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Supplementary Note 1. Magnetization measurements

Fig. 1 shows the temperature dependence of the magnetic susceptibility of the three sam-

ples of HgBa2Ca2Cu3O8+δ . Tc corresponds to the onset temperature where the susceptibility

starts to drop. The two samples of Hg1223 at p = 8 % (Tc = 64 K, black line) and p = 8.7 %

(Tc = 74 K, red line) have been studied by quantum oscillation measurements using the

tunnel diode oscillation (TDO) technique. Hall effect measurements have been performed

on the third sample of Hg1223 at p = 8.8 % sample (Tc = 78 K, blue line).
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FIG. 1: SQUID data. Magnetic susceptibility measurements of vacuum-annealed crystals

of HgBa2Ca2Cu3O8+δ at different doping levels, as indicated.
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Supplementary Note 2. Quantum oscillation data

The complete data of quantum oscillations in two samples of Hg1223 is displayed in Fig. 2.

Figs. 2a, b show the variation of the Tunnel Diode Oscillator (TDO) frequency as a function

of magnetic field up to H = 88 T at different temperatures for the samples p = 8 % and p =

8.7 %, respectively. The thin lines correspond to the smooth background (splines) subtracted

from the raw data leaving the oscillatory part of the signal depicted in Fig. 2c (p = 8 %)

and Fig. 2d (p = 8.7 %). Figs. 2e, f show the discrete Fourier transform of the oscillatory

part in the field range [35 T, 85.5 T] (p = 8 %) and [37 T, 85.3 T] (p = 8.7 %), respectively.

Table 1 shows the effective masses of the different frequencies obtained from the temperature

dependence of the amplitude of the oscillation given by the Fourier transform. It is worth to

note that the background of the TDO signal is strongly field dependent. Since the amplitude

of the QOs is small compared to this background, its subtraction is not straightforward, in

particular in presence of several QO frequencies. The peaks at low frequency in the Fourier

transform are artefacts coming from the fact that the oscillatory part of the TDO signal is

not perfectly symmetric about the x-axis. Since we have a limited field range to analyse the

QOs, a field window H =35 T – 85.5 T corresponds to less than 2 oscillations for a frequency

of F = 110 T. We cannot exclude the presence of such low frequency but it is impossible

to reveal it by Fourier transform. A strong argument against the presence of such low QO

frequency is the temperature dependence of the peak in the Fourier transform, that is not

in agreement with the behaviour expected for QO.

Family Tc p m∗c1 m∗c2 m∗c3

Hg1223 64 K 8.0 % 0.75±0.2 1.0±0.2 1.5±0.2

Hg1223 74 K 8.7 % N/A 2.2±0.3 2.4±0.2

TABLE 1: Effective masses deduced from the Fourier transform analysis for the Hg1223

samples.

Supplementary Note 3. Fitting quantum oscillations

In order to confirm the value of the frequencies obtained by Fourier transform, some

fits of the QOs were performed. This is an additional check of our analysis leading to our
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FIG. 2: TDO data. a) Field dependence of the TDO frequency after the heterodyne

circuit at low temperature in the trilayer Hg1223 p = 8 % at different temperatures, as

indicated. The thin lines correspond to the background (spline) of the TDO signal. b)

Same graph but for our Hg1223 p = 8.7 % sample. Oscillatory part of the TDO signal

after removing a smooth background (spline) for c) p = 8 % and d) p = 8.7 %. The thin

(thick) lines correspond to the rising (falling) of the magnetic field. e) Discrete Fourier

analysis in the field range H = 35 - 85.5 T of the data shown in panel c) for p = 8 %.

Arrows indicate the three frequencies discussed in the main. f) Discrete Fourier analysis in

the field range H = 37 - 85.3 T of the data shown in panel d) for p = 8.7 %. Arrows

indicate the three frequencies discussed in the main.
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interpretation. We fit the field dependence of the TDO signal to fTDO = (a0 +a1H+a2H
2 +

...)+∆fosc, where the first term is a polynomial representing the non-oscillating background

and ∆fosc is given by the Lifshitz-Kosevich (LK) theory,

∆fosc =
∑
i

A0iRT iRDisin[2π(
Fi
H
− γi)] (1)

where A0i are prefactors, Fi are the oscillation frequencies and γi are the phase factors. We

neglect any contribution from magnetic breakdown and spin damping. RT i and RDi are the

thermal (RT i = αTm∗i /Hsinh[αTm∗i /H]) and Dingle (RDi = exp[−αTDimi
∗/H]) damping

factors, respectively, where α = 2π2kBm0/e~ (' 14.69 T/K), m∗i and TDi are the cyclotron

masses and the Dingle temperatures, respectively [1]. Some of the scattering going into TD

probably comes from scattering due to vortices, but we leave this as a field-independent

scattering contribution for simplicity. For each frequency, there are five free parameters. In

order to constrain the parameters, we perform simultaneous fits with equation (1) to the

total data set at different temperatures, where all parameters are temperature independent.

We use a gradient based search algorithm where the optimal solution is the set of parameters

that gives the smallest least squares value. The gradient based search algorithm we used

converges only in the temperature range from T = 1.4 K to T = 4.2 K at p = 8 % and from

T = 0.6 K to T = 2.9 K at p = 8.7 %. Due to local minima, there exist a large number

of solutions and we have constrained a few parameters like the effective masses (to agree

with the Fourier transform analysis) and the Dingle temperature (to take into account the

disorder protected nature of the inner plane). Fig. 2 of the main text shows the raw data

(symbols) for the p = 8 % sample along with the results of the fitting procedure (black

lines) at different temperatures from T=1.4 K to T=4.2 K and in the field range H = 40 -

83 T. Table 2 shows the relevant parameters deduced from the fit, e.g. frequencies, effective

masses and Dingle temperatures. The contribution of each frequency to the total signal is

seen in the DFT depicted in the inset of Fig. 2. In addition to the fundamental frequencies,

F1 = 331 T (blue), F2 = 500 T (grey) and F3 = 866 T (red), a harmonic of the signal at F4

= 1150 T has been taken into account to improve the fit. The simulated TDO signal does

not reproduce perfectly the data due to a complicated background and additional harmonics

of the signal. Nevertheless, the oscillation frequencies match the value obtained by the DFT

within the error bars (see table I of the main text).

The same procedure was carried out for the p = 8.7 % sample in the temperature range
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FIG. 3: Lifshitz-Kosevich fit. Field dependence of the TDO frequency in Hg1223 (p =

8.7 %) at different temperatures (symbols). Solid lines correspond to the fit to the data

using the Lifshitz-Kosevich theory plus a polynomial background in the field range

40 ≤ H ≤ 85 T (see text).

p = 8 % p = 8.7 %

F1 F2 F3 F1 F2 F3

F (T) 331 500 866 333 514 820

m∗c (me) 1.9 1.2 1.6 1.6 2 2.2

TD (K) 8 7 14 5 7 16

TABLE 2: QO frequencies, effective masses and Dingle temperatures deduced from the fit

of the TDO signal to the Lifshitz-Kosevich theory (see text) for the p = 8 % sample (see

Fig. 2) and the p = 8.7 % sample (see Fig. 3).

T=0.6 K to T=2.9 K and in the field range H = 40 - 85 T (see Fig. 3). Table 2 shows

the relevant parameters deduced from the fit, i.e. frequencies, effective masses and Dingle

temperatures. Again, the oscillation frequencies match the values obtained by the DFT

within the error bars (see table 1 of the main text).
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FIG. 4: Field dependence of the Hall coefficient in Hg1223. Hall coefficient (RH) of

Hg1223 (p = 8.8 %) at various fixed temperatures, as indicated, versus magnetic field. The

thin (thick) lines correspond to the rising (falling) of the magnetic field for the

measurements up to 68 T. Data for the rising of the magnetic field in the 88 T coil are too

noisy.

Supplementary Note 4. Hall effect data

The transverse Hall resistance Rxy of our Hg1223 p = 8.8 % sample was measured in

pulsed fields. Fig. 4 shows the isotherms of the Hall coefficient, RH = tRxy/H, as indicated,

where t is the thickness of the sample. Data in the temperature range T = 10 - 150 K was

obtained in a 68 T pulsed magnet, where the signal to noise ratio was good. However, at T

= 10 K, 68 T was not enough to reach the normal state value of the Hall coefficient. We have

thus performed additional measurements in a dual coil magnet to produce non-destructive

magnetic fields up to 88 T at lower temperature, T = 4.2 K and T = 1.5 K. Due to larger

dH/dt, the signal to noise ratio is worse but we can clearly state that RH remains positive

down to the lowest temperature. This means that the Fermi surface of Hg1223 contains at

least one mobile hole pocket at this doping level (see next section).
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FIG. 5: Field dependence of the Hall coefficient in the two-band model.

Simulated RH versus magnetic field in the two-band model (see text). We use mce = 2.5 m0

and mch = 2.2 m0 for the effective mass of the electron (outer planes) and the hole (inner

plane), respectively. The Dingle temperatures of the electron and the hole are indicated.

Supplementary Note 5. Two-band model

In the main text, we argue that one scenario compatible with the QO spectrum consists

of antiferromagnetism (hole pocket) in the inner plane and charge order (electron pocket) in

the outer plane (see Fig. 4b of the main text). Since the inner plane is protected from out-of-

plane disorder, we assume that the hole-like carriers are more mobile than the electron-like

carriers.

Using a simple Drude model in the low field limit, the Hall coefficient is given by:

RH =
σhµh − σeµe
(σh + σe)2

(2)

where σ and µ are the conductivities and mobilities, respectively. To calculate the carrier

density, we rely on the measured QO frequencies. According to Onsager’s relation, the size

of the Fermi surface pocket AFS in reciprocal space is :

AFS =
2πeF

~
, (3)

where F is the SdH oscillation frequency. The number of carriers per layer is given by:

N =
2AFS

AFBZ

, (4)
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where AFBZ is the size of the first Brillouin zone in the reciprocal space. In a unit cell there

are three layers with one Cu atom per layer. We suppose that the Fermi surface of the

outer planes contains a single electron pocket due Fermi surface reconstruction by charge

order. The Fermi surface of the inner layer contains two hole pockets due to Fermi surface

reconstruction by antiferromagnetism. Then the carrier density nh(el) of holes(electrons) is

calculated according to the following formula:

nh =
Nh

V
, nel =

2Nel

V
(5)

where V = 236.9 Å
3

is the unit cell volume of Hg1223. As stated in the main text, a Hall

coefficient RH ≈ 6.5 mm3/C (see Fig. 3) corresponds to a ratio of mobilities µh/µe =2.85,

a reasonable value owing to the disorder-protected nature of inner plane compare to outer

plane. Now we have to justify the low-field limit. This is in fact indicated in the data of

Fig. 4 by the slight field dependence of RH . In the field-dependent two-band model, RH is

given by:

RH(H) =
σ2
hRh + σ2

eRe + σ2
hσ

2
eRhRe(Rh +Re)H

2

(σh + σe)2 + σ2
hσ

2
e(Rh +Re)2H2

(6)

where σh(e) and Rh(e) are the conductivity and Hall number of the h(e) carriers, respectively:

σh(e) = enh(e)µh(e) and Rh(e) = 1
enh(e)

.

Fig. 5 shows the simulated Hall coefficient using a set of parameters compatible with the

effective masses within error bars (see Table 1) and the order of magnitude of the Dingle

temperature for the p = 8.7 % sample (see Table 2). We use the parameters of the p =

8.7 % sample since Hall effect measurements have been performed in a sample with a similar

doping level, namely p = 8.8 %. As seen in Fig. 5, we expect a slight departure from the

low field limit since the Hall coefficient is not absolutely constant over our field range. Due

to the signal-to-noise ratio at low temperature and the limited field range, it is hard to tell

from the experimental data if such departure of the low field limit exists. Note that this

model is very simple since for instance, it does not take into account the anisotropy of the

scattering rate along the Fermi surface, which can be substantial in the cuprates. But one

should keep in mind that the main target of the analysis is to get reliable value of the QO

frequencies and explain the positive Hall number at low temperature.
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Supplementary Note 6. Sketch of Fermi surface

The sketches presented in Fig. 4b of the main text and Fig. 6 are based on calculations

of Fermi surface reconstruction due to AFM order and/or CDW order. For the sake of

simplicity, we treat the inner and the outer planes as independent even if they are coupled by

an interlayer tunneling t⊥. For the Fermi surface reconstruction, we consider only one band

within each CuO2 plane. The starting point of the calculations is the unreconstructed Fermi

surface of the single-layer Hg1201 compound, parametrized by the tight-binding equation:

E(k) = −2t1(cos(akx) + cos(bky))− 4t2(cos(akx)× cos(bky))− 2t3(cos(2akx) + cos(2bky))

− 4t4(cos(2akx)× cos(bky) + cos(akx)× cos(2bky))− µ (7)

where (t1, t2, t3, t4) = (0.48,−0.105, 0.08,−0.02) eV, kx and ky are the in-plane wavevec-

tors, a and b the in-plane lattice constants. The tight-binding parameters used in the

calculations are chosen in order to reproduce the photoemission data reported in Hg1201

[2]. The chemical potential (µ) is adjusted to yield a doping level p = 8.5% (for µ = -0.355

eV) so that the total carrier density is equal to 1 + p holes, according to the Luttinger sum

rule.

For the calculation of Fermi surface reconstruction due to AFM order, we used the fol-

lowing analytical formula for the electron (Ee(k)) and hole (Eh(k)) band structure:

Ee(k) =
E(k) + E(k +QAF )

2
+

√
(E(k)− E(k +QAF ))2

4
+ V 2

AF (8)

Eh(k) =
E(k) + E(k +QAF )

2
−
√

(E(k)− E(k +QAF ))2

4
+ V 2

AF (9)

where VAF is the AFM potential, QAF = (π, π) is the antiferromagnetic wavevector. The

hole pocket (purple FS in Fig. 4) whose area corresponds to a frequency of 500 T is obtained

using VAF = 0.445 eV.

For the calculation of Fermi surface reconstruction due to bi-axial charge order, only the

first-order translations of the band-structure due to charge-ordering with a characteristic

wavevector QCDW are considered [3]. The resulting 4 × 4 Hamiltonian is then diagonal-

ized numerically, with a typical mesh of 106 points. We choose QCDW = 0.275 r.l.u and
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FIG. 6: Sketch of the Fermi surface. To illustrate the discussion in the main text

regarding the different scenarios, we show a) FS obtained by LDA calculation (from

Ref. 4). b) Sketch of the FS assuming a Fermi surface reconstruction by charge order in

the three CuO2 planes. c) Fermi surface of the inner plane assuming a Fermi surface

reconstruction by antiferromagnetism.

VCDW = 0.075 eV to produce the electron pocket with an associated frequency of 850 T

displayed as an orange line in Fig. 4 of the main text.

Fig. 6a reproduces the Fermi surface of the stoichiometric compound HgBa2Ca2Cu3O8

obtained by local density approximation calculations [4]. It consists of three large hole-like

tubular CuO2 sheets centered on the corner of the Brillouin zone plus a small electron-like
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Fermi surface located at the anti-node. The latter disappears with doping [4]. The size of

the large orbits translates into a QO frequency of about 15 kT, a value much larger than

the observed frequencies.

Fig. 6b corresponds to the Fermi surface of Hg1223 assuming a Fermi surface reconstruction

by charge order in the three CuO2 planes. Here, we assume that the Fermi surfaces derived

from the outer planes are similar in size. Therefore, a Fermi surface reconstruction by charge

order leads to two electron pockets located at the node. For the sake of simplicity, solely the

strength of the CDW potential VCDW was adjusted to produce the electron pockets with F

= 850 T and F = 500 T displayed in figure 6b. Similar results could be obtained by varying

the CDW wavevector QCDW .

Fig. 6c depicts the Fermi surface of the inner plane assuming a Fermi surface reconstruction

by AFM order. The hole (electron) FS presented as purple (wine) lines in Fig. 6c corre-

sponding to a quantum oscillation frequency of Fh = 850 T (Fe = 500T) are obtained using

VAF = 0.25 eV. They are compatible with the observed QO frequencies F2 and F3. The

third observed frequency (F1 = 350 T) could then be due to magnetic breakdown between

these two orbits. However, the magnetic breakdown field B0 required to enable magnetic

breakdown orbits is B0 ∝ ∆k2 where ∆k is the separation between the two orbits. This

large gap precludes the observation of magnetic breakdown in the QOs. A simple estimate

of the magnetic breakdown field can be achieved using the Blount criterion:

B0 =
m∗

e~
×
E2
g

EF
(10)

where EF = e~
m∗ × FQO is the Fermi energy, Eg is the energy gap due to AFM order, m∗

the effective mass and FQO the QO frequency. Using Eg = 0.25 eV, m∗ = 1.6m0 (1.2m0) and

FQO = 850 T (500 T) yields an estimated magnetic breakdown field B0 ≈ 13000 T (14000T),

more than two orders of magnitude larger than the magnetic field used in the present study.
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