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I. EFFECT OF PHOTOVOLTAGE ON THE PHOTOEMISSION EXPERIMENT

In the presence of a band bending potential, free carriers generated by an optical excita-

tion are swept apart by the electric field (ESCR) in the space-charge region. The dissociated

carriers generate a field (EPV ) in the opposite direction of ESCR, producing the photovolt-

age (PV) effect. The PV not only alters the electrostatic environment of the electrons inside

the material (i.e. softening the band bending) but also has repercussions on the the photoe-

mission process itself. These effects have been the subject of several dedicated studies [1–3];

here we highlight the phenomenological implications and the corresponding data treatment

process.

The sign of EPV depends on the equilibrium band bending of the material. For a down-

ward band bending – as it is the case in our experiment – EPV in the vacuum region points

toward the surface, resulting in an outward accelerating force FPV acting on the negative

charges (electrons) outside the material. A schematic of this effect is presented in Fig. S1a,

showcasing the effect of the photovoltage on the time-resolved photoemission process at

positive and negative time delays.

In the left panel of Fig. S1a (positive delays), the pump pulse comes first, establishing

the photovoltaic field in the area of the sample illuminated. Subsequently, the probe pulse

emits an electron from the pumped area, and its kinetic energy is increased by the PV

field. The kinetic energy of the photo-electron at positive delays is a reflection of its binding

energy inside the material as well as the magnitude of the PV. For a simple surface state,

this manifests as a rigid shift of the photoemission spectrum with respect to equilibrium, as

shown in Fig. S1b where we compare the ARPES spectrum with and without the presence

of the pump.

The situation is slightly more complex at negative delays. The electron is photoemitted

first by the probe pulse; when the pump pulse impinges on the sample after some delay ∆t,

the outgoing photoelectron at the distance v∆t from the sample, where v is its velocity, is

pushed by FPV . The smaller the delay, the stronger is the force felt, resulting in a gradual

increase in the kinetic energy of the electrons at negative delays up to the time zero. These

effects are clearly observed in time resolved spectra taken over long timescales (hundreds of

picoseconds), see Fig. S1c,d.
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In order to provide a consistent picture of the electronic dispersion in the material and to

extract information of electron transport properties, the data in the main text are plotted

against the non-equilibrium electron quasi-Fermi level (EFn). To extract the EFn, we fit

the energy distribution curve (EDC) integrated around the Fermi wave-vector of the topo-

logical surface state (red area in Fig. S1b) with a Fermi-Dirac distribution function. This is

possible because the momentum-integrated spectral function of a linearly dispersing band

corresponds to its density of states [4, 5], and it allows us to reliably obtain the location of

the non-equilibrium chemical potential of the sample at each time delay. Figure. S1d dis-

plays the time-resolved trace around the topological surface state (TSS) Fermi wave-vector

and the extracted EFn (red markers). The time trace obtained around the Brillouin zone

(BZ) center (blue area in Fig. S1b) shown in panel c is then re-scaled by subtracting the

EFn energy at each delay; the resulting plot is shown in Fig. S1e. This methods removes

artifacts in the photoemitted electron kinetic energy and provides a clear picture of the

non-equilibrium “binding energy” of the electrons inside the material. As we can see in the

corrected map of Fig. S1e, the system is in equilibrium at negative delays – i.e. the quantum

well states’ (QWS) energy does not change –, while at positive delays the impact of the PV

effect on the band-bending is clearly discernible.

II. LIFETIME OF THE PHOTOVOLTAGE EFFECT ON 2DEGS

We discussed the effect of the PV on the energy and spin splitting of the quantum

well states (QWSs) in the main text. The lifetime of the PV can be extracted from the

time-resolved trace at BZ center in Fig.S1e, by tracking the time needed for the QWSs

to return to their equilibrium energy. The QWS1 and QWS2 minima are obtained by

fitting the EDCs for each pump-probe delay with a phenomenological model consisting of

a single (double) Lorentzian profile for negative (positive) delays, multiplied by the Fermi

distribution function. Subsequently, the evolution of the energy minima for both QWSs,

are fitted using a step function at time zero and an exponential decay for positive delays,

convoluted by the temporal resolution. The step function captures the sudden change in

the electrostatic environment due to the onset of the PV, while the exponential function

captures the return to equilibrium condition due to diffusion of electrons and holes from

the illuminated area to the surrounding region. We extract the lifetime of the photovoltaic
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FIG. S1. Effect of photovoltage (PV) on the photoemission spectra. a: Schematics of the
time-resolved photoemission process in a semiconductor with downward band bending and pump-
induced PV. For ∆t > 0 the pump generates a PV and the delayed probe emits an electron whose
kinetic energy reflects the change in binding energy as well the magnitude of the photovoltage; for a
topological surface state (TSS) electron the kinetic energy, Eke, is shifted by EPV = e ·VPV , where
e is the electron charge. For ∆t < 0 the electron is photoemitted before the generation of a PV.
After a delay ∆t, it receives a kick from the PV field created by the pump pulse; this creates a rigid
shift in the Eke of photoemission spectrum, which increases up to the time zero. b: ARPES spectra
of chemically gated Bi2Se3 acquired with the pump beam turned off (left) and on (right, slightly
before time zero). The TSS is shifted upwards by EPV . c,d: Time-resolved traces of the energy
distribution curves (EDC) integrated around the Brillouin zone (BZ) center (c) and the TSS Fermi
wave-vector (d) indicated by blue and red areas in panel b, respectively. The non-equilibrium
chemical potential at each delay is extracted by fitting EDCs in panel d with Fermi-Dirac (FD)
distribution functions (black solid lines). Profiles at three characteristic delays (highlighted by
vertical dashed lines) are shown in the right panel. e: same as in c, re-scaled with respect to the
quasi-Fermi level. Markers indicate the energy of the QWSs. f : The energy minima of QWS1 and
QWS2 with respect to EFn obtained by fitting each EDC in e with a Loretzian profile multiplied
by a FD distribution. The temporal dynamics are extracted by fitting the QWSs’ energy with a
step function and a single exponential decay, convoluted with the time resolution. We extract the
lifetime of the PV effect to be 950 ± 50 ps.
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FIG. S2. Ultrafast temporal evolution of the Fermi wave-vectors. Wave-vectors at the

Fermi level of the Topological state (red), the QWS1 (blue, two branches), the QWS2 (green) as a

function of delay time for the datasets presented in Fig. 3 in the main text.

effect to be 950 ps ± 50 ps by fitting QWS1. Since QWS2 is above the chemical potential at

negative delays, we impose the decay timescale extracted from QWS1, and find that QWS2

is ≈ 20 meV above the Fermi level at equilibrium. This is consistent with the observation

that at negative delays there is no spectral signature of QWS2. We remark that the PV

lifetime depends on experimental conditions – such as the spot size of the pump beam – as

its value is governed by the diffusion dynamics of carriers from the illuminated area.

III. TEMPORAL DYNAMICS OF KFS AND ELECTRON DENSITY

The photovoltage effect introduces additional electrons on the surface, which causes the

QWSs minima to drop to more negative values as detailed in the manuscript and shown in

Fig. 3 b. The number of additional photo-charges in the system is quantifiable by measuring

the Fermi wave-vectors kF for each band. The kF (∆t) for each QWS and the topological
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surface state (TSS) are obtained by fitting the MDC across the Fermi level and are reported

in Fig.S2. Both Rashba-split branches are shown for QWS1 in blue, while the splitting is

too small for QWS2 to be analyzed within the experimental resolution. The uncertainty is

largest between 0 and 2 ps, as the sharpness and intensity of features at EF is adversely

affected by the direct optical excitation and increased electron temperature, respectively.

For this reason, extraction of kF of QWS2 in the 0 – 2 ps time domain is not possible.

However, the kF of both QWSs clearly increase at large positive delays, and the effect is the

largest for QWS2 – an expected consequence of the softening of the band bending potential

(see Fig.S1 and S4). Using Luttinger’s theorem and under the reasonable assumption that

the Fermi surfaces are circular, we can use the following formula to extract the electron

density per unit cell from the values of kF :

neUC =
(πk2F )

A2D
BZ

ne (S1)

Where A2D
BZ is the size of the 2-dimensional Brillouin Zone of Bi2Se3 (111) and ne is the

electron degeneracy of the state. The electron density increases by 2.4 ± 0.5 · 10−3 (elec-

trons/Unit cell) in QWS2 4 ps after the optical excitation. The value is smaller for QWS1

with 1.3 ± 0.5 · 10−3 and it is negligible for the topological surface state.

IV. TEMPORAL EVOLUTION OF THE ELECTRONIC TEMPERATURE
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FIG. S3. Electronic temperature as a function of delay time. The electronic temperature

(open circles) is obtained from the data presented in Fig.3 of the manuscript and is fitted with a

two-temperature model (solid red line).
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V. STATIC SIMULATIONS OF BAND BENDING AND QUANTUM WELL

STATES

To simulate the band bending, we build a one dimensional model along the direction per-

pendicular to the surface; this is justified under the assumption that the lateral dimensions

of interest (here 300µm, the size of the probe beam) is much larger than the perpendicular

one (≈ 50 nm, the width of the space charge region). We employ the modified Thomas-Fermi

approximation (MTFA) approach, following the steps described in Ref. 6.

The calculation of the charge densities and electron potential normally requires to solve

the coupled Poisson and Schrödinger equations self-consistently, a process that is numerically

expensive. However, the MTFA allows to calculate both quantities from the Poisson equation

through the introduction of a term, fMTFA, that accounts for the potential barrier at the

surface, and reflects the surface confinement-induced quantization of the density of states.

To calculate the band energy as a function of depth x (where x = 0 corresponds to the

surface), one needs to solve the Poisson equation in one dimension:

d2V (x)

dx2
= −ρ

ε
= − e

ε0εr
[N+

D −N
−
A − n(x) + p(x)], (S2)

for the electron potential V (x). The charge ρ in the semiconductor is a function of the

concentrations of ionized donor and acceptor atoms in the bulk, N+
D and N−A , as well as the

electron and hole density distributions, n(x) and p(x). These latter values are calculated

from the conduction and valence band density of states, gC/V , with the introduction of

fMTFA(x) as:

n(x) =

∫ ∞
ECB

gC(E)F (E)fMTFA(x)dE, (S3)

p(x) =

∫ EVB

−∞
gV(E)[1− F (E)]fMTFA(x)dE, (S4)

where F(E) is the Fermi-Dirac distribution, and ECB/VB is the energy of the bottom/top of

the conduction/valence band. The term fMTFA(x) is given by:

fMTFA(x) = 1−

[
2x

L

(
E

kBT

) 1
2
(

1 +
E

Eg

) 1
2

]
,

L = ~/(2m?kBT )
1
2 ,

(S5)

where Eg is the band gap, kB is the Boltzmann constant, and T is the temperature.
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Parameter Value Reference Description

mhl 0.13 me [8] light holes effective mass

mhh 0.8 me [8] heavy holes effective mass

me 0.13 me [9] electron effective mass

εr 113 [9, 10] dielectric constant

Eg 0.25 eV [11, 12] band gap

Na 5·1018 cm−3 density of acceptor ions

TABLE I. Material specific parameters used for simulating the band bending in p-doped Bi2Se3.

The density of acceptors ions has been chosen in the simulation to correspond to the level of

p-doping observed experimentally – where the Fermi level is 20 meV below the valence band max-

imum.

We solve the MTFA-Poisson equation using the damped Newton numerical method with

the boundary conditions: V (0) = V0 and V (∞) = 0. From the calculated V (x), we find the

solutions of the Schrödinger equation:

− ~2

2m?

d2

dx2
Ψ(x) + V (x)Ψ(x) = EΨ(x), (S6)

to obtain the wave-functions and energies of the QWSs. Equation S6 is solved numerically

employing the Numerov method. The fully implemented code used in this work to simulate

band bending and QWSs has been made freely accessible at Ref. 7.

The material specific parameters we used are summarized in Table I

We set the surface boundary condition V0 = −0.54 eV to simulate the results of the

experiment described in Fig. 4 of the main text. This value was extracted by measuring the

shift in energy of the TSS Dirac point between a freshly cleaved sample and the chemically

gated sample. Thanks to the surface-nature of the TSS, its energy rigidly shifts with the

surface potential. The energy profile of V (x) is displayed in Fig. S4a with a solid black line.

The envelope wave-functions of the QWSs are plotted at their respective energies, revealing

the ladder-structure of the QWSs.

The electric field inside the material is obtained from V (x) as E = −dV (x)
dx

, and its depth

profile is plotted in Fig. S4 b. The value of the Rashba spin-orbit coupling constant α, on
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FIG. S4. Numerical simulation of the band bending and quantum well states. a Band

bending profile calculated by solving the MTFA-Poisson equation for the system shown in Fig. 3

of the main text. The calculated quantum well states (QWS) wave-functions are plotted at their

respective energies; The first two QWSs are partially occupied. b Depth profile of the electric field

inside the material and the corresponding Rashba SOC strength α; the field and α for the first two

QWSs are indicated by dashed lines. The lowest QWS sits closer to the surface, where the electric

field, and likewise the Rashba effect, is stronger.

the right axes, is calculated from the electric field using the equation

α =
~2

2m?
e

∆

Eg

2Eg + ∆

(Eg + ∆)(3Eg + 2∆)
eE, (S7)

where Eg is the material band gap [13]. The spin-orbit energy splitting parameter ∆ is here

used as a fitting parameter to reproduce the Rashba splitting of QWS1 in equilibrium. The
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estimated value of 0.84 eV is later used for all calculations of the Rashba SOC in this system.

VI. DYNAMICAL SIMULATIONS OF BAND BENDING AND QUANTUM WELL

STATES IN PUMP-PROBE EXPERIMENTS

To calculate the time-dependent photovoltaic effect on the system under study, one needs

to know the spatial distribution of the photo-generated charges, the electron-hole recombi-

nation rate, and the carriers diffusion coefficient [14]. In the effort to capture the main

findings of our experiments, we work under the following approximations: (1) The diffu-

sion rate is omitted in our calculations; the timescale for the carrier diffusion, extracted

from our data, is 950 ps, and has little relevance within the short timescale (< 10 ps) of

interest when reproducing the data shown in Fig. 4 in the main text. (2) The electron-

hole recombination is taken into account by the introduction of an effective photo-carrier

density, Nhν . After photo-carriers are generated, a large percentage recombines in a short

time through electron-electron and electron-phonon scattering processes. Only a fraction of

photo-generated carriers is swept apart by the electric field without recombining. This per-

centage of carriers constitute the effective photo-carrier density responsible for the PV effect.

(3) Finally, the photo-carrier spatial distribution is rationalized by employing a center of

mass approach: the charge distribution is replaced with a single point charge Qn/p = ∓e·Nhν

situated at its center of mass, 〈xn〉 and 〈xp〉 for electron and holes respectively. The charge

carriers’ center of mass moves in time within the electric field akin a point charge as:

〈xn/p〉(t) = 〈xn/p〉(t−∆t)∓ µE(x) ·∆t, (S8)

where µ is the carrier mobility. Finally, analogously to a capacitor model, one can obtain

the time-dependent equation for the PV magnitude [15]:

VPV(t) =
e

εrε0
Nhν [〈xn〉(t)− 〈xp〉(t)]. (S9)

In our simulation, we calculate the band bending from Eq. S2 at each time step using

the boundary condition V0(t) = V0(0) + VPV(t). The QWS and Rashba splittings are also

calculated at each step through Eqs. S6 and S7. The EFn at the surface is calculated under

the flat quasi-Fermi level approximation [16] by finding the value of EFn that satisfies charge

neutrality: ∫ EFn

eV0

n(x,E)dE = (Q0 + e ·Nhν), (S10)
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FIG. S5. Time dependence of the calculated QWSs energies and the electron quasi-

Fermi level at the surface. The energy is scaled with respect to the bulk conduction band

energy ECB. At time zero the photovoltage rapidly shifts all the energies: QWS1 and QWS2 are

more closely spaced because of the softened band bending. The distance between EFn and the

QWS increases with respect to equilibrium because of the higher electron density at the surface

brought by the negative photo-carriers.

where Q0 is the equilibrium surface charge. For a comparison with our data we use an

effective photo-carrier density Nhν = 2.5·1012cm−2, which yields a maximum photovoltage

of 180 meV. This value corresponds to the measured shift in the kinetic energy of the TSS

Dirac point when the pump impinges on the sample surface.

In Fig. S5, we plot the simulated time dependence of the QWSs minima (blue and green

for QWS1 and QWS2, respectively) and of the electron quasi-Fermi level (dashed black line)

with respect to the bulk conduction band energy. The PV-induced energy shift at positive

delays is larger for QWS1 than for QWS2, as it sits closer to the surface, and the softening

of the band bending results in a smaller energy separation between consecutive QWSs. The

evolution of EFn reflects the change of electron density at the surface as direct consequence

of the additional photo-generated electrons at the surface. When plotting the QWSs energy

11



0.10

0.08

0.06

0.04

0.02

0.00

-0.02

 
SP

V
∆E

ne
rg

y 
   

   
(e

V)

140120100806040200

Deposition time (s)

 ∆E QWS1
 ∆E QWS2

FIG. S6. Chemical gating dependence of the PV effect on the QWSs. Photovoltage-

induced binding energy shift of the QWSs (blue for QWS1 and green for QWS2) as a function of

alkali deposition time on the surface. The energy shift is obtained as the difference between the
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with respect to EFn, one obtains the plot of Fig. 4c of the main text.

VII. CHEMICAL GATING DEPENDENCE OF THE PHOTOVOLTAGE EFFECT

To elucidate the relation between initial surface doping and the PV effect, we progressively

evaporate K on a sample of Bi2Se3 and measure the photoemission spectrum before the pump

arrival (i.e., at a negative time delay of -1 ps), and 20 ps after the pump arrival. At 20 ps, the

system is fully thermalized and bears the signature of the PV effect, namely an increase in

binding energy due to the excess electron population at the surface. The change in binding

energy, calculated as the difference between the QWS energy minima at ∆ = 20 and -1 ps, is

presented in Fig. S6; it clearly decreases upon increasing the K deposition time, indicating a

reduction of the PV effect for lager initial band bending potentials. To understand this result,

we consider the ratio of the photo-charges responsible for the PV and the initial electron

population in the QWSs. As chemical gating increases, the QWS’s electron occupation

and density of states increase, while the number of photo-charges giving rise to the PV

effect stays constant. Thus, the photo-charges can be accommodated with a smaller binding

energy shift, such that at the highest doping QWS1 shows only an infinitesimal energy shift.
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The Rashba spin-orbit coupling – a direct consequence of the change in the electric field in

the SCR – will scale in the same way. Hence, the optical manipulation of 2DEGs will have

a larger impact the smaller the surface gating.
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