Supplemental Information.

Supplementary Figure 1. Runx1 is dispensable for the development of HSC niches

a,**b** Bone marrow from 3-week-old control and *Prx1-Cre;Runx1*^{f/f} mice was analyzed.

a von Kossa and toluidine blue staining of femurs. Bars: 1 mm.

b Relative mRNA expression levels of Runx1, Runx2, Osx, PDGFRB, LepR, CXCL12, SCF, IL-7,

p = 0.17

Ebf3

Foxc1, *Ebf1*, and *Ebf3* in sorted CAR cells (n = 4 mice per group).

Supplementary Figure 2. HSC niches are formed in mice lacking Runx2 Relative mRNA expression levels of *Runx1*, *Runx2*, *Osx*, *PDGFR* β , *LepR*, *CXCL12*, *SCF*, *IL-7*, *Foxc1*, *Ebf1*, and *Ebf3* in sorted CAR cells from 3-week-old control and *Prx1-Cre;Runx2*^{ff}; *CXCL12-GFP* mice (n = 4 mice per group). All error bars represent SD of the mean. Statistical significances were calculated using the two-tailed unpaired Student's *t*-test. Source data are provided as a Source Data file.

Supplementary Figure 3. HSC niches are formed in mice lacking Osterix

a-d Bone marrow from 3-week-old control and *Prx1-Cre;Osx^{f/f};CXCL12-GFP* mice was analyzed.

a von Kossa and toluidine blue staining of femurs. Bars: 1 mm.

b Confocal microscopy images showing expression of CXCL12-GFP. Bars: 100 μm.

- **c** Frequencies of LT-HSCs, MEPs, pro-E, GMPs, CLPs, pro-B cells, and pre-B cells (n = 4 mice per group).
- **d** Relative mRNA expression levels of *Runx1*, *Runx2*, *Osx*, *PDGFRβ*, *LepR*, *CXCL12*, *SCF*, *IL-7*, *Foxc1*, *Ebf1*, and *Ebf3* in sorted CAR cells (n = 4 mice per group).

Supplementary Figure 4. Runx1 and Runx2 are dispensable for the maintenance of HSC niches

a-f Bone marrow from 20- to 24-week-old tamoxifen-treated control (n = 10 mice), *Ebf3-CreERT2;Runx1*^{f/f} (n = 4 mice) (**a-c**), or *Ebf3-CreERT2;Runx2*^{f/f} (n = 4 mice) (**d-f**) mice was analyzed.

a,**d** Total hematopoietic cell counts, frequencies of LT-HSCs, and the numbers of LT-HSCs, MEPs, pro-E, GMPs, CLPs, pro-B cells, and pre-B cells in femurs and tibias.

b,**c**,**e**,**f** Relative mRNA expression levels of *Runx1*, *Runx2*, *Osx*, *PDGFRβ*, *LepR*, *CXCL12*, *SCF*, *IL*-7, *Foxc1*, *Ebf1*, and *Ebf3* (**b**,**e**), *Col1a1*, *Col3a1*, and *Col6a3* (**c**,**f**) in sorted CAR cells.

Supplementary Figure 5. Osterix is dispensable for the maintenance of HSC niches

- **a,b** Bone marrow from 20- to 24-week-old tamoxifen-treated control and *Ebf3-CreERT2;Osx^{f/f}* mice was analyzed.
- **a** Total hematopoietic cell counts and the numbers of LT-HSCs, MEPs, pro-E, GMPs, CLPs, pro-B cells, and pre-B cells in femurs and tibias (n = 4 mice per group).
- **b** Relative mRNA expression levels of *Runx1*, *Runx2*, *Osx*, *PDGFRβ*, *LepR*, *CXCL12*, *SCF*, *IL*-7, *Foxc1*, *Ebf1*, and *Ebf3* in sorted CAR cells (n = 4 mice per group).

Supplementary Figure 6. Protein expression of CXCL12 and SCF in mice lacking both Runx1 and Runx2 in CAR cells

Humeri from 20- to 24-week-old tamoxifen-treated control (n = 10 mice) and *Ebf3-CreERT2;Runx1^{f/f}Runx2^{f/f}* mice (n = 13 mice) were analyzed. All error bars represent SD of the mean. Statistical significances were calculated using the two-tailed unpaired Student's *t*-test. Source data are provided as a Source Data file.

Supplementary Figure 7. The expression of *PDGF*s and *TGF-\beta1* was unaltered in HSPCs and MkPs from mice lacking both Runx1 and Runx2 in CAR cells

a,**b** Femurs and tibias from 20- to 24-week-old tamoxifen-treated control and *Ebf3-CreERT2;Runx1^{ff}Runx2^{ff}* mice were analyzed (n = 3 mice per group). Relative mRNA expression levels of *PDGFA*, *PDGFB*, and *TGF-\beta1* in sorted LSK cells (**a**) and MkPs (**b**). All error bars represent SD of the mean. Statistical significances were calculated using the two-tailed unpaired Student's *t*-test. Source data are provided as a Source Data file.

Supplementary Figure 8. FACS Gating strategies for HSPCs and CAR cells

FACS Gating strategies for LT-HSCs, MEPs, GMPs, Mkps (**a**), proerythroblasts (pro-E) (**b**), CLPs (**c**), pro-B cells, pre-B cells (**d**), and CAR cells (**e**).

Gene Name	ene Name Sequence (5' - 3')								
Mouse									
Gapdh	TCA	TGA	GCC	CTT	CCA	CAA	TG		
	GGT	GTG	AAC	CAC	GAG	AAA	TAT	GAC	
Runx1	GGC	AAC	GAT	GAA	AAC	TAC	TCG	GC	
	TCT	ACC	GCT	CCG	CCC	GAC			
Runx1b (proximal) specific	ATG	GGA	ATT	TTG	CCT	CCG	GG		
	GTG	GGC	AAC	CAG	AAT	TCA	AA		
<i>Runx1c</i> (distal) specific	ATA	GAA	TCC	CCC	GCC	TTC	AG		
	CTC	TCA	TGA	AGC	ACT	GTG	GA		
Runx2	GAC	TGT	GGT	TAC	CGT	CAT	GGC		
	GGG	GAC	CGT	CCA	CTG	TCA	С		
Osx (Sp7)	ATG	GCG	TCC	TCT	CTG	CTT	G		
	TGA	AAG	GTC	AGC	GTA	TGG	CTT		
Pdgfrb	CAA	CTC	ACT	AGG	GCC	GGA	G		
	GCA	CGG	AAT	TGT	CGT	CTC	AG		
Lepr	ATG	CCC	CAA	TTT	CAA	ACC	TG		
	GGA	ACC	TTG	AGG	CTT	CTT	GGA		
CXCL12	CCA	GAG	CCA	ACG	TCA	AGC	AT		
	CAG	CCG	TGC	AAC	AAT	CTG	AA		
SCF (Kitl)	GGT	AGC	TAG	TTC	TAT	CCA	TGC	GGT	
	CCT	GTA	AGG	ACT	TTT	CTG	GAG	AGT	C
IL7	TCC	TCC	ACT	GAT	CCT	TGT	TC		
	CTT	CAA	CTT	GCG	AGC	AGC	AC		
Foxc1	GGT	ACA	GAG	ACT	GAC	TGG	CA		
	TTC	TAA	ССТ	GCG	GAA	ATC	CAA		
Ebf1	CAC	TCG	GTG	CGG	GAA	ATG	т Т		
	CAC		GGC	CGT	ССТ	CTC	- AA		
Ebf3	CGA	AAG	GAC	CGC	<u>т</u> тт	TGT	GG		
	ACT	CAA	TCC	ССТ	TCT	TCC	<u>т</u> тт		
Col1a1	CAC	ССТ	CAA	CAC	CCT	GAG	TC		
	CTT	CCC	CCT	CAT	CTA	CCA	CTT .		
Col2a1	CTTC	TAA	CAT	CCA	AAC	TCC	CCA	7 7	
COISUI	CCA	TAA	CTC	AAC	TCA	777	CCA		
Col6a3 Pdpn	CAC	CTTT	CCA		TGA	AAA	CCA	c	
	GAG	GII	ACC	AAI	166	CCC	AUC	C	
	CAC	CCC	MGC mma	AGI	791	CTTA	CTTC	CC	
	GAG		TTA	MCT	AAT	CCA	CIG	GC	
Pdgfra	GAC	AGT	COM	CCC	AAG	GGA	GGC		
		TAT	CCT	GGC	ATG	ATG	GTC		
Gli1	TGA	GGT	GGT	AGA	AGG	AGG	GTC	~	
	CCA	AGC	CAA	CTT	TAT	GTC	AGG	G	
Ly6a	AGC	CCG	CTT	CTT	TGT	TAA	TTT	GA	
	AGG	AGG	CAG	CAG	TTA	TTG	TGG		
Delector	CGT	TGA	CCT	TAG	TAC	CCA	GGA		
Pdgfa	TGG	CTC	GAA	GTC	AGA	TCC	ACA		
	TTC	TCG	GGC	ACA	TGG	TTA	ATG		
Pdgfb	AAG	TGT	GAG	ACA	ATA	GTG	ACC	CC	
	CAT	GGG	TGT	GCT	TAA	ACT	TTC	G	
Tgfb1	C mm	C A A	TAC	CTTC	ACA	CAT	TCC	CC	
Tgfb1	CIT	CAA	IAC	GIC	AGA	CAI	109	90	

Supplementary Table 1. The primer pairs used for qRT-PCR