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3Département de Physique, Université de Montréal, Montréal, Québec, H3C 3J7, Canada
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SUPPLEMENTARY NOTE 1: VOLUME AND AREA LAWS IN ANY DIMENSION

In this appendix, we compute explicitly the volume and area law coefficients in any dimension d. While such
scaling is well known for the fluctuations, we report here some general formulas in terms of the connected correlation
function f . Our starting point is Eq.(5) in the main text

(∆OA)2 = α|A|+ ΘA (1)

where

α =

∫
ddrf(r) =

2π
d
2

dΓ
(
d
2

) ∫ ∞
0

dr rd−1f(r) (2)

is the coefficient of the volume term, the remaining term

ΘA = −
∫
A

ddr1

∫
Ac
ddr2 f(|r1 − r2|) (3)

scales with the size of the boundary, |∂A|, for large A:

ΘA = β|∂A|+ · · · (4)

where the ellipsis denote subleading terms. Intuitively this scaling comes from the fact that the previous integral
is dominated by the region close to the interface between A and Ac, provided f decays reasonably fast. To get an
explicit formula for β, we first transform the double integral over A and Ac into a double boundary integral over
∂A using the following relation

ΘA = −
∫
∂A

dσ1

∫
∂A

dσ2 (n1 · n2)F (|r1 − r2|) (5)

where n1,n2 are unit vectors normal to the boundary of A, and F (r) is such that its laplacian satisfies ∆F = f ,
that is ∂r(r

d−1∂rF (r)) = rd−1f(r). We now pick a specific geometry where calculations are simple. In Rd we take
for A the half-space xd ≥ 0, with boundary ∂A being the hyperplane xd = 0.

ΘA = −
∫
Rd−1

dd−1r1

∫
Rd−1

dd−1r2 F (|r1 − r2|) = |∂A|
∫
Rd−1

dd−1rF (|r|) (6)

where we changed variable to the center of mass r = r1 − r2. The fact that |∂A| is infinite is not really an issue,
as one can repeat the same argument in finite volume (e.g. working in a box with periodic boundary conditions).
Thus

β = −
∫
Rd−1

dd−1rF (|r|) = − 2π
d−1

2

Γ
(
d−1
2

) ∫ ∞
0

rd−2F (r) (7)
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Integrating by parts twice yields

β = − π
d−1

2

Γ
(
d+1
2

) ∫ ∞
0

dr rdf(r) (8)

It is important to stress that while the computation of the area law coefficient β has been done in this simple
geometry, the result holds irrespective of the precise shape of the boundary, unless f decays too slowly. Upon
rescaling the region A→ LA, the fluctuations behaves for large L as

(∆OLA)2 ∼ αLd|A|+ βLd−1|∂A|+ · · · (9)

In this asymptotic regime, the boundary can be locally approximated by its tangent hyperplane, for which our
computation applies.

As a side note, in two dimensions it is rather suggestive that the coefficients of the volume, boundary, and corner
terms are respectively proportional to∫ ∞

0

dr rf(r),

∫ ∞
0

dr r2f(r) and

∫ ∞
0

dr r3f(r) . (10)

Whether this remarkable sequence extends into higher dimensions is an interesting question.

SUPPLEMENTARY NOTE 2: TWO DERIVATIONS OF THE SUPER-UNIVERSAL BEHAVIOR

We provide further information regarding the derivation of our main result, Eq. (4) of the main text. We first
present the computation of the remaining four-dimensional integral, which gives the angular dependence of the
corner function. We also present an independent alternative derivation of the super-universal corner function.

The remaining integral

In this appendix we evaluate the integral

b(θ) = −
∫
B

dr1

∫
D

dr2f(|r1 − r2|) (11)

This can be done as follows. We first rewrite∫
B

dr1

∫
D

dr2f(|r1 − r2|) =

∫ ∞
0

drf(r)ρ(r, θ), where ρ(r, θ) =

∫
B

dr1

∫
D

dr2δ(|r1 − r2| − r) (12)

The point is now that the regions B and D being cones, they are invariant under dilatations. Rescaling ri → rri
thus yields

ρ(r, θ) =

∫
B

dr1

∫
D

dr2δ(|r1 − r2| − r) = r3ρ(1, θ) (13)

and we obtain the factorization of the angular and radial variables

b(θ) = −ρ(1, θ)

∫ ∞
0

r3

2
f(r) dr . (14)

Strikingly the angular function ρ(1, θ) does not depend on the connected density-density two-point function. The
angular dependence can be computed [1], yielding for θ ∈ [0, 2π]

b(θ) = − (1 + (π − θ) cot θ)

∫ ∞
0

r3

2
f(r) dr . (15)
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An alternative derivation

For completeness, we present here an alternative derivation of our main result. Our main goal is to isolate the
corner function from the dominant volume and area law term. This can be done in a different way, simply noticing
that those terms are affine in θ, so can be eliminated by differentiating twice with respect to θ. Denoting by D2(θ)
this second derivative, we have

D2(θ) =
d2

dθ2

∫
A

dr1

∫
A

dr2f(|r1 − r2|) (16)

=
d2

dθ2

∫ R

0

r1dr1

∫ θ

0

dθ1

∫ R

0

r2dr2

∫ θ

0

dθ2f(
√
r21 + r22 − 2r1r2 cos(θ1 − θ2)) (17)

where we integrate on an angular sector of a finite disk with radiusR for now. Using the identity d2

dθ2

∫ θ
0
dθ1

∫ θ
0
dθ2g(θ1−

θ2) = g(θ) + g(−θ) and sending R to infinity yields

D2(θ) = 2

∫ ∞
0

r1dr1

∫ ∞
0

r2dr2f(
√
r21 + r22 − 2r1r2 cos θ) (18)

which is finite. This can be evaluated by seeing r1 and r2 as cartesian coordinates, and switching to polar variables

D2(θ) =

∫ π/2

0

dω sin(2ω)

∫ ∞
0

ρ3dρf(ρ
√

1− sin 2ω cos θ). (19)

Finally rescaling ρ, we obtain

D2(θ) =

∫ π/2

0

dω sin 2ω

(1− sin 2ω cos θ)2

∫ ∞
0

dρρ3f(ρ) (20)

=
1 + (π − θ) cot θ

sin2 θ

∫ ∞
0

dρρ3f(ρ). (21)

Integrating twice, the integration constants may be set by requiring b(π) = 0 and b(2π − θ) = b(θ), and we recover
Eq. (4) of the main text.

SUPPLEMENTARY NOTE 3: ANALYTIC COMPUTATION OF THE CORNER TERM FOR THE
INTEGER QUANTUM HALL EFFECT

In this appendix we compute the connected two-point function f(r) for the ν = n integer quantum Hall effect.
We obtain

f(r) =
n

2πl2B
δ(r)− 1

4π2l4B
e
− r2

2l2
B

(
L
(1)
n−1

(
r2

2l2B

))2

, (22)

where lB is the magnetic length and L
(1)
n−1 is the associated Laguerre polynomial. One can readily check that

the volume term vanishes, as expected from particle number conservation. The sum rule in Eq. (4) can then be
computed exactly, yielding ∫ ∞

0

r3

2
f(r)dr = − n

4π2
. (23)

In order to derive the above relation, we first note that the corner contribution does not depend on the magnetic
length lB by virtue of being dimensionless. Thus without loss of generality we set lB = 1. The pth Landau level is
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Supplementary Figure 1. Corner coefficient of the integer quantum Hall effect at finite temperature. Temperature
dependence of the corner coefficient for charge fluctuations at filling ν = 1. The red dashed line is the T = 0 result, 1/(4π2).
The solid line shows the small temperature expansion, Supplementary Eq. (30).

spanned by the states |p,m〉 with wavefunctions (in the symmetric gauge)

Ψp,m(z) =

√
p!√

2m−pm!

1√
2π
zm−pL(m−p)

p

(zz̄
2

)
e−

zz̄
4 (24)

where z = x+ iy and the integer m ranges over all non negative integers. The integer quantum Hall effect at filling
fraction ν = n is obtained by occupying all Landau levels from p = 0 to p = n − 1. For such a non-interacting
fermionic system, the connected density-density two-point function can be computed via Wick’s theorem

〈ρ(r1)ρ(r2)〉c = 〈ρ(r2)〉 δ(r1 − r2)− |K (r1, r2)|2 = K (r1, r1) δ(r1 − r2)− |K (r1, r2)|2 (25)

where K (r1, r2) = 〈Ψ†(r1)Ψ(r2)〉 is the kernel of the projector onto the occupied states. At filling ν = n, this is

K (r1, r2) =

n−1∑
p=0

∞∑
m=0

Ψp,m(z1)Ψp,m(z2) =
1

2π
e
z1z̄2

2 e−
z1z̄1+z2z̄2

4 L
(1)
n−1

(
|z1 − z2|2

2

)
(26)

where zj = xj + iyj , yielding Supplementary Eq. (22).

If we entirely fill only the nth Landau level for some n ≥ 0, and leave all other levels empty, the kernel is modified
to

K (r1, r2) =

∞∑
m=0

Ψn,m(z1)Ψn,m(z2) =
1

2π
e
z1z̄2

2 e−
z1z̄1+z2z̄2

4 L(0)
n

(
|z1 − z2|2

2

)
(27)

and we find ∫ ∞
0

r3

2
f(r)dr = −2n+ 1

4π2
. (28)

Fluctuations at finite temperature

The preceding discussion was concerned with eigenstates of the IQH Hamiltonian. We now analyze the charge
fluctuations in IQH states at finite temperature T . We work in the grand canonical ensemble, where the chemical
potential µ is determined by requiring that the average density be an integer ν ∈ {1, 2, 3, · · · }. The implicit equation
for the chemical potential can be numerically solved for a given temperature. The next step is to compute the kernel
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K, which then determines the density-density correlation function through Supplementary Eq. (25). Explicitly, we
have for T ≥ 0

K(r, 0) = 〈Ψ†(r)Ψ(0)〉T =
exp(−r2/4)

2π

∞∑
n=0

nF (ξn)L(0)
n (r2/2) (29)

where ξn = En − µ is the LL energy shifted by the temperature-dependent chemical potential and nF stands for
the Fermi-Dirac distribution. It can be shown that the tail of the series in Supplementary Eq. (29) contributes an
exponentially decaying function of the separation r. This implies that charge-charge correlation function f decays
exponentially with r, and the super-universal shape dependence holds, with the prefactor given in Eq. (4) of the
main text. The full dependence of the prefactor can be numerically calculated, we show the result in Supplementary
Figure 1. In particular, at low T , we find that it remains unchanged up to corrections that are exponentially small
in the ratio of the cyclotron energy to twice the thermal energy, ~ωc/(2kBT ):

−
∫ ∞
0

dr
r3

2
f(r) =

ν

4π2
[1− 4 exp(−~ωc/(2kBT ))] + · · · (30)

where the ellipsis denote subleading terms in the small T limit. Such a suppression is natural due to the cyclotron
gap.

A new property that arises at finite temperature for charge fluctuations is a volume law term, which vanishes in
the groundstate due to charge conservation. The coefficient of the volume law α is given by Supplementary Eq. (2).
Using the orthonormality of Laguerre polynomials, we find

α =
ν

2π
− 1

2π

∞∑
n=0

nF (ξn)2 (31)

At low temperature, and unit filling, we find

α =
1

π
exp(−~ωc/(2kBT )) + · · · (32)

which decays exponentially fast as T → 0.

SUPPLEMENTARY NOTE 4: CONFORMAL FIELD THEORIES

For conserved charge correlation functions of CFTs in d spatial dimensions, the universal large distance behavior
of the correlation function is f(r) ∼ r−2d. The leading terms of the fluctuations ∆O2

A for large regions A are
dominated by this infra-red behavior, including the corner terms. Thus we can ignore the short-distance behavior
of f(r) in evaluating ∆O2

A, at the cost of introducing a short-distance cut-off. We can transform the double integral
over A into a double boundary integral over ∂A by virtue of the following relation:∫

A

dr1

∫
A

dr2
1

|r1 − r2|2d
= − 1

2d(d− 1)

∫
∂A

dσ1

∫
∂A

dσ2
n1 · n2

|r1 − r2|2(d−1)
(33)

where n1,n2 are unit vectors normal to the boundary of A. Note the important minus sign on the RHS. Subtleties
can arise due to the short-distance divergent nature of both sides, but these can be taken care of via a short-distance
regulator and do not affect the universal coefficients that interest us. Supplementary Eq. (33) can be shown by
starting with the r.h.s., and using Stokes theorem twice. The r.h.s. of Supplementary Eq. (33) is seen to be exactly
the form of the Extensive Mutual Information (EMI) model for the entanglement entropy [2–4]. In d = 2 spatial
dimensions, the integral for region A being a corner of angle θ has been computed in numerous references [3–5].
The answer is: ∫

∂A

dσ1

∫
∂A

dσ2
n1 · n2

|r1 − r2|2
= B

L

δ
− a(θ) ln(L/δ) + · · · (34)
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where B > 0 is the non-universal coefficient of the boundary law, and the EMI corner term reads

a(θ) = 2(1 + (π − θ) cot θ) (35)

This leads to the universal charge fluctuation corner function of CFTs given in the main text. It is important to
note that this serves as an independent derivation of our result for b(θ), Eq. (4) of the main text, for the case when
f(r) ∼ 1/r4 at large distances.

In addition, our relation between bipartite fluctuations and the EMI for entanglement entropy gives a concrete
realization of the latter, and allows to use many of the results previously obtained in a new context. We note that
a relation similar, but distinct to Supplementary Eq. (34) was previously obtained in Ref. 6.

SUPPLEMENTARY NOTE 5: SLOW DECAY AND METALS

In this appendix, we focus on two-point functions that decay slower than the CFT one for a conserved charge
density, which leads to different behavior for bipartite fluctuations. In particular, it is not possible anymore to
interpret the term b(θ) as a corner contribution: as we shall see, this term will depend on the whole shape of region
A. For concreteness, we consider a two-point function decaying as

f(r) ∼ a

r4h
(36)

for large r, and exponent 3/4 ≤ h < 1. For region A we take a circular sector with radius L and angle θ. We have

(∆OA)
2

=

∫ L

0

r1dr1

∫ L

0

r2dr2

∫ θ

0

dθ1

∫ θ

0

dθ2f(
√
r21 + r22 − 2r1r2 cos(θ1 − θ2)) (37)

To try and indentify an analog of the corner contribution, we define D2(θ) as the second derivative of the variance.
Using polar coordinates r1 = ρ cosω, r2 = ρ sinω, it may be expressed as

D2(θ) =

∫ π/2

0

dω sin 2ω

∫ L/ cos(π4−|ω−
π
4 |)

0

dρ ρ3f(ρ
√

1− sin 2ω cos θ) (38)

∼ aL4−4h

2(1− h)

∫ π/4

0

dω
sin 2ω[cosω]4h−4

[1− sin 2ω cos θ]
2h

(39)

Hence, the (second derivative of the) “corner term” diverges as a power law in L. The angular dependence is
no longer the super-universal function, because of the extra factor (cosω)4h−4, and the change in exponent in
the denominator. The former can be traced back to the exterior (circular) boundary of A, which now enters the
calculation due to the long-range correlation. We stress that the θ dependent correction we compute here should
not be interpreted as a corner term. Indeed it is sensitive to the shape of A as a whole. For instance modifying the
region A even very far from the corner, such as changing the exterior boundary, does affect the angular dependence.
Nevertheless we can consider the divergence of this correction term for θ → 0. It can be computed by noticing that
the integral is dominated by the vicinity of ω = π/4, in which case the denominator blows up. Expanding in ω up

to distances of order
√
θ yields the estimate∫ π/4

0

dω
sin 2ω[cosω]4h−4

[1− sin 2ω cos θ]
2h

∼
θ→0

√
π Γ(2h− 1/2)

Γ(2h)
θ1−4h, (40)

where Γ is the usual Gamma function. We also checked that the method combining four corners, which is explained
in the main text, gives the same result. Integrating twice the last integral yields a divergence as θ3−4h for h ∈ (3/4, 1),
and log θ for h = 3/4. This is to be compared with the 1/θ divergence valid for any h ≥ 1.

Let us finally discuss the case of metals. For an isotropic Fermi sea |k| < kF , the non-interacting fermion
propagator is

〈Ψ†(r1)Ψ(r2)〉 = K (r1, r2) =

∫
|k|<kF

dk

(2π)2
eik·(r1−r2) =

kF
2πr

J1(rkF ) (41)
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where r = |r1− r2|, and J1(z) is the Bessel function of the first kind. Therefore the connected two-point function is

f(r) =
k2F
4π

δ(r)

2πr
− k2F

4π2r2
J2
1 (rkF ) (42)

and up to the usual oscillations behaves at large distances as f(r) ∼ ar−3 for some constant a. In momentum space,
this translates to the scaling S(k) ∝ k at small k, where S(k) is the spatial Fourier transform of f . This scaling
fits in the above discussion, with exponent h = 3/4. For an interacting Fermi liquid (FL), the same scaling holds,
but with a prefactor modified by the Landau parameter F0s, as is discussed in Ref. 7 in the context of bipartite
fluctuations. Therefore, for a FL b(θ) is of order L, b(θ) = L bFL(θ). Recall the leading term of the variance
corresponds to a logarithmically enhanced area law (given here for non-interacting fermions) [8]

(∆NA)2 ∼ (2 + θ)

2π3
kFL logL , (43)

and this term is, indeed, eliminated by differentiating twice. The integral in Supplementary Eq. (39) can be
simplified. Integrating twice, there is an ambiguity in fixing the integration constants, since changing the cutoffs—
that is e.g. changing logL → log(L/ε) in Supplementary Eq. (43)—would result in an extra contribution of order
L, which is affine in θ. Choosing the cutoffs by asking that bFL(θ) = αFL · (θ − π)2 close to θ = π, we obtain

bFL(θ)

8αFL
= log 4− 4C − 2 log

[
sin

θ

2

(
1 + sin

θ

2

)]
+ (2π − θ) log tan

θ

4
+ 4 Im Li2

(
i cot

θ

4

)
. (44)

As stated above, this result is valid up to affine terms in θ. Here, C is Catalan’s constant and Li2 denotes the
dilogarithm. To some extent this functional form can be seen as an analog of the corner term discussed in the text,
although one should keep in mind that it is sensitive to the global geometry of the region A.
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