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1 The Local Weber Number (HIT versus Vortex Ring)
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Figure S1: (a) Picture of the vertical water tunnel (V-ONSET) that generates turbulence that is nearly
homogeneous and isotropic (HIT); (b) The distribution of the local We around breaking bubbles in (a);
(c) Picture of the vortex-ring-collision setup; (d) The distribution of the local We around the secondary
breaking bubbles in (c).

One may wonder if the secondary bubble breakup in the flow produced by the vortex-ring collision
can be directly used to test the key hypothesis in the KH framework, which is widely believed to apply
only to the homogeneous and isotropic turbulence.

The key emphasis in the KH framework is the definition of the Weber number (We= ρu2D/σ) and its
key role in bubble/drop breakup. Both Kolmogorov and Hinze started with homogeneous and isotropic
turbulence (HIT) because u2 can be estimated based on the second-order structure function [2]. But the
framework was not limited to HIT. In fact, Kolmogorov and Hinze themselves tried to generalize the
framework to other types of turbulence, e.g. oil emulsion in a pipe [1]. In this case, u2 and the associated
local We become spatially and temporally varying, and the breakup is determined by the local We. As
long as the correct u2 based on the local flow condition is used, the KH framework should still be applied.
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To link the dynamics of the bubble breakup in two seemingly different turbulent flows, we compare the
distribution of the local Weber number around individual breaking bubbles in the vortex-ring-collision
setup (Fig. S1c) against those in the fully developed, statistically stationary, homogeneous and isotropic
turbulence generated by a vertical water tunnel (the V-ONSET) (Fig. S1a) [4, 5]. The local Weber
number was calculated based on the rate-of-strain tensor WeS in both experiments using the same
method.

The PDFs of WeS for both setups are shown in the bottom row of Fig. S1. In addition to the data, we
can also predict this PDF, i.e. P (We), based on the definition of the local We, i.e. We=ρ(εeD)2/3D/σ.
The log-normal distribution of εe, i.e. P (εe), can be determined from Eq. 5 in the main text. The PDF
of the local Weber number P (We) can then be calculated based P (We)dWe=P (εe)dεe. The predicted
result is shown as the dashed line in Fig. S1d. For details, one can refer to our previous study [5].
The nice agreement between the data and the dashed line suggests that the turbulence near breaking
secondary bubbles is intermittent and close to HIT.
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Figure S2: Dye visualization of (a) the left vortex ring (side view) with the core size a and the ring radius
Rvr marked; (b-d) two vortex rings after collision at t = 0.03, 0.08 and 0.13 s, where t = 0 is the collision
moment the definition of which can be found in Supplementary Fig. S3(b). The cascade process from
a large intact vortical structure to a turbulent cloud can be seen. In panel (b), the coordinates and the
view volume for our 3D measurement are marked for reference.
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Figure S3: (a) Trajectories of the cores of both vortex rings in the xy plane where z = 0. The dashed
line marks the collision plane (x = 0). (b) Vortex ring radii (Rvr) over time. The dashed line indicates
the moment when the vortex ring collision happens.

Supplementary Fig. S2 shows the side view of the collision process between the two vortex rings. We
rely on the model by Sullivan et al. [7] to estimate important parameters of the vortex ring when it just
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gets expelled out of the cylinder exit. For example, the vortex ring radius Rvr, which is defined as the
radius of the ring structure, can be calculated following:

Rvr =

(
3(D0/2)2Ls

4γ

)1/3

(1)

where γ is the eccentricity of the vortex ring within the x-y plane. Based on γ = 0.6 determined from
Supplementary Fig. S2a, we estimate the vortex ring radius to be Rvr = 27.4 mm. The core size of
the vortex ring, where the vorticity is strongest, is linked to the piston stroke time (Ts) and the fluid
viscosity (ν):

a =
√

4νTs (2)

which leads to a = 0.93 mm. The circulation of the vortex ring Γ follows:

Γ =
(D0/2)2L2

s

R2
vrTs

(3)

By taking into all parameters from our experiments, Γ is roughly 0.01 m2/s. Finally, the initial transla-
tional velocity of the vortex ring can be estimated by using:

V0 =
Γ

4πRvr
(ln (8Rvr/a)− 0.558) (4)

Substituting Γ into this equation yields V0 = 0.15 m/s.
In experiments, we track the bottom portion of the two rings until they meet and collide at the plane

of x = 0. Supplementary Fig. S3a shows the time trace of the central locations of these two bottom
vortices, from which the horizontal velocity (along x-axis) of both rings can be estimated, i.e. 0.13
m/s. Compared to V0 of 0.15 m/s predicted by the model [7], the measured velocity appears to be very
close but slightly smaller because the vortex rings slow down as they entrain low-momentum fresh water
when they move closer to each other [7]. Once the two rings collide, their horizontal velocities quickly
decrease to almost zero and their vertical motions (along the y-axis) accelerate. The core tracks of both
the left and right vortex rings in Supplementary Fig. S3a seem to be symmetric about the collision
plane, suggesting that the experimental control is precise enough that the collision is indeed head-on and
symmetric, as designed.

Based on the bottom vortex core locations, the vortex ring radius Rvr can be determined as a function
of time, which is shown in Supplementary Fig. S3b. Rvr starts at about 22 mm, which is close to the
predicted value of 27.4 mm based on the model [7]. Consistent with Supplementary Fig. S3a, the vortex
ring radii get expanded slowly before the collision and rapidly after. Therefore, we define the collision
time t0 by the transition moment of the expansion rate, as shown by the dashed line in Supplementary
Fig. S3b.

3 Particle tracking

For the carrier phase, 60-µm-diameter neutrally-buoyant particles were used as tracers. To view them
clearly on cameras, laser illumination is typically favorable because it helps to select only the particles
in the volume of interest. However, for flows that contain bubbles, the interface between the two phases
is highly reflective, leaving shadows and light stripes in the view. This problem can severely impact the
ability to acquire accurate tracer data around bubbles. This issue is resolved using the shadow imaging.
Compared with all other methods, the back illumination can achieve a clear, sharp shadow projection of
both bubbles and tracers.

Tracer particles, after being segmented from the raw images, were tracked using our in-house OpenLPT
method [8]. This code has a built-in linear-fit check to ensure correct particle trajectories. Any tracks
with strong position oscillation were categorized as wrong tracks and deleted in this step. However,
this step can potentially cause broken trajectories. OpenLPT splices these broken segments back by
performing backward tracking after the first forward tracking. This will connect and extend the existing
track segments.

Sample 3D particle tracks, color coded with the instantaneous particle velocity magnitude |up|, are
shown in Fig. S4a. Particles with velocity magnitude ranging from close to zero in the background to
more than 0.6 m/s between two rings can all be tracked successfully by our in-house tracking method.
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Figure S4: (a) Sample particle trajectories from t = 0.06 s to t = 0.10 s generated by the OpenLPT
method. The dashed box indicates the volume that was used to calculate the velocity structure function;
(b) The schematic to show how the vorticity is calculated for any points of interest x0 by utilizing all
the particle within the search radius of Rs from x0.

4 Structure function and velocity gradients

4.1 Structure function

Instead of having velocity on a grid, the flow velocity is available at locations where we have particles.
For the structure function calculations, pairs of particles with separation rrr have to be identified first,
from which the second-order Eulerian structure functions, including both the longitudinal (DLL(r) =
〈[u‖(xxx+rrr)−u‖(xxx)]2〉) and transverse (DNN (r) = 〈[u⊥(xxx+rrr)−u⊥(xxx)]2〉) components, can be calculated.
u‖ and u⊥ represent the tracer velocity projected to directions that are parallel and perpendicular to
the separation direction rrr between a pair of particles located at xxx+ rrr and xxx, respectively. Many pairs of
particles were used to ensure a converged ensemble average (〈...〉).

The structure function was calculated in the dashed box, as shown in Fig. S4. This box is about
30×30×30 mm3 and covering the entire region where the two vortices were located. This box continues
to move down with the vortex rings following the same speed to ensure that the statistics collected is
not contaminated by other regions and roughly the same number of velocity pairs are used.

4.2 Velocity gradients

The local flow velocity gradients can be determined from the 3D particle tracking results. At any
location x0, the velocity gradient tensor Aij at this point is determined based on the velocity up of n
tracer particles (p = 1, 2, ..., n) around x0 within a search radius of Rs. By using the Taylor expansion,
the velocity can be decomposed into the first two leading terms:

up(x0 + xp) ≈ 〈u〉(x0) +Aij(x
0)xp (5)

where xp is the vector pointing to the position of tracer particle from x0, and 〈u〉 =
∑n

p=1 u
p/n represents

the local mean flow. A unique Aij can be determined if there are only four particles within the search
radius Rs. In practice, we need more particles to perform the least-square fit by seeking minimum
squared residuals

∑
p [up − u−Aijx

p] to get converged results [5]. Once Aij is determined, the strain
rate and the vorticity can be easily calculated from the rate of strain tensor Sij = (Aij + Aji)/2 and
rotation tensor Ωij = (Aij−Aji)/2, respectively. This method of calculating the velocity gradient tensor
has been employed and validated in Ref. [6, 5].

For the vorticity and rate of strain around breaking bubbles, x0 is located at the center of mass of
bubbles, and particles within the search radius Rs were included for the calculation. The selection and
correction of Rs can be found in Ref. [5]. The concentration of tracers is limited so Rs that we have used
is the finest scale that the data can afford. Rs was also kept the same for both the primary and secondary
breakups for fair comparisons. In addition, for the 3D iso-surface of vorticity in Fig. 3b, an underlying
3D grid is required. For this case, x0 is selected to be the center of each grid, and we used a constant Rs

to calculate the vorticity. The 3D grid spacing is much finer than Rs to achieve a better figure quality.
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Admittedly, the finite Rs will result in the filtering effect, indicating that turbulence visualized may not
capture all the fine structures beyond our spatial resolution. Nevertheless, even with this filter, the flow
structures nearby the secondary breakups are already chaotic, as shown in Fig. 3b, suggesting that the
unfiltered flow could only be more turbulent.

5 Separating the primary and secondary breakups

Figure S5: Examples of four bubble breakups, including (a-b) two primary cases (red) and (c-d) two
secondary cases (blue)

In the main manuscript, we described the height criterion to separate the primary and secondary
breakups. In practice, we also examined this criterion against two other possible methods. The first
method is a simple visual check. Additional two examples of the primary and secondary breakups are
shown in Fig. S5. Consistent with the example shown in Fig. 2a, the primary breakup is always along
one direction, and the secondary breakup is more chaotic with no clear deformation direction. The
second method is time. Based on the flow measurement, turbulence began to emerge at about t=0.1
s. Most primary breakups took place before this time, whereas most the secondary breakups occurred
after.

In Fig. S6, red circles and blue squares mark the locations of all primary and secondary breakups,
respectively, identified by all the three methods. The dashed line indicates the height criterion used in
the main manuscript. It can be seen that it separates the two breakup modes successfully. In addition,
magenta triangles mark the ambiguous cases that cannot satisfy all three criteria. They account for
roughly 15% of the total dataset, and including or excluding them will not change the conclusion.

In addition to the point cloud, we also added the vorticity contour at t=0.05 s and t=0.16 s in the
background to show the background flows near the primary and secondary breakups. It can be seen that
all primary breakups are inside the regions covered by large vortical structures, whereas the secondary
breakups are in the turbulent cloud filled with small eddies.
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Figure S6: The locations of the primary (red circles) and secondary (blue squares) breakups, along with
ambiguous cases (magenta triangles). The black dash line represents the height criterion to separate the
primary and secondary breakups. The color map in the background shows the spatial distribution of the
normalized vorticity ωz/ωz,max in the xy plane (z = 0), where the upper part represents the vorticity
field at t = 0.05 s while the lower part shows the vorticity field at t = 0.16 s.

6 Collision frequency

In this section, we will discuss the bubble-eddy collision rate used in the new model. This rate depends
on the collision area (∼ πD2/4), the number density of the eddy (ne), and the eddy velocity (〈ue〉),
following the expression of ωc = (π/4)D2ne〈ue〉 inspired by the gas kinetic theory [3]. 〈ue〉 is the mean
eddy velocity, which can be expressed as 〈ue〉 ≈

√
2(〈ε〉De)

1/3 based on the inertial range scaling in the
Kolmogorov theory [2]. The eddy number density ne scales with D−4e . Substituting all the terms into
the collision rate immediately yields an expression for ωc

ωc = C1
〈ε〉1/3D2

D
11/3
e

(6)

where the prefactor C1 is unknown. In practice, C1 is determined by fitting against experiments of only
one bubble size D = 3 mm in Fig. 4f in the main text. The same C1 ≈ 0.1 is then used for other bubble
sizes. Since C1 is a constant, it does not affect the overall dependence of the breakup frequency either
on the bubble size or on the energy dissipation rate.
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