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Supplementary Discussion - Transmission for s-only modulations

Although the assumption of impedance-matching simplifies the analytics further, it is not a necessary assumption for the
realization of these instabilities, as we show in Fig. 1 for the case of a. = 0.4, o, = 0 and 2 = 0.8. For the right-hand
polarized case, the dynamics is equivalent to that shown in the main manuscript, whereas for the LHP one we simply
observe beating. Note that back-scattering is now allowed due to the relaxation of the impedance-matching condition,
leading to the additional beating observe in the LHP case.
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Supplementary Figure 1: Transmitted intensity as a function of time for the case where only epsilon is modulated. The
left panel shows the case of a LHP incident wave and the right panel that of a RHP one.
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Supplementary Note 1 - Analytic solution for D and B for w(k)

Let us consider a medium with a uniaxial perturbation of its electromagnetic tensors, which rotates describing a helix
in space and time. The tensors are subject the following coordinate transformation:

1 00 c(0”) —s(@7) O 200 0 O c@=) s(07) 0
efer=[0 1 0)+[s(07) c6) 0 0 00 —s(07) ¢c(6) 0], (1)
0 01 0 0 1 0 0 O 0 0 1
and similarly for pu:
1 0 0 (@) —s(6T) 0\ /0 0 0 c(0t) s(F) 0
p/pr=10 1 0]+ (s(@") @) 0]|0 20 O] | —s(6%) ¢c(67) 0], (2)
0 0 1 0 0 1 0 0 O 0 0 1

where 0 = gz — Qt + ¢ and €, and p; are the background permittivity and permeability, and we denote, for brevity,
cosines and sines as ¢ and s respectively. The constant ¢ results in a dephasing of 2¢ between the electric and the
magnetic components of the modulation. Note that the modulations of the z — x component of € and the y — y of pu
coincide, so that the modulation acts on a specific linear polarisation wherever at a specific point in spacetime (e.g.



for 6 = ¢ = 0, only x-polarised waves experience a different refractive index, while y-polarised waves are unaffected).
Performing the matrix multiplications, we obtain the following forms for the modulated tensors:

(1 0 O) ( 267) c(607)s(67) O)
gefer=(0 1 0| +2a.[c(67)s(67) s2(67) 0 (3)
0 0 1 0 0 0
1 0 0 s2(0%) —c(0M)s(6%) 0
p/pr=10 1 0] +42a, | —c(0)s(0") c2(0%) 0 (4)
0 0 1 0 0 0

Let us start from the complete Maxwell Equations for a non-dispersive medium, with D = éE and B = iH (where
we have already inverted the electromagnetic tensors to express E as é7'D and H as 4~ 'H ). In this instance, we shall
restrict ourselves to the case of normal incidence, so that % = a% =0.

9D, _i + + — 2py9Be + +,9By
o {—20@9[ 5(207)By + ¢(207)By] + [1 4+ 2a,5%(67)] % a,c(0™)s(0T) % (5)
0D, 4 28,9[+¢(20%) By + 5(207)B,] — [1 + 28,20 222 + 2a,c(6*)s(0+) 22 (6)
ot 0z 0z
8B_1_ _ B _ 90Dy _ _, 0D,
5 6{ 20 g[—5(207) Dy + ¢(207)Dy] — [1 4+ 2a.c*(67)] % 2a.¢(07)s(67) % } (7)
0B, _ 90Dy _ _ _.0D,
BN { +2a.9[+c(207 ) Dy + 5(207)Dy] + [1 + 2a.5%(67)) 5, c(07)s(67) 5, } (8)
where we defined . = —7 f;as and @ = — 90— +2a . We can rewrite this as:
oD, 0B, e V[ o(pt VB — 98 o0V —s(p+) 2Bz + 98y
st =+ )= A8,9¢(07) [=s(0) By + (07 B, | — 26,5(07)[-s(0) 5 +c09) 2] (9)
9D, _ 0By = = V[ o(Ht + _9a i o(pty 9Bz +,9By
it = =S 4 2,0 Bs 4 4augs(01) =50 By + (0 By] - 20,067 -5(6") 5 +e(67) 2] (10)
L OBy _ 0D, o _ - _ —\9Ds —\ 9Dy
5 T 8, y (07)[+c(07)Dy + s(07)Dy] — 2a.c(67 ) [+c(07) % + s(0 )W] (11)
0B, oD, N _ _ _ _ _ _ _. 0D, _, 0D,
€1W— 5% - (07)[+c(07)Dy + s(07)Dy) + 20507 ) [+c(67) % + s(6 )W] (12)
We now combine the above equations as follows:
s(07)Eq.(5) + c(67)Eq.(6) c(0%)Eq.(5) — s(67)Eq.(6) (13)
s(07)Eq.(7T) + c(07)Eq.(8) c(07)Eq.(T) — s(07)Eq.(8) (14)
and define the screwing coordinates:
2'(0) = c(0)z + s(0)y y'(0) = —s(0)x + c(0)y (15)
as well as the related screwing field components:
D(07) = c(07)D(0F) + s(67) D,y (67) Dy (07) = —s(07) Do (07) + c(67) Dy (67) (16)
B, (0) = c(07)Ba(07) + s(07)By(67) B (07) =—5(67)Bo(07) + c(07)By,(67) (17)

where we need to account for the space-and time-dependence of 6% (z,t) as we include the trigonometric functions within
the derivatives via the chain-rule:

o o O O(s(0)v)

)20 = 2O 4 ooy 020 = 2] gy (18)
c(@)%—qf = @ — Qs(0)y 3(9)%—1? = % + Qc(0)v, (19)



we thus arrive at the new set of equations:

20 vapy=L{ - P g -20, 220 L) 2 o(0) 518 | (20)
e onp = LB s (heto 2 o) 215 ) (1)
82; + QB = :1{ + 85;;’ + gD, + 2a.9D7, — [—3(9‘)% + 0(9‘)§y]Dz} (22)
agg — OB, = :1{ - 855 +9D,, — 2a. agz‘;’ + [+C(9_)a% + 3(9‘)881/]D2} (23)

We now want to move to a basis of forward and backward-propagating waves. After taking the combinations:

Eq.20+ L Eq.23 Eq.20 — L Eq.23 (24)
H1 M1

Eq.21+ /L Eq.22 Eq21 — S Eq.22, (25)
%1 H1

rescaling the B fields as B = /e1/u1 B, and defining the sums and differences between the electric and the magnetic
modulations a* = a. + &, we can use the identities:

1 _ _ 1 _ _
a:Di + &, Bj = 3l(@s +a,)(Di+ Bj) + (@: — a,)(Ds — By)] = §[d+(Dz+Bg>+d‘(Dz—Bg)] (26)
_ 1 _ _ 1 _
a:Di —a,B; = S(ae — a,)(Di+ Bj) + (@ +a,)(Ds — By)] = S la™ (Di + B;) +a*(D; - By)] (27)
to obtain:
aD+ “V+Q(Df, —B,) = aD‘ B D B, (D B —(D-, — B,
at( y/)+ ( y z/)*cl 7&( m/+ y’)+g( y’ z’)ig « ( r’+ ) ( x! y’)
(28)
0 D — B )+ QD +B,) = 0 D, — B, D, + B, 0 D, + B} D, — B,
8t( - y/)+ ( y/+ x/)—cl +&( 37/_ y/)_g( y/+ x/)+az ( + )+OK ( z/_ y/)
(29)
0 _ _ 0 _ _
((%(DJC—&—B,)—Q(D;—By,):cl{—I—a(D + BY) +9(D,, B;,)—&—g[a_(Dw,—i—B;C)—I—aJF(DgC,—B;C)}} (30)
)

_ _ o B _ B _ B B _ o _
(D)~ )~ 0D} + By) = arf = LDy - B~ oD + BY) gl (D + B + a0y - BRI| - 61)
Which allowed us to successfully remove all the #-dependent terms from the equations. We are now left with 8 combina-
tions of fields (due to the presence of both £¢ terms), but only 4 equations. In order to reduce the number of variables,
we can recognise that the individual terms above can be expanded as:

Dy + B, = [c(07)(+Dy) + c(07)(+By)] + [s(07)(+Dy) + s(67) (= Bo)] (32)
Dy, = By, = [e(07)(+Da) + ¢(07)(=By)] + [s(07)(+Dy) + s(07)(+Ba)] (33)
Dy + By, = [s(07)(=Da) + s(07)(+By)] + [c(07) (+Dy) + (67 ) (+Bx)] (34)
Dy, = By = [s(07)(=Dx) + s(07)(=By)] + [c(07)(+Dy) + c(07) (= Ba)] (35)
D, + By, = [e(07)(+Dy) + ¢(07)(+By)] + [s(07)(+Dy) + s(07) (= Ba)] (36)
D, = By, = [e(07)(+Dy) +¢(07)(=By)] + [s(07)(+Dy) + s(07) (+Ba)] (37)
D, + B = [s(07)(=Dz) + s(07)(+By)] + [c(67)(+Dy) + c(07) (= Bo)] (38)
D, = B =[s(07)(=Dx) + s(07)(=By)] + [c(07)(+Dy) + c(07)(+Ba)] (39)

and use the relations:
c(07)T +c(07)® = %[(C(W) Fe(07)(V+ @) + (c(67) — c(67)) (¥ — @)] = c(0)c(¢p) (¥ + D) — 5(0)s(4) (¥ — @) (40)

SO +5(07) = %[(S(W) +5(07)) (W + @) + (s(67) — s(07)) (¥ — @) = 5(0)c(6)(V + D) + c(0)s(¢) (¥ — @), (41)



which follow from the the trigonometric identities:

c(07) +¢(67) = 2¢(0)c(¢) c(07) = c(67) = ~25(0)s(¢)
s(07) 4+ 5(07) = 25(6)c(o) s(07) —s(07) = +2¢(0)s(9)
to write the equations above only as a function of the forward and backward-propagating fields:
E7 = e(0)(Dy + By) + s(0)[D, + (~By)] Fy* = —5(6)(Dy + B,) + c(6)[Dy + (~B,)
F5 = e(0)(D, — B,) + s(0)[D, — (~B.)] Fir = —5(6)(Ds — By) + c(6)[Dy — (~B)
so that:
Df + By, = c(9)Fy + s(¢)F, D, + B, = s(¢)Fy +c(p)Fy
D}, — By = c($)Fir + s($)Fy Dy — BY = —s(6)Fy + c(@)Fi
D}, + B, = —s(¢)F, + c(¢)Fyr D, + B+ =c(Q)F, +s(¢)Fy
D} — By = —s(¢)Fy + c(0)F, D, — B} = c(¢)F,; +s(d)Fyr

(46)
(47)
(48)
(49)

Substituting the latter into Eqs. 28-31, we derive four coupled equations, which no longer depend on the spatiotemporal
variable 6, which has been absorbed into our new set of basis functions. These can be cast into a standard eigenvalue

problem by taking:

DT + sO)F) = ~U=s(O)Fr + @) Fy) +erf = - (=s(8)Fyy + eld) ) + g(eld)Fy +5(8)F7)
2 _a+<—s<¢>Fy/ O F) 4 6 () +e($)F) (50)
SAGFT +5(8)Fy) = ~ (=57 + eld)Ey) +ar] + 5 (~s(6)Fy +e($)F) — alel)Ey + s(O)F)
b 216 (s(0) 7 + el V) + 5 (~s(0)Fy +el6) )] G
5 (CSOET + cO)F7) = +AAOET +sOF;) +ar{ + 5L OF +S(OFF) + o(-s(0)Fy + dO)F7)

)
4o (SOF +AOF) + 0t (-s(OF7 +e(0)F)] )
G (ST + cOF) = 4T +5O)F7) +ar{ = SO +5(0)F5)

—glat (=s(Q)Fy +c(9)Fy) +a™ (=s(9)F +c(9)Fpr )]
which we conveniently simplify by taking:

c(¢)Eq.50 — s(¢)Eq.52 s(¢)Eq.51 + ¢(¢)Eq.53 c(¢)Eq.51 — s(¢)Eq.53 5(¢)Eq.50 + c(¢)Eq.52

leaving us with:

5~ +ag-0F; +a{ - T - o) Lt (-sOF; + 0)F7) + a(-s(0)F; + A F)]
~ s(@)gla (—s(BF + e(@)FF) + o (—s()Fy + cld)E: >]}

Oy (erg—)F + {- O+ o)L lam (=s(@)F5 + @) F) +a* (—s($)F +c(e)Fr)]

5 — (a9 w +a s s(¢) 5 Lo (=5 y te o a’(—s y te o
@)l (—s@)F + e @)F) +a( s<¢>F;+c<¢>F:>]}

2 =gt OF7 +a{+ T o) Ll (sOF + e0)F7) + a (s(0)Fy + )]
T s(@)glat (~s(Q)FF + dQ)FF) + o~ (~s()F + c(d)E: >J}

oF:, v

A= +ag + OF +a{ + 5 - s(0) 0T Cs(0)F7 + d0)ET) + 4 (~s(O)F; +el@)F )



Inserting Bloch wave solutions: W = ei(F2=«t) 3~ o) e(2n=1)il92=21) vields (defining wy, = w + (2n — 1)Q and k, =
k+ (2n—1)g):

wpFly'n = +i(c1g — Q)F;n - Cl{ —knFyn — knc(ﬁb)[éﬁ(_s(@b)FJn + (@) Fyn) + @7(_3(¢)ngn + (@) Fyrn)]
igs(O)fa” (—s(0) 5+ el0)5 ) + 8 (—s(0) o+ () |
(59)
wnFyn = —i(c1g — Q) Fp n — cl{ — knFy o+ kns(@)[a (—=s(@)Fyn 4 c(@)Fpn) + @t (=s(9)Fyn + c(0) Fpr )]
gl (SO + AOFT ) + 0 (—s(OF n + ()]
(60)
wnF;n = *i(clg + Q)FJH - Cl{ + knF;n + knc(ﬁb)[o_‘i(*s(ﬁb)Fyﬁn + C(Qb)F;n) + 0_‘+(*5(¢)an + C(‘ZS)Fajn)]

—igs(0) [0 (=s(9)Fyn + c(@) Frn) + @™ (=8(0)Fyn + c(0) Fp )]
(61)

wnF = +ilerg + Q) F — { - haF = kas(@)@" (—8(8)Fyy  + () Farn) + G~ (—8(8)Fyn + () Fir )]
— ige(@)[a (=s(@)Fyr n + (@) Firn) + & (=s(@) " + c<¢>F;n>]}

(62)

Abbreviating the notation further with s = s(¢), ¢ = ¢(¢), § = c1g9 and k,, = c1k, we can rewrite the latter as a
standard eigenvalue problem:

F M=, MI,\ (F;

o (62) = (2 ni) (&) @
where the four matrices couple the forward and backward propagating states ¥, = (F,/'n; F ') and F~ = (Forns Ern)s
and read:

o kn + c(@)[at e(d)kn — ia~s(¢)g] +i(g — Q) + s(d)[~a" c()kn + iaT5(¢)g]

Mon = <—i(g — Q)+ c(d)[—as(d)ky — iaTe(d)g] o + 5(6)[aT 5(6)kn + i@~ ()] ) (64)
~ _ [ dD)ac(@)kn —iaTs(d)g]  s(d)[—atc(p)kn +ias(4)g]

Mz = (e et s 2 vl ) (65)
— _ (dD)=ac(p)kn +iats(p)g]  s(p)ate(p)kn —ias(0)g]

Mo = ( ()[6* s(D)kn + i ()] 5(6)[~a~s(0)kn — ic*e(6) 1) (%6)
T \HiQ+9) +e(9)aTs(@)kn +iaTe(d)g]  —kn + s(d)[-aTs()ks —iac(¢)g]

Note that one peculiarity of this solution strategy is that the ordering of the bands is modified as a result of the
coupling between harmonics inherent to the screwing basis vectors. As a result, diagonalizing Eq. 63 yields all the
eigenvalues, but not in increasing order.

Supplementary Note 2 - Change of basis in matrix form

Having derived the correct basis which uncouples the bands, we can rewrite the change of basis in a more compact
matrix form F = SG as:

Fr c(f)  c(0) s(6) s(6) D,
Eyof _ [ —s0) —s(0) <(0) <(0) B, (68)
F,; c(@) —c(0) s(0) —s(0) D,

Er —s(0) s(0) c(0) —c(6) —B,

Since the matrix above is orthogonal, its inverse corresponds to its transpose, and we can write immediately:

D, c(@) —s(0) c(0) —s(0) F>

B, _ | c0) —s(0) —c(0) s(0) Fr (69)
D, s(@) (@) s(0) c(0) F

-B, s(0) (@) —s(@) —c(6) Er



Thus, we have:

Dy = c(0)F — s(0)F; + c(0)F5 — s(0)F D, = s(0)Fy +c0)F, + s(0)F5 +c(0)F  (70)
B, = c(0)Fy — s(0)F; — c(0)F + s(0)F7 —B, = s(0)F, + c(0)F, — s(0)Fr —c(O)F; (71

Supplementary Note 2 - Numerical Floquet-Bloch Calculations

Here we solve for k(w), in terms of the E and H fields. Note that, due to a dual symmetry between space and time we
can to solve for w(k) and for with the same sets of equations following the substitutions:

Ae/p

—E ko & Q 72
2., w 9 (72)

D« FE B+ H Qg/p ¢ Ogjpy = —

Since we are going to use E, H as our variables, it is useful to write down the time derivatives of the material tensors:

oe s(207)  —c(267) 0 o —s(20%) ¢(267) 0
Fri 2e10.Q | —c(207) —s(267) 0 pri 2u1a, 0 | c(20F)  s(20%) 0 (73)
0 0 0 0 0 0
so that Maxwell’s Equations give us, for normal incidence:
1 (0E. OE,\ _ " B " B 2, gy OHz L\ 0H,
( 3y 5% > = +20,Q(s(207)H, — ¢(207)H,) — (1 4 2a,57(07)) 5 s()e(0T) =L Y (74)
1 (0B, OE;\ _ . 3 i gy OHe + OH,
- (&T 9% ) = +20,Q(—c(207)H, — s(207)Hy) + 2a,5(0™ )c(0 )—at (1+2a,2(0%) =2 o (75)
1 (0H. 0H,\ _ e o 29—y, 0Fs —ve9— O Ey
< By o ) =20.0(5(207 ) E, — c(207)Ey) + (1 4+ 2a.c*(07)) 5 s(07)e(07) 5 (76)
1 (0H, OH,\ _ Convm pon (g OFx 29—y O Euy
_< 5 5 ) =2a.Q(—c(207)E, — s(207 ) Ey) + 2a.5(67 )e(67) 5 (14 2a.5%(07)) 5 (77)
and using double-angle formulae:
1 (OE., OE, n N 1y OH, 4\ O0H,
il _ 2y _ 1 _
<6‘y 32) +20, Q(s(207)H, — ¢(207)Hy) — [1 4+ (1 — ¢(2607))] 5 us(207)—*2 p (78)
1 (0E. OE;\ _ ot B " 4+ O0Hs L OHy
( 7 9% ) =420, Q(—c(207)H,; — s(207)Hy) + o, 5(20™) 5 1+ au(l+c(26 ))]—&L (79)
1 (OH., O0H,\ _ _ . OF, OE,
— <8y - 82:) = +20.Q(s(207)E, — c(207)Ey) + [1 + o (1 + ¢(207))] 5t s(207)—= T (80)
1 (0H. OH,\ . B _0E, _ OB,
—( Errw ) = +2a.Q(—c(207)E, — s(207)E,) + a.s(207) Y + [+ a.(1—c(20 ))]W (81)
We now assume ansatz of the form: 1 ~ e'(Fz=wt S )y 2n(92=0) g5 that the respective derivatives yield:
671/) _ _Z-ei(kz—wt) Z(w + QHQ)w €2in(gz—ﬂt) (82)
ot "
aiw _ iei(kz—wt) Z(k + Qng)wne%n(gz—ﬂt) (83)
0z -
We can thus write Maxwell’s equations as:
0L, = uy |20, Q(—s(201)H, + c(207)H,) — a,s (20+)8H +[1+ a1 —c(201))] OH, (84)
0z ot 875
‘9;; . {2% C(20%)H, — s(20F)H,) + a,s (2e+)af? - [1—|—oz,t(1+c(29+)] } (85)
% =g [2 T)E; +c¢(207)E,) — 0455(29_)8 Y~ 14 a(1+ 0(20_))] (86)
a(iw = [2 T)E, —s(207)E,) + ozgs(29_)aaEt$ + 14 a(l—c(207))] 8 (87)




so that substituting in the fields yields the eigenvalue problem for k:

(:ZC + 2n'g)Ey7n/ = Z {QMQ[(5H/7n+1 - 6n’,n—l)Hx,n — i(an’,n—i-l + 5n/,n—1)Hy,n]

n

)
- §O‘u(w +2n80) (On’ n+1 — 5n’,n—1)Hy,n

1
— (14 ap)(w+2n2)0p nHy o + 50%(‘*) +2nQ) (0 g1 + 6n/7n_1)Hw7n}

(k + 2n/g)Ew,n’ = Z {aMQ[+(5n’,n+2 - 6n’,n71)Hy,n + i(6n’,n+1 + 5n’,nfl)Ha:,n]

n

1
+ 50&;,,(0.] + 2nQ>(6n’,n+l - 6n’,n71)Hw,n

1
+ (14 ap)(w+2nQ)0n nHy n + ia#(w +2n) (0 g1 + 5n/7n1)Hy,n}

(k + Zn,g)Hy,n’ = Z {OLEQ[+(5n’,n+1 - 5n/,n—1)Er,n - i(an’,n—i-l + 5n’,n—1)Ey,n]

n

7
— 5045 (W +2nQ)(0n' nt1 — On/ n—1)Eyn

1
+ (1 + Oé&-)(w + 2nQ)57z/,nEa:,n + iaa(w + 2nQ)(5n’,n+1 + 67;’,n—1)Ex,n}

(k + 2n/g)Hw,n’ = Z {QEQ[+(6n’7n+1 - 6n’,n71)Ey7n + i((sn’,nJrl + 6n’,n71)Ew,n]

n

+ %aa(w + ZHQ)(én’,n-ﬁ-l - 6n’,n—1)Ex,n
1
— (14 au)(w+2nQ)0pn By n + iae(w +2nQ) (8 nt1 + 5n/,n1)Ey’n}

In matrix form, we can write this system as:

Ey Ey Ey
Mg’ 0 Mg M

oo | Be | 0 Mg My My E,
" H, MH y Mg zy Mg y 0 H,
H Y H

8
8

EU
Mp: Mpr 0 M

x

where the respective M matrices are tridiagonal, and read:

(90)

(91)

(92)

(93)

(94)

(95)

(96)



(Mg ) = =200 (97)
(ME )t = —2ng0p (98)
MP) 00 = =200, 0 99
H, ) »
(ME* ) = —20G8p 00 (100)
E, kyka : Ay
(MHy )n/’n = _m(sn/’n + Za,LLQ((Sn’,n+1 —+ 677‘/’”71) —+ 7,7(&) + 2nQ)(6n/’n+1 — &n/’nfl) (101)
k2 1
(M]?:)n’n = m(sn/,n - O‘/LQ(én’,n-&-l - 571’,n—1) - (1 + Oé,u,)(w + 2nQ)5n,n’ - 505/1,(4*) + 2nQ)(5n’,n+1 + 6n’,n—1)
(102)
B, k3 1
(MHy )n')n = _w T Ye) (577,/)71 - (IMQ(6HI7”+1 — 677,’,71—1) + (1 - au)(w + 2719)6””/ — iau(u} + 2719)(6”/7”_,’_1 + 6n’,n—l>
(103)
o kzky ; LAy
(MH—E )n/_’n = mén/’n — ZO[NQ((sn/7n+1 + (&n/’nfl) - 27(0.) + 2nQ)(5n/1n+1 - 571/777471) (104)
H, kyky . Qe
(MEy )n’,n = m(sn/,n - Z(XEQ(6’H,/,R+1 + 5n’,n—1) + 17((,«) + QnQ) (5n’,n+1 - 5n’,n—1) (105)
2
H, 1
(MEI )n’,n = _mén/,n + aaQ(6n’,n+1 - 5n’,n71) + (]- - ae)(w + 2nQ)5n,n’ + §OZ5(OJ + 2nQ)(§n/,n+1 + 5n’,n71)
(106)
2
z 1
(Mg:)n/n = mén/’n —+ aEQ(Jn’,n-‘rl — 6n/,n_1) — (1 + oz“)(w + 2719)6”7”/ + 50[5((.41 =+ 2”9)(5n/7n+1 —+ 6n/7n_1)
(107)
(M=) ——ﬂé + 10 Q8 +9 ) — '%( +2nQ) (8 -4 ) (108)
E, /n/,n = w+ 2nQ n’,n 10 n’,n+1 n’,n—1 1 2 w n n’,n+1 n’,n—1

Supplementary Note 4 - Transmission through Archimedes’ Screw

In order to calculate transmission through a finite-length Archimedes’ screw we expand the F and H fields into a
Floquet-Bloch basis and calculate the wavevector eigenvalues k for a fixed frequency of the impinging wave. Let us
assume solutions of the form E = F,x+ E,y, H = H,x + H,y, where the eigen-solutions for each field are of the form:

b = eilka—wt) Z B, e2in (92—t (109)
n

In the absence of modulation, the vacuum eigenvalues read, for both x and y polarisations:
kf = —2ng + (w + 2nQ), (110)

and the corresponding eigenvectors are

0 1
vie= 1|2 viy = o | /ve (111)
0 -1

Subsequently, we can write the fields at the left (1) and right (2) interfaces of the metamaterial as superpositions of
the vacuum eigenvectors:

EEII% vinc (1 vre 1 EEIZ% vinc (2
(H(i) =Mvincell) + Mverfell) a® | = Mvineeld) (112)
v,y v,y

and inside the metamaterial:

(1) (2)
(EI(I{)Z> =M" ey (Em’z> = M™Pe,, (113)
H:)y

where MVYir¢ and MVr®f are rectangular matrices containing the right- and left-propagating vacuum eigenvectors
respectively, M™ is a square matrix containing all eigenvectors inside of the metamaterial, and P is a diagonal matrix



P, = exp (ikp,d)0my which propagates each eigenvector from the left to the right interface. The vector ey,ne contains
the amplitudes of the input fields at the left interface, whereas the vectors ey or and ey, ra contain the unknown reflected
and transmitted amplitudes respectively. Applying the continuity of £, and H, at the two interfaces, we arrive at a
matrix equation:

0@ ' oM
(A B) e(\ét):r _ (Mvmc 0) < v(l)nc> (114)
vref
where:

A= Mm(MmP)—leinc B= _varef (115)

are rectangular matrices, such that their concatenation is square, so that the transmitted and reflected amplitudes can
be readily calculated by inverting Eq. 114.



