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Supplementary Note 1.  Non-Abelian topological charges in

four-band models

The calculation' of non-Abelian topological charges requires lifting the Berry connection one-

form from the Lie algebra so(4) to spin(4), i.e.,
Lyj =ty = — [T, ;] € spin(4) (1)
where the corresponding coefficients ,82] are kept as,
ij lift — ij
[A()]a = XicjBa (K)Li; — [A(K)]q = Xi<j Ba (R)L;; (2)

We set the basis of the Lie algebra so(4) as (Lij) = —0;a0jp + 6ipjq, the explicit forms

a,b=1:4
are,
0 -1 0 O 0O 0 -1 0 0O 0 0 -1
L. = 1 0 0 O L.— 0O 0 0 o L. = 0O 0 0 O
270 o o o)™ {10 0 o)™ o 0 0 0]
0O 0 0 O 0O 0 0 o 1 0 0 O
0O 0 0 o 0O 0 0 O 0 0 0 O
[0 0 -1 0 0O 0 0 -1 [0 0 0 O
L2z = 01 0 O rL2g 000 O Las = 0 00 —1 (3)
0O 0 0 o 01 0 O 0 01 O
We use the following I matrices,
0 0 0 i 0 O 0 1
r, = 0 0 i 0 T, = 0O 0 -1 0
0O —i 0 O 0O -1 0 O
—i 0 0 O 1 0 0 O
0O 0 i O 0 0 1 0
[0 0 0 —i (0 0 0 1
[3 = —i 0 0 O e = 1 0 00 )
0O i 0 O 01 0 O
They are obtained from,
[ = =-0,Q0,,;, = —0,Q0,,[3 = —0,Q03,I, = 0,80, (5)

where o;(i = 1,2,3) are Pauli matrices and g, is the 2 X 2 identity matrix. They satisfy the

anticommutation relations {Fi, F-} = 26;j.

The basis of Clifford algebra C¢ 5 that generates the group Q44 is obtained by,

ej-1 = exp (=[N, 1]) =3 [1, 1] (6)

for 2 < j < 4. Their explicit forms are,



-i 0 0 O
_1 (0 ¢ 0 O
0O 0 0 i
0O 1 0 O
1 (-1 0 0 O
0O 0 -1 0
0 —-i 0 O
1 (=i 0 0 O
0O 0 ¢ O
with e? = —I,,4 and e;e; = —eje; (or we combine them two together as {ei, ej} = —26;)).
From the basis {e,, e,, e5}, we have,
Q16 = U {fe;"e)?el*}
n;€{0,1}
= {iel, iez, ie3, ielez, i€163, ieze3} U {+1, _1, +€1€263, _619263} (8)
where,
0O -t 0 O 0O -1 0 0
— (=t 0 0 O _ (1 O 0 0
912 = 616’2 == 0 O O _ 1813 = ele3 - 0 0 O 1
0O 0 —-i O 0O 0 -1 0
—-i 0 0 O -1 0 0 0
— (0 ¢ 0 O _ [ 0 -1 0 O
€23 = €363 = 0 0 i 0 1 €123 = €163 = 0 0 1 0 )
0 0 0 -—i 0 0 0 1

We rename each Q4 group element as (to be more convenient in physics analysis; also see

Table 1 in the main text),

€1 = 412,62 ™ (13,63 ™ (14,€12 ™ (23,613 ™ (24,€23 > (34,€123 ™ (1234 (10)

Finally, we have the multiplication tables as shown in Supplementary Table 1 and 2.



Supplementary Table 1. Multiplication table of Q¢ group labelled with Clifford algebra basis.

Q¢ multiplication table

1 & & & € ©3 S G5 |1 € € €3 ©p €3 € iy
1 |+1 €& € €3 € €3 €3 S A1 ®©1 ®y € € €3 €y €
€ & 1 €12 13 € €3 S5 €y [ +1 €y €3 € €& 3 €y
€ (&2 Cpp A1 €3 € ©123 €3 €3 € €1 +1 €y & €3 €5 €43
€3 |8 ®13 €y -1 €123 & & € |€; €3 € o+ €y © € ep
€12 |®12 © & €3 -1 €3 ®13 €3 [®©1p € € 3y +1 €3 €43 &
€13 |®13 ®3 23 & ©y A1 €12 € |®3 €3 C3 € € 1 ©p &
€3 |®23 ©123 ©3 €2 €3 € - €1 |®23 Ci3 €3 € €3 Cp +1 &
€123 [®123 ©23 ©13 €12 €3 € € 41 |®€5 € €43 € &3 € & A1
-1 -1 ©1  ®y ®3 € €3 € Cyp |+l & € & € €3 €p 3
€ [ 1 €y €3 € €3 €3 €pn (& A1 €2 €3 € €3 €3 €y
©y [ €12 1 €y € €3 &3 €43 & € 1 €3 1 ®p3 €3 ©q3
©3 |®3 C13 €3 +1 €3 €y € €y |85 €5 €y 1 S35 & &y
©p |12 2 € gz 1 €y €43 €3 (8, € € €3 1 €3 €13 3
©13 [®13 €3 G123 & €3 +1 €y € (€5 €3 €3 € €y 1 8 &
©2 |23 C123 €3 € €43 €p #1183 €3 €5 €y €5 €y A1 e
©i23 123 €23 €13 €12 €3 €y & A €123 ©23 €13 ©2 € & & #

Supplementary Table 2. Multiplication table of Q4 group labelled with band-index.

Q,, multiplication table

1 G2 913 94 93 Y924 Y34 942341 12 943 944 Y23 94 Y34 91234
+1 #1992 943 944 Y93 924 935 9ip34 |1 Q12 Q43 914 Y23 924 934 Gi234
A2 912 -1 923 924 Q43 914 91234 934 |92 +1 G Gyq 943 A4q4  Uq234 Y34
913 |93 G923 -1 G3s 912 “G1234 914 924 |G43 93 +1 3q g2 Aq34 Y14 924
A4 |14 924 G934 -1 G234 912 943 G5 |91 924 934 +#1 Qypzq 92 G435 g
93 |93 913 Gq2 Gqp34 -1 O34 Y24 914 |923 943 Y12 G3a+1 G34 94 Y44
924 |94 914  Gq234 912 3q -1 923 913|924 “G1s4 Q1234 912 93¢ +1 3 g3
93 |94 91234 914 G413 924 Y23 -1 12 |3z Y1234 914 993 Y24 Y3 +1 Gp2
91234 | Y1234 934 924 923 G44 G43  Gqp +1 |Gip34 Y34 G924 Y23 914 Y43 Gyp 1
-1 -1 Q12 G413 944 G923 pq Y34 Uqpzaf+1 912 943 Gqq 923 924 Y934 9234
iz |12 ¥1 O3 Gy 943 G4s4  y34 %3¢ |42 -1 923 94 943 914 Y1234 a4
A1z |43 923 #1934 G2 9q234 944 Y24 |43 G5 -1 93s 912 91234 914 Y24
Aig |91 924 934 +1 O34 Y92 943 93 (44 Upq Gz -1 91234 912 Y43 923
23 [923 943 912 i34 +1 934 Y4 944 Y23 943 9y2 Gq234 -1 934 924 44
24 |92 914 Y1234 912 93 1 o3 G453 %24 914 G234 912 934 -1 923 913
34 |93 Y1234 914 Y13 G4 93 +*1 Qgp |d35 9434 Y14 G4z G4 3 A1 12
1234/ 91234 934 924 923 914 G4z 92 1 Q1234 934 924 923 G914 943 g2 #1

Supplementary Note 2.  Rotations in four-dimension
We briefly recall some facts about rotations in the four-dimension®*. For each rotation R, there
is at least one pair of orthogonal 2-planes (the 2-planes are also dubbed as invariant planes) -

A and B which are invariant under the rotation R and span the four-dimensional space, i.e. for

anyd € Aand b € B wehave d L b, Rd € A and Rb € B. We define the angle between @ and



Rd (B and Rl_))) in the 2-plane A (B) as a (f). As thus, four-dimensional rotations can be
categorized into two types: simple rotations (¢ =0 and f # 0 or @« # 0 and f = 0) and
double rotations (a # 0 and § # 0). When the two rotation angles satisfy |a| = |B]|, the
rotation R is called isoclinic rotation, where there are infinitely many pairs of orthogonal 2-
planes. Assuming that the coordinate set is ordered as ouxyz with o indicating the origin, we
consider two 2-planes A = oux and B = oyz and set the rotation angle a (f) positive from ou
to ox (0y to 0z). Then isoclinic rotations with a¢ff > 0 are denoted as left-isoclinic; those with
af < 0 as right-isoclinic. Note that the two cases with |a| = |f| = 0 or m are the only ones
that are simultaneously left- and right-isoclinic. When the Bloch wave-vector runs across the
1D first Brillouin zone (k = —m — 1), the rotation matrix R (k) at each k for each charge can
be classified to be single or double rotations. The charges +q;,34 have to be realized via double
rotations. In some ideal cases, +/— q,,34 consists of purely left/right-isoclinic rotations, where
there are infinitely many pairs of orthogonal 2-planes. All the other charges can be ideally

described by simple rotations.

It is well known that rotations can be encoded by quaternion (H) multiplication (discovered by
Hamilton in 1843 and frequently used in engineering applications). For example, in three-
dimension the rotation 73, = R3p75p can be calculated with 13, = qr3pq ™1, where q € SU(2)
being the unit quaternion and 73 & 73, € R3 can be identified with the pure quaternion (no
real part), i.e. 13p & 13 € Im(H), respectively. Actually the calculation is made by a surjective
homomorphism, p: q € SU(2) = R3p € SO(3), whose kernel is {1, —1} indicting SU(2) is a
double cover of SO(3). In four-dimension, we have similar forms like r' = q,rqg where
qLr € SU(2) and r &' € H are identified with 7 &7 € R*, respectively. Likewise, a
surjective homomorphism p: (q;, qzr) € SU(2) X SU(2) - R € SO(4) with kernel being
{(1,1),(—1,—1)} also enables a double-cover. All above properties can be summarized as
Spin(N) is a double cover of SO(N), and there are group isomorphisms Spin(3) = SU(2)
and Spin(4) = SU(2) x SU(2).

Left/right isoclinic rotations are represented by left/right multiplication of unit quaternions.
Thus, any rotation in four-dimension can be factorized into the commutative composition of

two isoclinic rotations, i.e. R = Ry, Rq,. We denote Ry, (r) = q,r with q, = a + bi +¢j +

dk andr = u + xi + yj + zk. Then,



a —-b —-c —-d u

b a -d c X
Ra,(r) = c d a -b]|\y (D

d —c b a z

This is a left quaternion multiplication of r by q,. For a right quaternion multiplication, i.e.

R4, (r) = rqg. Assuming qr = p + qi +1j + sk, we have,

p —q -1 —s\ u
g p s -r|[x

Ry =1, p q [\y (12)
s r —q p)) \z

It is easy to see RqL(RqR )= Ryp (RqL (1) ) = q.7qg where quaternion multiplication is

associative. Thus, the two isoclinic rotations are commutative.

Supplementary Note 3.  Tight-binding model

The real-space Hamiltonian reads,

.I_
Y.X=A,B,C,D SxyCxnCrn T
Y=A,B,C,D

H = 2n (13)

T T
Y. X=A,B,C,D VUxyCx nCyn+1 T Y. X=A,B,C,D Vxy Cx nCymn+2 T h.c.
Y=A,B,C,D Y=A,B,C,D

where c;'n and cy ,, are creation and annihilation operators on the sub-lattice ‘X/Y” and site ‘n’,

respectively. Here, we consider a more general case having both the NN (nearest neighbour)

and NNN (next-nearest neighbour) hoppings. After Fourier transformation we obtain,

[Spa + 2V44 COS K 2wyp sink 2wy sink 2wyp sink
H(k) = 2wyp sink Sgg + 2vgg cosk 2wgc sink 2wgp sink
2wy sink 2wgc sink Scc + 2vcc cosk 2wep Sink
2wyp Sink 2wgp sink 2wep Sink Spp + 2vpp cosk
[2V,4; COS 2Kk 2WypSin 2k 2wy sin 2k 2wyp; sin 2k
+ 2Wyp; Sin 2k 2vgg;cos 2k 2wge Sin 2k 2wpgp; sin 2k
2Wycr Sin 2k 2wge;sin 2k 2vee cos 2k 2wep; sin 2k
[2wyp; sin 2k 2wgp;sin 2k 2wep; sin 2k 2vpp; cos 2k

0 Sag + 2145 c08k  Suc + 2r4ccosk  sup + 21ry4p cOSk
Sag + 2145 cosk 0 Sgc + 2rgccosk  sgp + 2rgp cosk
Sac + 2r4ccosk  Spc + 2rgccosk 0 Scp + 2r¢p cos k
Sap + 2r4p cosk spp + 2rgpcosk  Scp + 2r¢pcosk 0



0 21451 C0S 2k 2140 COS 2k 214p; CcOS 2k

2745 oS 2k 0 21gc; COS 2k 2rgp; cos 2k
27401 COS 2k 21g¢; COS 2k 0 27cp; COS 2k (14)
274p; COS 2k 21rgp; cos 2k 2rcp; cos 2k 0
where we have set,
Vapay = Tap@) T WaBq) = VBa@)
Vacwy = Tacay) T Wacqy) = Veaq)
Vap@y = Tap@) T Wap) = Vpaq)
Vgcqy = Teeqy T Waew) = Ve
Vgpay = "ep) T IWap@) = VpB()
Vepy = Tepy T Wepay = Vpe) (15)

Supplementary Table 3. Tight-binding coefficients of the ideal flat band models for different

non-Abelian topological charges (charge —1 needs next nearing neighbour hoppings).

syx coefficient

912 Q12 93 G943 914 944 93 Y3 94 Y24 Y34 934 91234 Gy +1 -1
Saa 312 32 2 2 5/2 5/2 1 1 1 1 1 1 3/2 312 1
Sgg 312 3/2 2 2 2 2 5/2 5/2 3 3 2 2 3/2 3/2 2
Secc (3 3 2 2 3 3 512 5/2 3 3 712 712 712 712 3
Spp 4 4 4 4 5/2 52 4 4 3 3 72 712 712 72 4

Vyx coefficient

Q12 Q12 93 913 91a G143 93 %24 24 934 34 91234 Gp234 1 A1
Vap 14 1/4 112 12 34 314 0 0 0 0 0 0 1/4 174 0
Vgg -1/4 -14 0 0 0 0 1/4 1/4 112 112 0 0 -1/4  -1/4 0
Vee O 0 =12 <12 0 0 -1/4  -1/4 0 0 1/4 1/4 1/4 1/4 0
Vop O 0 0 0 -3/4 -3/4 0 0 -2 -12 14 14 -1/4 -1/4 0

Wy coefficient

912 Q92 93 Y43 914 Y14 93 Y23 Y4 Y24 Y34 Y34 Y1234 123 +1 -1

Wpg 14 -1/4 O 0 0 0 0 0 0 0 0 0 174 -14 0
Wac (O 0 172 <12 0 0 0 0 0 0 0 0 0 0 0
Wap (O 0 0 0 34 -34 0 0 0 0 0 0 0 0 0
Wge 0 0 0 0 0 0 14 -1/4 0 0 0 0 0 0 0
Wgp 0 0 0 0 0 0 0 0 12 12 0 0 0 0 0
Wep 0 0 0 0 0 0 0 0 0 0 1/4 14 14 14 0



Supplementary Table 4. Tight-binding coefficients of the ideal flat band models for different

factorizations of charges +q;,34.

AA
BB
CcC
DD

AA
BB
cc
DD

AB
AC
AD
BC
BD
CD

912347912934
3/2
3/2
712
712

912347912934
1/4

114

1/4

-1/4

912347912934
1/4

0

0

0

0

1/4

Q1234791294
3/2
3/2
712
72

Q1234791294
1/4

-1/4

1/4

-1/4

Q1234791294
-1/4

0

0

0

0

1/4

sy coefficient

912347913924
2

3
2
3

Vyx coefficient

912347913924
1/2

112

-1/2

-1/2

Wy, coefficient

91234913924
0

=12

0

0

112

0

91234791394
2

3
2
3

91234791394
12

1/2

-1/2

-12

91234791394
0

12

0

0

112

91234791493
5/2
5/2
5/2
5/2

912347914923
3/4

1/4

-1/4

-3/4

912347914923
0

0

3/4

1/4

0

0

Q123471493
512
512
5/2
5/2

Q1234791493
3/4

1/4

/4

-3/4

Q1234791493
0

0

-3/4

1/4

0

0

Supplementary Table 5. Integer-valued tight-binding coefficients of the general simulation and

experiment models for transmission line networks.

AA

BB

cC
DD

BB
cc
DD

AB
AC
AD
BC
BD
CcD

4q

-2

“A1g

. O 2 O O =

. O 2 O O =

sy coefficient

9123470 12934)

4

4
4
4

Vyx coefficient

012347 (912934)

Wy coefficient

912347 (912934)

. O 2 0O O =

-2
-2
0
0

1
-1
1
-1

- O 2 O O =

Q12347(-013%4)

912347(-913%4)

A1234=(-9139%4)

“A12347(A14923)

0
0
0
0

“A1234™(A14923)

“A1234=(A14923)

o = O O =



Supplementary Note 4.  Analytical solutions of edge states for

the flat-band models

Here we present an analytic method to find the exact solutions of edge states for the flat-band
models. We consider the following five types: (i) Edge states of the charges +q,,,,,; (i1)) Edge
states of the charges +q;,34; (iii) Evolution of edge states of the charges +qg;,34 between
different factorizations; (iv) Edge states of the charge —1 represented by g2,,,; (v) Evolution of

edge states of the charge —1.

(i) Edge states of the charges £qmn

The 1D Hamiltonian corresponding to the above charges can be constructed as H(k) =
k
R(k)diag(1,2,3,4)RT (k) , where the rotation matrix R(k) = e2"J with k=0 - 2n

k
and i,j = 1,2,3,4. It should be noted that the choice of ez"i is different from the choice of

k+m
ez “J with k = —m —» 7 (used in the main text). The eigen energy of edge states is

independent of the choice. In order to find the edge states of the system, we rewrite H(k) in

the form of,
H(k) = Hll + Hikze_ik + leeik (16)
Take the charge g3, as an example. We have,
1 0 0 O
0 2 0 O
_ 7
Hll - 0 0 E 0 (17)
0 0 9 Z
2
and,
0 0 0O
« 1[0 0 0 O
Ha=3l0 o -1 —i (18)
0 0 —-i 1

In terms of the tight-binding model, the diagonal elements of H;, describe the site energies and
H{, and H,, describe the nearest-neighbour hoppings between two sites. Since all bulk modes
are strongly localized in real space due to the fact that all bands are flat, it is natural to assume
that the edge modes of the system are also strongly localized at the boundaries. For a system

of N sites, we use the following ansatz for the edge state wave functions: ¥, = (a, b,¢,d)" 6,1



and Wy = (a’,b’,c’,d")" 8, v, for the left and right edge states, respectively. To study the edge
state at the left end, we let N goes to infinity. Since the wave function vanishes for all sites
except n = 1, the only non-trivial equations of motion at sites n = 1 and 2 we need to consider
are (Hy; — E)(a,b,c,d)” = 0and Hf,(a,b,c,d)” = 0, respectively. It is easy to see that the
matrix Hj, is defective and there exists only one solution for the edge state: ¥, =
(0,0,1,i)76,, and E = % Similarly, for the edge state at the right boundary, we find from the
equations of motion at sites n=N and N—1, ie.,, (H; —E)(a’, b',c',d)T =0 and
Hy,(a',b',c’,d")T = 0, the solution Wz = (0,0,1, )78, y and E = % Thus two edge states
are degenerate and have their wave functions in complex conjugate pairs. This is the result of
PT symmetry. In the following, we will only consider the left edge state. The method can be
equally applied to all other *+q,,, charges in this subsection. For charge —q5,, we only need
to replace k by —k in H (k). Since the solutions found here satisfy the equations of motion for
all sites, they are exact solutions. Here we do not concern with the normalization of the wave

function.

(ii) Edge states of the charges *q1234

This charge q4,34 can be factorized into three different configurations, i.e., q12G34, —q13924
and q;4q,3. The corresponding rotation matrices are R(k) = e*l12/2gklLsa/2 g=kL13/2gkl24/2
and ekl14/2gkL23/2 | respectively, from which we can obtain H (k) for each configuration. By
expressing H (k) in terms of H,; and Hy, and solving the equations of motion at the sites n =
1and2,1ie., (Hy; — E)(a,b,c,d)” = 0and Hf,(a,b,c,d)T = 0, we find two edge states for
each configuration, i.e., E = gwith ¥, =(1,i,0,0)"8,, and E = %With ¥, =(0,0,1,i)76,,
for the case of ¢q2qs4 ; E =2 with ¥, =(1,0,—i,0)"8,, and E =3 with ¥, =
(0,1,0,i)" 8, 4 for the case of —q13q24; E = Zwith ¥, =(1,0,0,i)"6,, and E = gwith Y, =

(0,1,i,0)7 8, ; for the case of ¢14q,3-

(iii) Evolution of edge states of the charges +qi234 between different factorizations
Here we first consider the trajectory of edge states when the system is continuously transformed

from one configuration to another one. There are three possible cases: (a) From gq;,q34 to

—(13924; (b) From —q,3q24 t0 q14923; (¢) From q;4q53 t0 q1,G34.

10



For case (c), we consider two commuting hybrid generators L, = cosOL,4 + sin0L,, and

Ly, = cosO Ly; +sinfL3,, where the parameter 6 € [0, %] describing the transition from

kLa/2 gkLp/2

q14923 t0 q12q34. From the corresponding rotation matrix R(k,0) = e , We obtain

the Hamiltonian H (k, 8) = R(k,0)diag(1,2,3,4)RT (k, ) and the decomposed components:

2+§00529 0 %sinZB 0
. 0 2+%cos 20 0 —%sinZB 0
e Lsin 26 0 3 —2cos26 0 (15)

0 —%sin 20 0 3 —%cos 20
—2—cos20 —isin@ —sin20 —3icosH
« _ 1 —isin@ —cos20 —icosf@ sin 260

Hy; = 4 —sin280 —icos@ cos 260 —isin@ (20)

—3icosf@ sin 20 —isinf 2+ cos26

The matrix Hy, is partially defective and H;{,¢@ = 0 has two eigenvectors, which can be chosen
as @1 = (—i,sin6,0,cos )T and ¢, = (—sinf,—i,cos6,0)". We write the edge state
wave functions as c;¢@, + c,¢, and solve the equation (Hy; — E)(ci¢p1 + c2¢0,) = 0 for £

and ¢, ,. We find the two edge states at energies E* = g + sin 6. This result is shown in Fig.

3f. The corresponding wave functions are W;" = [Fisecd ¢; — secd ¢,]8,, ;. The edge state
energies can also be obtained directly from the eigenvalues of H;; without knowing the edge

state wave functions. Similarly, we apply the same procedure to cases (a) and (b) and find the

following trajectories of the edge state energies: E* = g + g\/S + 3 cos 26 for case (a) and

Et = g + %cos @ for case (b). These results are plotted in Figs. 3d and 3e, respectively.

(iv) Edge states of the charge -1 represented by qmn’

For the above cases, the rotation matrix becomes R(k) = e*Li/. We can simply replace k in
H(k) by 2k and rewrite it in the form of H(k) = Hy; + H;3e 2% + H,;e?" . In the real space,
such replacement represents a next-nearest neighbor hopping. For a finite chain with even
number of sites, the tight-binding Hamiltonian becomes two disconnected sublattices, one with
indices n = 1,3,5 ... N — 1 and the other with n = 2,4,6 ... N. For the case of q3,, the matrices
H;; and H5 are identical to those shown in Supplementary Eq. (17) and (18), respectively.

From which we find one edge state at the left boundary per sublattice, i.e., ¥, =
7

(0,0,1,i)76,, and ¥, = (0,0,1,i)"8,,, with the same eigen energy at E = .

11



(v) Evolution of edge states of the charge -1

Here we consider the following three cases: (a) Transition from ql-zj to q jzk; (b) Edge state
evolution involving the mixing of ql-zj, q jzk and g2 with rotation of eigenvectors in three bands;
(c) Edge state evolution involving the mixing of ql-zj, q jzk and q jzl with rotation of eigenvectors

in four bands.

(a) Transition from ql-zj to q jzk
As an example, we consider a continuous transition from g3; to g2,. We choose a hybrid
generator L = costL,; +sintL;, with t € [O, g] We obtain the Hamiltonian through
H(k,t) = R(k,t)diag(1,2,3,4)RT (k, t) and rewrite it in the form of,

H(k,t) = Hy1(8) + Hi;(0)e™™ + Hyp (De™ + Hiz(De ™ + Hyi3 (e (21)

where,
—2cos(2t) — 3 cos(4t) + 13 0 —3sin(4t) 0
_1 0 4(cos(2t) +4) 0 0
Hu(®) =3 —3sin(4t) 0 —2cos(2t) +3cos(4t) +19 0 (22)
0 0 0 32
sin(2t) icos(t) —cos(2t) O
Hr = _sm@)[ i cos(t) 0 isin(¢t) 0 73
12 2 —cos(2t) isin(t) —sin(2t) 0 23)
0 0 0 0
sin?(t) isin(t) —cos(t)sin(t) 0
—cos(t)sin(t) —icos(t) cos?(t) 0
0 0 0 0

Att =0 or g, H;; = 0 and the system reduces to two disconnected sublattices and H;

describes the hopping elements within each sublattice. For a general value of t, H;, couples
two sublattices and it is natural to assume that an edge state occupies two sites at boundary,
one from each sublattice. Thus, we use the edge state ansatz with the form of ¥, = &,6,,; +
@,8,,2, where @; = (a,b,c,d)” and @, = (e, f, g, h)". Both the wave function and the edge
state energy E are to be determined through solving the equations of motion. Since the wave
function vanishes for sites with n > 2, we only need to consider the equations of motion of the

four boundary sites, i.e.,

(Hi1 —E)®1 + H; @, =0 (n=1) (25)
(Hi1 —E)®; + Hj; @, =0 (n=2) (26)
H{3;®, +H{,&, =0 (n=3) (27)
Hi;@, =0 (n=4) (28)
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Both the matrices Hy; and Hy, are defective. Hi; has two independent eigen vectors, which
can be chosen as (sint,i,—cost,0)T and (cost,0,sint,0)”. However, the matrix H;, has
only one coalesced eigenvector in the form of (sint, i, — cost,0)”. With these eigen vectors
of H{; and H{,, a simple edge state can be obtained immediately by choosing @, = 0 and
@, = (sint,i,—cost,0)T, which satisfies Supplementary Eq. (25-28). Eigenvalue of such an
edge state is determined from Supplementary Eq. (25). From the equation (H,;; — E)®; = 0,
we obtain the first solution of the edge state,
E° = 2+ cos 2t (29)
with,
WP = (sint,i,—cost,0)78,, (30)
The other edge state solutions can be obtained by choosing ®, = (sint, i, — cost,0) and
@, = c(cost,0,sint,0)T so that Supplementary Eq. (27) and (28) are satisfied automatically.
The unknown function ¢ and the eigenvalue E are to be determined by solving Supplementary

Eq. (25) and (26), from which we find two more edge states:

E* = 2 (16 — 2 cos 2t + VZV17 + cos 4t) (31)
with,
Yt =c,(cost,0,sint,0)78,, + (sint,i,—cost,0)7,, (32)
—4sin 2t : «
where ¢y = — Zt;\l/rm. Supplementary Eq. (29) and (31) are plotted in the Panel “From
q3; to q%,” of Supplementary Figure 10c with 8,5_,1, = t.

(b) Edge state evolution involving the mixing of qizj, q jzk and g2 with rotation of eigenvectors

in three bands
Now we consider a more general case where the edge states form surfaces in a 2D parameter
space. As an example, we consider a hybrid generator of the form:

L =costL,;+sintcosf Ly, +sintsinf L3 (33)
where the parameters ¢, f € [O, %] From the rotation matrix R(k,t) = e*", we obtain the

Hamiltonian H(k, t, f) and the decomposed components of Hy;, H;, and Hj;. By solving
Supplementary Eq. (25-28) we can obtain both the edge state energies and wave functions.

However, the edge state energies can also be obtained from the roots of the determinant in

Hll - E14- H12

Supplementary Eq. (25) and (26), i.e., det( .
pp ry Eq. (25) and (26) H:,  Hy —EI,

) = 0. From which, we find
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four pairs of degenerate eigen energies. Apart from the trivial one at E = 4, the other three are

edge state energies of the left and right edge states with the forms of,

EC = 11—6(cos(2f — 2t) + cos(2f + 2t) — 2 cos(2f) + 6 cos(2t) + 34) (34)
. i( —cos(2f — 2t) — cos(Z(f + t)) + 2cos(2f) — 6cos(2t) + 62 + (35)
32 /8 cos(4f) sin*(t) — 48 cos(2f) sin2(t) (cos(2t) — 5) + 148cos (2t) + 19cos (4t) + 409)

Supplementary Eq. (34) and (35) are plotted in the Supplementary Figure 11a, which shows
three surfaces of edge states involving three bands only. Since these edge states do not involve
the fourth band, Supplementary Figure 11a also describes the edge state evolution of the charge
—1 in the 3-band model® involving the mixtures of factorizations i, j2and k2.

It should be noted that Supplementary Figure 11a shows the edge state surfaces inside the
triangle formed by q%,, ¢4 and g5 shown in Supplementary Figure 10a and b. At f = 0,
Supplementary Eq. (34) and (35) reduce to Supplementary Eq. (29) and (31), describing the

edge state evolution from g3; to g%,. Att = g, the parameter f describes the evolution from

g%, to gZ; as can be seen from Supplementary Eq. (33). The above results reduce to,

E® =1 (7 = cos(2f)) (36)

4

%(17 + cos(2f) £ V2 cos f/cos(2f) + 17) (37)

Supplementary Eq. (36) and (37) are plotted in the Panel “From g%, to q%;” of Supplementary

Ei

Figure 10c with 612_,13 = f

V[

At f =7, the parameter ¢ describes the evolution from q3; to g%; as can be seen from

Supplementary Eq. (33). Supplementary Eq. (34) and (35) reduce to,
E® =2(9 + cos (21)) (38)

4

Et = %(15 — cos(2t) + V2 cos t+/cos(2t) + 17) (39)

2

Supplementary Eq. (38) and (39) are plotted in the Panel “From g3 to g%3” of Supplementary

Figure 10c with 655,13 = t. It should be noted the same analytic method can be applied to all
edges of the regular octahedron as shown in Supplementary Figure 10a and b. It can also be

used to obtain the 3D maps of edge state surfaces resulting from the mixing of g7, g} and g

for any three bands i, j and k.

(c) Edge state evolution involving the mixing of ql-zj, q jzk and q jzl with rotation of eigenvectors

in four bands

14



Finally, we consider a hybrid generator of the form,

L =costLy, +sintcosf Lyz+sintsinf Ly, (40)
where t, f € [0, g] Different from case (b), Supplementary Eq. (40) now produces the edge

state surfaces inside the triangle formed by q%,, ;5 and g4 highlighted in the Supplementary
Figure 10a and b, in which all four bands are involved. By using the same procedure of case
(b), we obtain the four edge state surfaces as shown in Supplementary Figure 11b, which fits
well with the numerical results shown in Supplementary Figure 10d. One of the four surfaces

has the form of,
EO = 11—6(cos(2(f — 1)) + cos(2(f +t)) — 2 cos(2f) — 6 cos(2t) + 30) (41)

The other three ones are complex as the roots of a cubic equation.

Thus, the method can be used to obtain the edge states inside every face triangle of the regular
octahedron as shown in the Supplementary Figure 10a and b. The number of edge state surfaces

depends on the number of bands involved.
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Supplementary Figure 1. Trajectories of eigenstates of charges g,,,,, orthographically projected
onto four solid spheres in R3. The colours (red, cyan, magenta, blue) correspond to the (first,

second, third, fourth) bands. The direction of line-width decreasing indicates k = —m — .
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Supplementary Figure 2. Trajectories of eigenstates of charges +q,,34 orthographically

projected onto four solid spheres in R3. We factorize the charge q;,34 into three configurations:

d1234 = G12934> 91234 = —q13924 ad 1234 = q14923. The colours (red, cyan, magenta, blue)

correspond to the (first, second, third, fourth) bands. The direction of line-width decreasing

indicates k = —m — .
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0 0 0 0

Supplementary Figure 3. Trajectories of eigenstates of charge g,,34 orthographically projected
onto four solid spheres in R3. We continuously rotate the charge q;,3,4 from the configuration
G1234 = q12934 10 Q1234 = —(13G24 , Where the parameter 6, is defined as, L, =

COS 01—>II L12 — sin 01—>II L13 and Lb = COS 01_”1 L34 + sin 91_”1 L24. The Hamiltonian can be

written as H = exp (’;—”Lb) exp (kz—" La) [1534 €XP (— %”La) exp (—kz—”Lb) with k, =k +m.
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The colours (red, cyan, magenta, blue) correspond to the (first, second, third, fourth) bands.

The direction of line-width decreasing indicates k = —m — m.

110 0 045, 1570 M04p -, 1570 Moip 157

125137

) 90 -1l 90 A0, , 15=90 0

12513 12513

Supplementary Figure 4. Trajectories of eigenstates of charge —1 orthographically projected

onto four solid spheres in R3. We continuously rotate the charge —1 from the configuration
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—1=g?, to —1 = —q%;, where the parameter 6,,_,,3 is defined as, L = cos ;5,13 L1, +
sin ;5,13 L13. The Hamiltonian can be written as H = exp(k,L) ;234 €xp(—k,L) with k,, =

k + m. The colours (red, cyan, magenta, blue) correspond to the (first, second, third, fourth)

bands. The direction of line-width decreasing indicates k = —m — .
a Qi23e
x/(1-u) \ \ x/(1-u) @ x/(1-u) @
y/(1-u) 2/(1-u) M M

(11) (-13) =31

Qi23s

x/(1-u) x/(1-u) @ x/(1-u) @
y/(1-u) z/(1-u) y/(1-u) z/(1-u) yi(1-u) 2/(1-u)

(-11) (13) (31

Supplementary Figure 5. Stereographically projected Clifford tori in R3, i.e. (u,x,y,2z) —
(:—u,%,i) The index (m, n) indicates the eigenstates rotate mm and nm on the oux and

oyz planes, respectively. a, The three cases corresponding to charge +q;,34, they can be
Yz p p

continuously transformed into each other. b, The opposite rotation senses corresponding to

charge —q1234.
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Supplementary Figure 6. Edge state distributions at the hard boundaries of a finite lattice for

charges +q,,, of flat band models.
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Supplementary Figure 7. Evolution of edge state distributions for charge q,,3, from the
factorization of ¢34 = 12934 10 Q1234 = —q13Q24 , parametrized by 6,_,;; with unit of
degrees. Lines/dots indicate numerical/analytical results.
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Supplementary Figure 8. Evolution of edge state distributions for charge q,,3, from the
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degrees. Lines/dots indicate numerical/analytical results.
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Supplementary Figure 10. Evolution of edge state distributions for charge —1. a, All possible
factorizations of charge —1 illustrated on a regular octahedron. b, Orthogonal projection
centred by face. There are 12 possible transitions, the direct transition (dashed lines) between
one pair of diagonal points is not allowed as they are located on two orthogonal planes, i.e.
q?, ¥ q3,. ¢, Evolution of edge state distributions along 12 edges of the regular octahedron.
d, Evolution of edge state distributions on one face (with vertices q%,, q%; and q?,) of the

regular octahedron. Lines/dots indicate numerical/analytical results.
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Supplementary Figure 11. Analytical edge state surfaces. a, Edge state surfaces on the triangle

face of (q%,, q%;, q%;) involving three bands. b, Edge state surfaces on the triangle face of

(92,,q%3, q%,) involving four bands.
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From o2, to g, From o2, to g2, From o2, to g3,

012 13 013, 14 014, 34

Supplementary Figure 12. The evolution of radial cuts E (k,.) of the extended two-dimensional
bands between different factorizations of charge —1. The point degeneracies at k,. = 0 can be
topologically related to the edge states of the 1D systems shown in Supplementary Figure 10.

The other degeneracies (k, # 0) are accidental without topological meaning.
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Supplementary Figure 13. Transmission line network constructed for charges +q,,, where

around 880 coaxial cables are used.
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Supplementary Figure 14. Distribution of hard boundary edge states for charges +q;,(a) and
—Q1234 = —(q12q34(b). Detailed parameters are listed in Supplementary Table 5.
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Supplementary Figure 15. Construction of domain-wall (blue spheres in panel a) and
distribution of domain-wall states (DWS) indicated by the black ellipse in panel (d). Panels (a)
and (c) are copied from the main text (Fig. 4) for comparison purpose. b, Bulk states of ¢34,
they are overlapped. Detailed parameters are listed in Supplementary Table 5 (see the column

of —g1,q34). For charge q,234, We set wop = —1. We say that one domain-wall state locating
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in the second bandgap and another one with energy beyond the bulk spectrum are induced by

the domain-wall construction, and thus topologically trivial.
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Supplementary Figure 16. The case of q1,34 = —q13924. @, Bulk states. b, Trajectories of four
eigenstates as wavevector runs across the first Brillouin zone (k = —m — ). ¢, The extended
energy bands on a 2D plane, where the white circles indicate the corresponding 1D energy
bands. d, Distribution of hard boundary edge states. The first, second, third and fourth bands
are coloured as red, cyan, magenta and blue, respectively. There is one linear Dirac cone
between the first/third and second/fourth bands, and two linear Dirac cones between the second

and third bands. Each linear Dirac cone implies one corresponding edge state per edge.
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Supplementary Figure 17. The case of —q,34 = —q14923. a, Bulk states. b, Trajectories of
four eigenstates as wavevector runs across the first Brillouin zone (k = —m — m). c, The
extended energy bands on a 2D plane, where the white circles indicate the corresponding 1D
energy bands. d, Distribution of hard boundary edge states. The first, second, third and fourth
bands are coloured as red, cyan, magenta and blue, respectively. There is one four-fold linear

Dirac cone between the four bands, which implies two edge states per edge.
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Supplementary Figure 18. The case of charge —1. a, Bulk states. b, Trajectories of four
eigenstates as wavevector runs across the first Brillouin zone (k = —m — m). ¢, The extended
energy bands on a 2D plane, where the white circles indicate the corresponding 1D energy
bands. d, Distribution of hard boundary edge states. The first, second, third and fourth bands
are coloured as red, cyan, magenta and blue, respectively. There is one triple linear degeneracy
constructed by the lower three bands, which implies that for the first and second bandgaps each
supports one edge state per edge, being similar to some cases of charge —1 in three-band

models’.
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