = B

𝑎 −𝑏 −𝑐 −𝑑
𝑏 𝑎 −𝑑 𝑐
𝑐 𝑑 𝑎 −𝑏
𝑑 −𝑐 𝑏 𝑎

E�

𝑢
𝑥
𝑦
𝑧

�   (11) 

This is a left quaternion multiplication of 𝑟 by 𝑞;. For a right quaternion multiplication, i.e. 

𝑅=&(𝑟) = 𝑟𝑞<. Assuming 𝑞< = 𝑝 + 𝑞𝑖 + 𝑟𝑗 + 𝑠𝑘, we have, 

𝑅=&(𝑟) = B

𝑝 −𝑞 −𝑟 −𝑠
𝑞 𝑝 𝑠 −𝑟
𝑟 −𝑠 𝑝 𝑞
𝑠 𝑟 −𝑞 𝑝

E�

𝑢
𝑥
𝑦
𝑧

�   (12) 

It is easy to see 𝑅=%=𝑅=&(𝑟)	> = 𝑅=&=𝑅=%(𝑟)	> = 𝑞;𝑟𝑞<  where quaternion multiplication is 

associative. Thus, the two isoclinic rotations are commutative. 

 

Supplementary Note 3. Tight-binding model 

The real-space Hamiltonian reads, 

ℋ = ∑ B
∑ 𝑠>?𝑐>,5

@ 𝑐?,5>,A,B,C,9
?,A,B,C,9

+

∑ 𝑣>?𝑐>,5
@ 𝑐?,5D#>,A,B,C,9

?,A,B,C,9
+ ∑ 𝑣>?'𝑐>,5

@ 𝑐?,5D. + ℎ. 𝑐.>,A,B,C,9
?,A,B,C,9

E5  (13) 

where 𝑐>,5
@  and 𝑐>,5 are creation and annihilation operators on the sub-lattice ‘𝑋/𝑌’ and site ‘𝑛’, 

respectively. Here, we consider a more general case having both the NN (nearest neighbour) 

and NNN (next-nearest neighbour) hoppings. After Fourier transformation we obtain, 

 

𝐻(𝑘) = �

𝑠AA + 2𝑣AA cos 𝑘 2𝑤AB sin 𝑘 2𝑤AC sin 𝑘 2𝑤A9 sin 𝑘
2𝑤AB sin 𝑘 𝑠BB + 2𝑣BB cos 𝑘 2𝑤BC sin 𝑘 2𝑤B9 sin 𝑘
2𝑤AC sin 𝑘 2𝑤BC sin 𝑘 𝑠CC + 2𝑣CC cos 𝑘 2𝑤C9 sin 𝑘
2𝑤A9 sin 𝑘 2𝑤B9 sin 𝑘 2𝑤C9 sin 𝑘 𝑠99 + 2𝑣99 cos 𝑘

�	

+ �

2𝑣AA' cos 2𝑘 2𝑤AB' sin 2𝑘 2𝑤AC' sin 2𝑘 2𝑤A9' sin 2𝑘
2𝑤AB' sin 2𝑘 2𝑣BB' cos 2𝑘 2𝑤BC' sin 2𝑘 2𝑤B9' sin 2𝑘
2𝑤AC' sin 2𝑘 2𝑤BC' sin 2𝑘 2𝑣CC' cos 2𝑘 2𝑤C9' sin 2𝑘
2𝑤A9' sin 2𝑘 2𝑤B9' sin 2𝑘 2𝑤C9' sin 2𝑘 2𝑣99' cos 2𝑘

�																																	

+ �

0 𝑠AB + 2𝑟AB cos 𝑘 𝑠AC + 2𝑟AC cos 𝑘 𝑠A9 + 2𝑟A9 cos 𝑘
𝑠AB + 2𝑟AB cos 𝑘 0 𝑠BC + 2𝑟BC cos 𝑘 𝑠B9 + 2𝑟B9 cos 𝑘
𝑠AC + 2𝑟AC cos 𝑘 𝑠BC + 2𝑟BC cos 𝑘 0 𝑠C9 + 2𝑟C9 cos 𝑘
𝑠A9 + 2𝑟A9 cos 𝑘 𝑠B9 + 2𝑟B9 cos 𝑘 𝑠C9 + 2𝑟C9 cos 𝑘 0

�				
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+�

0 2𝑟AB' cos 2𝑘 2𝑟AC' cos 2𝑘 2𝑟A9' cos 2𝑘
2𝑟AB' cos 2𝑘 0 2𝑟BC' cos 2𝑘 2𝑟B9' cos 2𝑘
2𝑟AC' cos 2𝑘 2𝑟BC' cos 2𝑘 0 2𝑟C9' cos 2𝑘
2𝑟A9' cos 2𝑘 2𝑟B9' cos 2𝑘 2𝑟C9' cos 2𝑘 0

�     (14) 

where we have set, 

𝑣AB(') = 𝑟AB(') + 𝑖𝑤AB(') = 𝑣BA(')																																																									

𝑣AC(') = 𝑟AC(') + 𝑖𝑤AC(') = 𝑣CA(')																																																										

𝑣A9(') = 𝑟A9(') + 𝑖𝑤A9(') = 𝑣9A(')																																																									

𝑣BC(') = 𝑟BC(') + 𝑖𝑤BC(') = 𝑣CB(')																																																										

𝑣B9(') = 𝑟B9(') + 𝑖𝑤B9(') = 𝑣9B(')																																																									

𝑣C9(') = 𝑟C9(') + 𝑖𝑤C9(') = 𝑣9C(')    (15) 

 

Supplementary Table 3. Tight-binding coefficients of the ideal flat band models for different 

non-Abelian topological charges (charge −1 needs next nearing neighbour hoppings). 
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Supplementary Table 4. Tight-binding coefficients of the ideal flat band models for different 

factorizations of charges ±𝑞#./$. 

 
 

Supplementary Table 5. Integer-valued tight-binding coefficients of the general simulation and 

experiment models for transmission line networks. 
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Supplementary Note 4. Analytical solutions of edge states for 

the flat-band models 

Here we present an analytic method to find the exact solutions of edge states for the flat-band 

models. We consider the following five types: (i) Edge states of the charges ±𝑞G5; (ii) Edge 

states of the charges ±𝑞#./$ ; (iii) Evolution of edge states of the charges ±𝑞#./$  between 

different factorizations; (iv) Edge states of the charge −1 represented by 𝑞G5. ; (v) Evolution of 

edge states of the charge −1. 

 

(i) Edge states of the charges ±qmn 

The 1D Hamiltonian corresponding to the above charges can be constructed as 𝐻(𝑘) =

𝑅(𝑘)𝑑𝑖𝑎𝑔(1,2,3,4)𝑅H(𝑘) , where the rotation matrix 𝑅(𝑘) = 𝑒
'
";$(  with 𝑘 = 0 → 2𝜋 

and	𝑖, 𝑗 = 1,2,3,4. It should be noted that the choice of 𝑒
'
";$(  is different from the choice of 

𝑒
')*
" ;$(  with 𝑘 = −𝜋 → 𝜋  (used in the main text). The eigen energy of edge states is 

independent of the choice. In order to find the edge states of the system, we rewrite 𝐻(𝑘) in 

the form of, 

𝐻(𝑘) = 𝐻## + 𝐻#.∗ 𝑒2!J + 𝐻#.𝑒!J    (16) 

Take the charge 𝑞/$ as an example. We have, 

𝐻## =

⎝

⎜
⎛
1 0
0 2

0 0
0 0

0 0
0 0

K
.

0

0 K
.⎠

⎟
⎞

    (17) 

and, 

𝐻#.∗ = #
$
�
0 0
0 0

0 0
0 0

0 0
0 0

−1 −𝑖
−𝑖 1

�       (18) 

 

In terms of the tight-binding model, the diagonal elements of 𝐻## describe the site energies and  

𝐻#.∗  and 𝐻#. describe the nearest-neighbour hoppings between two sites. Since all bulk modes 

are strongly localized in real space due to the fact that all bands are flat, it is natural to assume 

that the edge modes of the system are also strongly localized at the boundaries. For a system 

of 𝑁 sites, we use the following ansatz for the edge state wave functions: Ψ; = (𝑎, 𝑏, 𝑐, 𝑑)H𝛿5,# 
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and Ψ< = (𝑎:, 𝑏:, 𝑐:, 𝑑′)H𝛿5,L, for the left and right edge states, respectively. To study the edge 

state at the left end, we let N goes to infinity. Since the wave function vanishes for all sites 

except 𝑛 = 1, the only non-trivial equations of motion at sites 𝑛 = 1 and 2 we need to consider 

are (𝐻## − 𝐸)(𝑎, 𝑏, 𝑐, 𝑑)H = 0	and	𝐻#.∗ (𝑎, 𝑏, 𝑐, 𝑑)H = 0, respectively. It is easy to see that the 

matrix 𝐻#.∗  is defective and there exists only one solution for the edge state: Ψ; =

(0,0,1, 𝑖)H𝛿5,# and 𝐸 = K
.
. Similarly, for the edge state at the right boundary, we find from the 

equations of motion at sites 𝑛 = 𝑁  and 𝑁 − 1 , i.e., (𝐻## − 𝐸)(𝑎:, 𝑏:, 𝑐:, 𝑑:)H = 0  and 

𝐻#.(𝑎:, 𝑏:, 𝑐:, 𝑑:)H = 0, the solution Ψ< = (0,0,1, −𝑖)H𝛿5,L and 𝐸 = K
.
. Thus two edge states 

are degenerate and have their wave functions in complex conjugate pairs. This is the result of 

PT symmetry. In the following, we will only consider the left edge state. The method can be 

equally applied to all other ±𝑞G5 charges in this subsection. For charge −𝑞/$, we only need 

to replace 𝑘 by −𝑘 in 𝐻(𝑘). Since the solutions found here satisfy the equations of motion for 

all sites, they are exact solutions. Here we do not concern with the normalization of the wave 

function. 

 

(ii) Edge states of the charges ±q1234 

This charge 𝑞#./$ can be factorized into three different configurations, i.e., 𝑞#.𝑞/$, −𝑞#/𝑞.$ 

and 𝑞#$𝑞./. The corresponding rotation matrices are 𝑅(𝑘) = 𝑒J;!"/.𝑒J;#+/., 𝑒2J;!#/.𝑒J;"+/. 

and 𝑒J;!+/.𝑒J;"#/., respectively, from which we can obtain 𝐻(𝑘) for each configuration. By 

expressing 𝐻(𝑘) in terms of 𝐻## and 𝐻#.∗  and solving the equations of motion at the sites 𝑛 =

1 and 2, i.e., (𝐻## − 𝐸)(𝑎, 𝑏, 𝑐, 𝑑)H = 0 and 𝐻#.∗ (𝑎, 𝑏, 𝑐, 𝑑)H = 0, we find two edge states for 

each configuration, i.e., 𝐸 = /
.
 with Ψ; = (1, 𝑖, 0,0)H𝛿5,# and 𝐸 = K

.
 with Ψ; = (0,0, 1, 𝑖)H𝛿5,# 

for the case of 𝑞#.𝑞/$ ; 𝐸 = 2  with Ψ; = (1,0, −𝑖, 0)H𝛿5,#  and 𝐸 = 3  with Ψ; =

(0,1, 0, 𝑖)H𝛿5,# for the case of −𝑞#/𝑞.$; 𝐸 = N
.
 with Ψ; = (1,0,0, 𝑖)H𝛿5,# and 𝐸 = N

.
 with Ψ; =

(0,1, 𝑖, 0)H𝛿5,# for the case of	𝑞#$𝑞./. 

 

(iii) Evolution of edge states of the charges ±q1234 between different factorizations 

Here we first consider the trajectory of edge states when the system is continuously transformed 

from one configuration to another one. There are three possible cases: (a) From 𝑞#.𝑞/$	to 

−𝑞#/𝑞.$; (b) From −𝑞#/𝑞.$ to 𝑞#$𝑞./; (c) From 𝑞#$𝑞./	to	𝑞#.𝑞/$. 
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For case (c), we consider two commuting hybrid generators 𝐿% = 𝑐𝑜𝑠𝜃𝐿#$ + sin 𝜃𝐿#.  and 

𝐿+ = cos 𝜃 𝐿./ + sin 𝜃𝐿/$ , where the parameter 𝜃 ∈ ¥0, 3
.
¦  describing the transition from 

𝑞#$𝑞./	to	𝑞#.𝑞/$.	From the corresponding rotation matrix 𝑅(𝑘, 𝜃) = 𝑒J;,/.𝑒J;-/., we obtain 

the Hamiltonian 𝐻(𝑘, 𝜃) = 𝑅(𝑘, 𝜃)𝑑𝑖𝑎𝑔(1,2,3,4)𝑅H(𝑘, 𝜃) and the decomposed components: 

𝐻## =

⎝

⎜
⎛
2 + !

" cos 2𝜃 0
0 2 + !

" cos 2𝜃

!
" sin 2𝜃 0
0 −!

" sin 2𝜃
!
" sin 2𝜃 0
0 −!

" sin 2𝜃
3 − !

" cos 2𝜃 0
0 3 − !

" cos 2𝜃⎠

⎟
⎞

 (19) 

𝐻#.∗ = #
$
�
−2 − cos 2𝜃 −𝑖 sin 𝜃
−𝑖 sin 𝜃 − cos 2𝜃

− sin 2𝜃 −3𝑖 cos 𝜃
−𝑖 cos 𝜃 sin 2𝜃

− sin 2𝜃 −𝑖 cos 𝜃
−3𝑖 cos 𝜃 sin 2𝜃

cos 2𝜃 −𝑖 sin 𝜃
−𝑖 sin 𝜃 2 + cos 2𝜃

�  (20) 

The matrix 𝐻#.∗  is partially defective and 𝐻#.∗ 𝜑 = 0	has two eigenvectors, which can be chosen 

as 𝜑# = (−𝑖, sin 𝜃 , 0, cos 𝜃)H  and 𝜑. = (− sin 𝜃 , −𝑖, cos 𝜃 , 0)H . We write the edge state 

wave functions as 𝑐#𝜑# + 𝑐.𝜑.  and solve the equation (𝐻## − 𝐸)(𝑐#𝜑# + 𝑐.𝜑.) = 0	for E 

and 𝑐#,.. We find the two edge states at energies 𝐸± = N
.
± sin 𝜃. This result is shown in Fig. 

3f. The corresponding wave functions are Ψ;
± = [∓𝑖 sec 𝜃 𝜑# − sec 𝜃 𝜑.]𝛿5,#. The edge state 

energies can also be obtained directly from the eigenvalues of 𝐻## without knowing the edge 

state wave functions. Similarly, we apply the same procedure to cases (a) and (b) and find the 

following trajectories of the edge state energies: 𝐸± = N
.
± √.

$ √5 + 3 cos 2𝜃	 for case (a) and 

𝐸± = N
.
± #

.
cos 𝜃 for case (b). These results are plotted in Figs. 3d and 3e, respectively. 

 

(iv) Edge states of the charge -1 represented by qmn2 

For the above cases, the rotation matrix becomes 𝑅(𝑘) = 𝑒J;$(. We can simply replace 𝑘 in 

𝐻(k) by 2𝑘 and rewrite it in the form of 𝐻(𝑘) = 𝐻## + 𝐻#/∗ 𝑒2.!J + 𝐻#/𝑒.!J. In the real space, 

such replacement represents a next-nearest neighbor hopping. For a finite chain with even 

number of sites, the tight-binding Hamiltonian becomes two disconnected sublattices, one with 

indices 𝑛 = 1,3,5…𝑁 − 1 and the other with 𝑛 = 2,4,6…𝑁. For the case of 𝑞/$. , the matrices 

𝐻## and 𝐻#/∗  are identical to those shown in Supplementary Eq. (17) and (18), respectively. 

From which we find one edge state at the left boundary per sublattice, i.e., Ψ;# =

(0,0,1, 𝑖)H𝛿5,# and Ψ;. = (0,0,1, 𝑖)H𝛿5,. with the same eigen energy at 𝐸 = K
.
. 
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(v) Evolution of edge states of the charge -1 

Here we consider the following three cases: (a) Transition from 𝑞!".  to 𝑞"J	. ; (b) Edge state 

evolution involving the mixing of 𝑞!". , 𝑞"J	.  and 𝑞!J	.  with rotation of eigenvectors in three bands; 

(c) Edge state evolution involving the mixing of 𝑞!". , 𝑞"J	.  and 𝑞"'	. with rotation of eigenvectors 

in four bands. 

 

(a) Transition from 𝑞!".  to 𝑞"J	.  

As an example, we consider a continuous transition from 𝑞./.  to 𝑞#.. . We choose a hybrid 

generator 𝐿 = cos 𝑡 𝐿./ + sin 𝑡 𝐿#.  with 𝑡 ∈ ¥0, 3
.
¦.  We obtain the Hamiltonian through 

𝐻(𝑘, 𝑡) = 𝑅(𝑘, 𝑡)𝑑𝑖𝑎𝑔(1,2,3,4)𝑅H(𝑘, 𝑡)	and rewrite it in the form of, 

𝐻(𝑘, 𝑡) = 𝐻##(𝑡) + 𝐻#.∗ (𝑡)𝑒2!J + 𝐻#.(𝑡)𝑒!J + 𝐻#/∗ (𝑡)𝑒2.!J + 𝐻#/(𝑡)𝑒.!J     (21) 

where, 

𝐻..(𝑡) =
.
/
&

−2𝑐𝑜𝑠(2𝑡) − 3 𝑐𝑜𝑠(4𝑡) + 13 0 −3 𝑠𝑖𝑛(4𝑡) 0
0 4(𝑐𝑜𝑠(2𝑡) + 4) 0 0

−3 𝑠𝑖𝑛(4𝑡) 0 −2 𝑐𝑜𝑠(2𝑡) + 3 𝑐𝑜𝑠(4𝑡) + 19 0
0 0 0 32

4 (22) 

𝐻#.∗ = − RST(.))
.

B

sin(2𝑡) 𝑖 cos(𝑡) − cos(2𝑡) 0
𝑖 cos(𝑡) 0 𝑖 sin(𝑡) 0
− cos(2𝑡) 𝑖 sin(𝑡) − sin(2𝑡) 0

0 0 0 0

E   (23) 

𝐻!"∗ = $%&(())
+ #

sin((𝑡) 𝑖 sin(𝑡) − cos(𝑡) sin(𝑡) 0
𝑖 sin(𝑡) −1 −𝑖 cos(𝑡) 0

− cos(𝑡) sin(𝑡) −𝑖 cos(𝑡) cos((𝑡) 0
0 0 0 0

0  (24) 

At 𝑡 = 0  or 3
.
,  𝐻#. = 0  and the system reduces to two disconnected sublattices and 	𝐻#/ 

describes the hopping elements within each sublattice. For a general value of 𝑡, 𝐻#. couples 

two sublattices and it is natural to assume that an edge state occupies two sites at boundary, 

one from each sublattice. Thus, we use the edge state ansatz with the form of Ψ; = 𝛷#𝛿5,# +

𝛷.𝛿5,., where 𝛷# = (𝑎, 𝑏, 𝑐, 𝑑)H 	and 𝛷. = (𝑒, 𝑓, 𝑔, ℎ)H. Both the wave function and the edge 

state energy 𝐸 are to be determined through solving the equations of motion. Since the wave 

function vanishes for sites with 𝑛 > 2, we only need to consider the equations of motion of the 

four boundary sites, i.e., 

(𝐻## − 𝐸)𝛷# + 𝐻#.𝛷. = 0				(𝑛 = 1)   (25) 

(𝐻## − 𝐸)𝛷. + 𝐻#.∗ 𝛷# = 0				(𝑛 = 2)   (26) 

𝐻#/∗ 𝛷# + 𝐻#.∗ 𝛷. = 0				(𝑛 = 3)    (27) 

𝐻#/∗ 𝛷. = 0				(𝑛 = 4)      (28) 
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Both the matrices 𝐻#/∗  and 𝐻#.∗  are defective. 𝐻#/∗  has two independent eigen vectors, which 

can be chosen as (sin 𝑡, 𝑖, − cos 𝑡, 0)H  and (cos 𝑡, 0, sin 𝑡, 0)H . However, the matrix 𝐻#.∗  has 

only one coalesced eigenvector in the form of (sin 𝑡, 𝑖, − cos 𝑡 , 0)H. With these eigen vectors 

of 𝐻#/∗  and 𝐻#.∗ , a simple edge state can be obtained immediately by choosing 𝛷. = 0 and 

𝛷# = (sin 𝑡, 𝑖, − cos 𝑡 , 0)H, which satisfies Supplementary Eq. (25-28). Eigenvalue of such an 

edge state is determined from Supplementary Eq. (25). From the equation (𝐻## − 𝐸)𝛷# = 0, 

we obtain the first solution of the edge state, 

𝐸0 = 2 + #
.
cos 2𝑡      (29) 

with, 

Ψ;0 = (sin 𝑡, 𝑖, − cos 𝑡 , 0)H𝛿5,#    (30) 

The other edge state solutions can be obtained by choosing 𝛷. = (sin 𝑡, 𝑖, − cos 𝑡, 0)H  and 

𝛷# = 𝑐(cos 𝑡, 0, sin 𝑡 , 0)H so that Supplementary Eq. (27) and (28) are satisfied automatically. 

The unknown function 𝑐 and the eigenvalue E are to be determined by solving Supplementary 

Eq. (25) and (26), from which we find two more edge states: 

𝐸± = #
U
(16 − 2 cos 2𝑡 ± √2√17 + cos 4𝑡)     (31) 

with, 

Ψ;
± = 𝑐±(cos 𝑡, 0, sin 𝑡 , 0)H𝛿5,# + (sin 𝑡, 𝑖, − cos 𝑡 , 0)H𝛿5,.   (32) 

where 𝑐± =
2$ RST .)

/ VWR .)±√X2RST".)
. Supplementary Eq. (29) and (31) are plotted in the Panel “From 

𝑞./.  to 𝑞#.. ” of Supplementary Figure 10c with 𝜃./→#. = 𝑡. 

 

(b) Edge state evolution involving the mixing of 𝑞!". , 𝑞"J	.  and 𝑞!J	.  with rotation of eigenvectors 

in three bands 

Now we consider a more general case where the edge states form surfaces in a 2D parameter 

space. As an example, we consider a hybrid generator of the form: 

𝐿	 = cos 𝑡	𝐿./ + sin 𝑡 cos 𝑓 𝐿#. + sin 𝑡 sin 𝑓 𝐿#/   (33) 

where the parameters 𝑡, 𝑓 ∈ ¥0, 3
.
¦.  From the rotation matrix 𝑅(𝑘, 𝑡) = 𝑒J; , we obtain the 

Hamiltonian 𝐻(𝑘, 𝑡, 𝑓)  and the decomposed components of 𝐻## , 𝐻#.∗  and 𝐻#/∗ . By solving 

Supplementary Eq. (25-28) we can obtain both the edge state energies and wave functions. 

However, the edge state energies can also be obtained from the roots of the determinant in 

Supplementary Eq. (25) and (26), i.e., det°
𝐻## − 𝐸𝐼$ 𝐻#.
𝐻#.∗ 𝐻## − 𝐸𝐼$

± = 0. From which, we find 
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four pairs of degenerate eigen energies. Apart from the trivial one at 𝐸 = 4, the other three are 

edge state energies of the left and right edge states with the forms of, 

𝐸0 = #
#1
(cos(2𝑓 − 2𝑡) + cos(2𝑓 + 2𝑡) − 2 cos(2𝑓) + 6 cos(2𝑡) + 34)  (34) 

𝐸± = .
12
6

−cos(2𝑓 − 2𝑡) − cos;2(𝑓 + 𝑡)< + 2 cos(2𝑓) − 6 cos(2𝑡) + 62 ±
?8 cos(4𝑓) sin3(𝑡) − 48 cos(2𝑓) sin2(𝑡)(cos(2𝑡) − 5) + 148cos	(2𝑡) + 19cos	(4𝑡) + 409

E(35) 

Supplementary Eq. (34) and (35) are plotted in the Supplementary Figure 11a, which shows 

three surfaces of edge states involving three bands only. Since these edge states do not involve 

the fourth band, Supplementary Figure 11a also describes the edge state evolution of the charge 

−1 in the 3-band model5 involving the mixtures of factorizations 𝑖., 𝑗.and 𝑘.. 

It should be noted that Supplementary Figure 11a shows the edge state surfaces inside the 

triangle formed by 𝑞#.. , 𝑞./	.  and 𝑞#/	.  shown in Supplementary Figure 10a and b. At 𝑓 = 0, 

Supplementary Eq. (34) and (35) reduce to Supplementary Eq. (29) and (31), describing the 

edge state evolution from 𝑞./.  to 𝑞#.. . At 𝑡 = 3
.
, the parameter 𝑓 describes the evolution from 

𝑞#..  to 𝑞#/.  as can be seen from Supplementary Eq. (33). The above results reduce to, 

𝐸0 = #
$
(7 − cos(2𝑓))     (36) 

𝐸± = #
U
=17 + cos(2𝑓) ± √2 cos 𝑓 ²cos(2𝑓) + 17>   (37) 

Supplementary Eq. (36) and (37) are plotted in the Panel “From 𝑞#..  to 𝑞#/. ” of Supplementary 

Figure 10c with 𝜃#.→#/ = 𝑓. 

 

At 𝑓 = 3
.

, the parameter 𝑡  describes the evolution from 𝑞./.  to 𝑞#/.  as can be seen from 

Supplementary Eq. (33). Supplementary Eq. (34) and (35) reduce to, 

𝐸0 = #
$
(9 + cos	(2𝑡))     (38) 

𝐸± = #
U
W15 − cos(2𝑡) ± √2 cos 𝑡 ²cos(2𝑡) + 17X   (39) 

Supplementary Eq. (38) and (39) are plotted in the Panel “From 𝑞./.  to 𝑞#/. ” of Supplementary 

Figure 10c with 𝜃./→#/ = 𝑡. It should be noted the same analytic method can be applied to all 

edges of the regular octahedron as shown in Supplementary Figure 10a and b. It can also be 

used to obtain the 3D maps of edge state surfaces resulting from the mixing of 𝑞!". , 𝑞"J	.  and 𝑞!J.  

for any three bands 𝑖, 𝑗 and 𝑘. 

 

(c) Edge state evolution involving the mixing of 𝑞!". , 𝑞"J	.  and 𝑞"'	. with rotation of eigenvectors 

in four bands 
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Finally, we consider a hybrid generator of the form, 

𝐿 = cos 𝑡 𝐿#. + sin 𝑡 cos 𝑓 𝐿#/ + sin 𝑡 sin 𝑓 𝐿#$   (40) 

where	𝑡, 𝑓 ∈ ¥0, 3
.
¦. Different from case (b), Supplementary Eq. (40) now produces the edge 

state surfaces inside the triangle formed by 𝑞#.. , 𝑞#/	.  and 𝑞#$	.  highlighted in the Supplementary 

Figure 10a and b, in which all four bands are involved. By using the same procedure of case 

(b), we obtain the four edge state surfaces as shown in Supplementary Figure 11b, which fits 

well with the numerical results shown in Supplementary Figure 10d. One of the four surfaces 

has the form of, 

𝐸0 = #
#1
=cos=2(𝑓 − 𝑡)> + cos=2(𝑓 + 𝑡)> − 2 cos(2𝑓) − 6 cos(2𝑡) + 30>  (41) 

The other three ones are complex as the roots of a cubic equation. 

 

Thus, the method can be used to obtain the edge states inside every face triangle of the regular 

octahedron as shown in the Supplementary Figure 10a and b. The number of edge state surfaces 

depends on the number of bands involved. 
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Supplementary Figures 

 



 17 

 



 18 

Supplementary Figure 1. Trajectories of eigenstates of charges 𝑞G5 orthographically projected 

onto four solid spheres in ℝ/. The colours (red, cyan, magenta, blue) correspond to the (first, 

second, third, fourth) bands. The direction of line-width decreasing indicates 𝑘 = −𝜋 → 𝜋. 
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Supplementary Figure 2. Trajectories of eigenstates of charges ±𝑞#./$  orthographically 

projected onto four solid spheres in ℝ/. We factorize the charge 𝑞#./$ into three configurations: 

𝑞#./$ = 𝑞#.𝑞/$, 𝑞#./$ = −𝑞#/𝑞.$ and 𝑞#./$ = 𝑞#$𝑞./. The colours (red, cyan, magenta, blue) 

correspond to the (first, second, third, fourth) bands. The direction of line-width decreasing 

indicates 𝑘 = −𝜋 → 𝜋. 

 



 21 

 
Supplementary Figure 3. Trajectories of eigenstates of charge 𝑞#./$ orthographically projected 

onto four solid spheres in ℝ/. We continuously rotate the charge 𝑞#./$ from the configuration 

𝑞#./$ = 𝑞#.𝑞/$  to 𝑞#./$ = −𝑞#/𝑞.$ , where the parameter 𝜃Z→ZZ  is defined as, 𝐿% =

cos 𝜃Z→ZZ 𝐿#. − sin 𝜃Z→ZZ 𝐿#/	𝑎𝑛𝑑	𝐿+ = cos 𝜃Z→ZZ 𝐿/$ + sin 𝜃Z→ZZ 𝐿.$. The Hamiltonian can be 

written as 𝐻 = exp WJ*
.
𝐿+X exp W

J*
.
𝐿%X 𝐼#./$ exp W−

J*
.
𝐿%X exp W−

J*
.
𝐿+X  with 𝑘3 = 𝑘 + 𝜋 . 
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The colours (red, cyan, magenta, blue) correspond to the (first, second, third, fourth) bands. 

The direction of line-width decreasing indicates 𝑘 = −𝜋 → 𝜋. 

 

 
Supplementary Figure 4. Trajectories of eigenstates of charge −1 orthographically projected 

onto four solid spheres in ℝ/. We continuously rotate the charge −1 from the configuration 
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−1 = 𝑞#..  to −1 = −𝑞#/. , where the parameter 𝜃#.→#/  is defined as, 𝐿 = cos 𝜃#.→#/ 𝐿#. +

sin 𝜃#.→#/ 𝐿#/. The Hamiltonian can be written as 𝐻 = exp(𝑘3𝐿) 𝐼#./$ exp(−𝑘3𝐿) with 𝑘3 =

𝑘 + 𝜋. The colours (red, cyan, magenta, blue) correspond to the (first, second, third, fourth) 

bands. The direction of line-width decreasing indicates 𝑘 = −𝜋 → 𝜋. 

 

 
Supplementary Figure 5. Stereographically projected Clifford tori in ℝ/ , i.e. (𝑢, 𝑥, 𝑦, 𝑧) →

W [
#2\

, ]
#2\

, ^
#2\

X. The index (𝑚, 𝑛) indicates the eigenstates rotate 𝑚𝜋 and 𝑛𝜋 on the 𝑜𝑢𝑥 and 

𝑜𝑦𝑧  planes, respectively. a, The three cases corresponding to charge +𝑞#./$ , they can be 

continuously transformed into each other. b, The opposite rotation senses corresponding to 

charge −𝑞#./$. 
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Supplementary Figure 6. Edge state distributions at the hard boundaries of a finite lattice for 

charges ±𝑞G5 of flat band models. 
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Supplementary Figure 7. Evolution of edge state distributions for charge 𝑞#./$  from the 

factorization of 𝑞#./$ = 𝑞#.𝑞/$  to 𝑞#./$ = −𝑞#/𝑞.$ , parametrized by 𝜃Z→ZZ  with unit of 

degrees. Lines/dots indicate numerical/analytical results. 
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Supplementary Figure 8. Evolution of edge state distributions for charge 𝑞#./$  from the 

factorization of 𝑞#./$ = −𝑞#/𝑞.$  to 𝑞#./$ = 𝑞#$𝑞./ , parametrized by 𝜃ZZ→ZZZ  with unit of 

degrees. Lines/dots indicate numerical/analytical results. 

 



 27 

 
Supplementary Figure 9. Evolution of edge state distributions for charge 𝑞#./$  from the 

factorization of 𝑞#./$ = 𝑞#$𝑞./ to 𝑞#./$ = 𝑞#.𝑞/$, parametrized by 𝜃ZZZ→Z with unit of degrees. 

Lines/dots indicate numerical/analytical results. 
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Supplementary Figure 10. Evolution of edge state distributions for charge −1. a, All possible 

factorizations of charge −1  illustrated on a regular octahedron. b, Orthogonal projection 

centred by face. There are 12 possible transitions, the direct transition (dashed lines) between 

one pair of diagonal points is not allowed as they are located on two orthogonal planes, i.e. 

𝑞#.. ⇎ 𝑞/$. . c, Evolution of edge state distributions along 12 edges of the regular octahedron. 

d, Evolution of edge state distributions on one face (with vertices 𝑞#.. , 𝑞#/. 	𝑎𝑛𝑑	𝑞#$. ) of the 

regular octahedron. Lines/dots indicate numerical/analytical results. 
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Supplementary Figure 11. Analytical edge state surfaces. a, Edge state surfaces on the triangle 

face of (𝑞#.. , 𝑞#/. , 𝑞./. ) involving three bands. b, Edge state surfaces on the triangle face of 

(𝑞#.. , 𝑞#/. , 𝑞#$. ) involving four bands. 
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Supplementary Figure 12. The evolution of radial cuts 𝐸(𝑘_) of the extended two-dimensional 

bands between different factorizations of charge −1. The point degeneracies at 𝑘_ = 0 can be 

topologically related to the edge states of the 1D systems shown in Supplementary Figure 10. 

The other degeneracies (𝑘_ ≠ 0) are accidental without topological meaning. 
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Supplementary Figure 13. Transmission line network constructed for charges ±𝑞#$ , where 

around 880 coaxial cables are used. 
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Supplementary Figure 14. Distribution of hard boundary edge states for charges ±𝑞#$(a) and 

−𝑞#./$ = −𝑞#.𝑞/$(b). Detailed parameters are listed in Supplementary Table 5. 

 

 
Supplementary Figure 15. Construction of domain-wall (blue spheres in panel a) and 

distribution of domain-wall states (DWS) indicated by the black ellipse in panel (d). Panels (a) 

and (c) are copied from the main text (Fig. 4) for comparison purpose. b, Bulk states of ±𝑞#./$, 

they are overlapped. Detailed parameters are listed in Supplementary Table 5 (see the column 

of −𝑞#.𝑞/$). For charge 𝑞#./$, we set 𝑤C9 = −1. We say that one domain-wall state locating 
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in the second bandgap and another one with energy beyond the bulk spectrum are induced by 

the domain-wall construction, and thus topologically trivial. 

 

 
Supplementary Figure 16. The case of 𝑞#./$ = −𝑞#/𝑞.$. a, Bulk states. b, Trajectories of four 

eigenstates as wavevector runs across the first Brillouin zone (𝑘 = −𝜋 → 𝜋). c, The extended 

energy bands on a 2D plane, where the white circles indicate the corresponding 1D energy 

bands. d, Distribution of hard boundary edge states. The first, second, third and fourth bands 

are coloured as red, cyan, magenta and blue, respectively. There is one linear Dirac cone 

between the first/third and second/fourth bands, and two linear Dirac cones between the second 

and third bands. Each linear Dirac cone implies one corresponding edge state per edge. 
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Supplementary Figure 17. The case of −𝑞#./$ = −𝑞#$𝑞./. a, Bulk states. b, Trajectories of 

four eigenstates as wavevector runs across the first Brillouin zone (𝑘 = −𝜋 → 𝜋). c, The 

extended energy bands on a 2D plane, where the white circles indicate the corresponding 1D 

energy bands. d, Distribution of hard boundary edge states. The first, second, third and fourth 

bands are coloured as red, cyan, magenta and blue, respectively. There is one four-fold linear 

Dirac cone between the four bands, which implies two edge states per edge. 
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Supplementary Figure 18. The case of charge −1 . a, Bulk states. b, Trajectories of four 

eigenstates as wavevector runs across the first Brillouin zone (𝑘 = −𝜋 → 𝜋). c, The extended 

energy bands on a 2D plane, where the white circles indicate the corresponding 1D energy 

bands. d, Distribution of hard boundary edge states. The first, second, third and fourth bands 

are coloured as red, cyan, magenta and blue, respectively. There is one triple linear degeneracy 

constructed by the lower three bands, which implies that for the first and second bandgaps each 

supports one edge state per edge, being similar to some cases of charge −1 in three-band 

models5. 


