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Note 1: Disparity in px,y and pz bandwidths along kz
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FIG. 1. Three-dimensionality of px,y-derived states (a) Dispersion probing close to the Γ plane along the K - Γ-K direction. Horizontal lines
indicate the energies for the constant-energy kx,ky ,kz contours shown in (b-d). (b-d) Constant energy contours for the energies indicated in
(a). The photon energies used to probe each layer are indicated, with 32, 42 and 60 eV photons probing close to Γ, A and Γ planes respectively.
Note the periodicity in the shape of the px,y-derived bands around the Γ point as a function of kz (photon energy).
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Note 2: Tight-binding model for the determination of orbital contributions to local spin polarisation

The existence of time-reversal (TR) symmetry, implies invariance of our energy eigen-states under an anti-unitary operator of
the form

T = UTΘ, (1)

where UT is a unitary operator and Θ is complex conjugation. For spinors we require T 2 = −I, hence we choose UT = iσy
on the spinor sub-space, without loss of generality. This requires the Bloch wave functions to satisfy Tψ↑↓(k) = ψ∗↓↑(−k) At
k = 0, i.e. the Γ point, leading to a global spin degeneracy ε↑ = ε↓, regardless of whether the system is subject to any further
symmetry constraints or not. However, this constraint is not locally valid. As such, each atomic centre may hold a net spin
polarisation as long as a counterpart can cancel this contribution, thus keeping the whole system non-magnetic. Realising this
situation requires some sort of directional anisotropy in the crystal field. In HfSe2, this condition is fulfilled by the trigonal C3v

symmetry of the lattice. The resulting crystal field splits each Se-p group into two sub-manifolds {px, py} and pz , which, when
mixed by the spin-orbit interaction, form three doubly degenerate |J,±mj〉 branches with J = 3/2 and 1/2, and 1/2 ≤ mj ≤ J .

We can use these |J,mj〉 states to form a 12-band tight-binding model to describe the Se-p orbital-dominated valence bands
of HfSe2, ψv =

∑
J,mj

αJ,mJ
|J,mj〉. The explicit form of the resulting basis set arising from one of the Se atoms is listed in

Table I (adopted from Ref. [1, 2]).

TABLE I. The |J,mj〉 basis set chosen for each Se ion in HfSe2. Below x, y, and z corresponds to px, py and pz orbitals respectively and the
two spinors are indicated by arrows.

|J,mj〉 Spin-orbital expression∣∣∣∣32 ,+3

2

〉
1√
2

∣∣∣∣(x + iy) ↑
〉

∣∣∣∣32 ,+1

2

〉
1√
6

∣∣∣∣(x + iy) ↓
〉
−
√

2

3

∣∣∣∣z ↑ 〉∣∣∣∣32 ,−1

2

〉
− 1√

6

∣∣∣∣(x− iy) ↑
〉
−
√

2

3

∣∣∣∣z ↓ 〉∣∣∣∣32 ,−3

2

〉
1√
2

∣∣∣∣(x− iy) ↓
〉

∣∣∣∣12 ,+1

2

〉
1√
3

∣∣∣∣(x + iy) ↓
〉

+

√
1

3

∣∣∣∣z ↑ 〉∣∣∣∣12 ,−1

2

〉
− 1√

3

∣∣∣∣(x− iy) ↑
〉

+

√
1

3

∣∣∣∣z ↓ 〉

With this model, we can now easily compute all three components i = {x, y, z} of spin polarisation localised at each Se site,
a, using Si,a = 〈ψv,a|σi|ψv,a〉, where σi are Pauli spin matrices. As an example, let us find Sy,Se1 at the Γ point. For the spin
degree of freedom, α, the time reversal (TR) operator Tα obeys the properties:

TR : |↑〉 −→ Tα|↑〉 = −|↓〉
TR : |↓〉 −→ Tα|↓〉 = |↑〉
TR : σy −→ TασyTα−1 = −σy.

(2)

Here the sign of the spin under TR is in a sense arbitrary, however the switch in sign is significant. For the orbital degrees of
freedom, β we have:

TR : |x+ iy〉 −→ Tβ |x+ iy〉 = −|x− iy〉
TR : |x− iy〉 −→ Tβ |x− iy〉 = −|x+ iy〉

TR : |z〉 −→ Tβ |z〉 = |z〉
(3)

allowing us to define a natural total TR operator Tα,β over our J basis states. Consider the matrix element M1

M1 = 〈x− iy, ↑ |x+ iy, ↑〉 =

∫
(Y −11 )∗Y 1

1 . (4)

Where Y ml are spherical harmonics. From TR symmetry we can see

M1 = 〈x+ iy, ↓ |x− iy, ↓〉 =

∫
(Y 1

1 )∗Y −11 =

(∫
(Y −11 )∗Y 1

1

)∗
, (5)
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which implies that M1 is real. Now suppose that the σy matrix element

〈x− iy, ↑|σy|x+ iy, ↓〉 = −i
∫

(Y −11 )∗Y 1
1 = −iM1 (6)

is non-vanishing. Under TR this goes to

〈x+ iy, ↓|σy|x− iy, ↑〉 = i

∫
(Y 1

1 )∗Y −11 = i

(∫
(Y −11 )∗Y 1

1

)∗
= iM∗1 , (7)

which implies M1 is imaginary, so by contradiction this σy matrix element must be zero. For the σy matrix element

〈x+ iy, ↑|σy|x+ iy, ↓〉 = −i
∫

(Y 1
1 )∗Y 1

1 = −iM2, (8)

M2 is clearly real, but again under TR the σy matrix element goes

〈x− iy, ↓|σy|x− iy, ↑〉 = i

∫
(Y −11 )∗Y −11 = i

∫
(Y 1

1 )∗Y 1
1 = iM2, (9)

where the last step follows from the fact (Y −11 )∗ = −Y 1
1 , implying M2 is imaginary, such that this σy element must be zero by

contradiction. Hence the only non-zero σy elements are those of form

〈x± iy, ↑↓|σy|z, ↓↑〉. (10)

As such, we find that there are only four overlap integrals with finite values as follows:

S1
y = 2A

〈
3

2
,+

3

2

∣∣∣∣σy∣∣∣∣32 ,−1

2

〉
= 2A

〈
3

2
,+

1

2

∣∣∣∣σy∣∣∣∣32 ,−3

2

〉
= +

4iA√
3

〈
x+ iy

∣∣∣∣z〉
S2
y = 2B

〈
3

2
,+

3

2

∣∣∣∣σy∣∣∣∣12 ,−1

2

〉
= 2B

〈
1

2
,+

1

2

∣∣∣∣σy∣∣∣∣32 ,−3

2

〉
= −4iB√

6

〈
x+ iy

∣∣∣∣z〉 (11)

where A = α∗|3/2,+3/2〉α|3/2,−1/2〉 and B = α∗|3/2,3/2〉α|1/2,−1/2〉. Of course, the spatial integral 〈x + iy|z〉 in Eq. 11, if taken
over the whole real space, amounts to zero, but if limited to a small region around Se1, can still remain finite. Furthermore,
given that A 6= B, the local Sy,Se1 = S1

y + S2
y is also non-zero. The contributions from S1

y , S2
y and S1

y + S2
y are shown in

Fig. 5 of the main text. Within the same framework, we can similarly show Sy,Se2 = −Sy,Se1, enforcing the TR symmetry
on the whole system. A close inspection of Eq. 11 reveals that the orbital mixing of the in-plane px↑↓ and py↑↓ orbitals with
the out-of-plane pz↓↑ orbital is the driving force behind this hidden spin polarisation. It also signifies the critical importance of
directional anisotropy in the crystal field and its delicate but profound interplay with spin-orbit coupling.
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Note 3: Probing the time-reversal symmetric spin texture of p-orbital derived bands with p-polarised light

Consider a p-derived band, or collection of p-derived bands, at the Γ point of the surface Brillouin zone. Let the band carry
a spin-polarisation with vector ~S = ~Spx + ~Spy + ~Spz , where ~Spi are the p-orbital resolved (i = {x, y, z}) contributions to the
overall spin vector ~S.

We can write the individual components of ~S = Sxx̂+ Sy ŷ + Sz ẑ as

Sx =
∑

i={x,y,z}

Spi,x cos2(θ) +
∑

i={x,y,z}

Spi,y sin2(θ) = 0 (12)

Sy =
∑

i={x,y,z}

Spi,x sin2(θ) +
∑

i={x,y,z}

Spi,y cos2(θ) = 0 (13)

Sz =
∑

i={x,y,z}

Spi,z = 0 (14)

The azimuthal angle θ is a sample rotation in the x-y plane.

Eqns. (1-3) carry two constraints in order to comply with time-reversal symmetry. Firstly, spin vectors measured at (k, θ) =
(+k, 0) and (−k, π) are equivalent in the presence of time-reversal symmetry. For k = 0, a π sample rotation should then leave
any measured spin polarisation unchanged. Secondly, each component of ~S must be equal to zero at the time-reversal invariant
momentum point, Γ, with each of the sums

∑
i Spi,x,

∑
i Spi,y and

∑
i Spi,z individually amounting to zero.

Now consider the selection rules imposed by the the linearly polarised light. The photoemission matrix element is dependent
only on the parity of the orbitals with respect to the scattering plane, and is therefore dependent on the azimuthal angle θ of the
sample. For p−polarisation and θ = 0, only px and pz orbitals are probed. Following a rotation of θ = π/2, py and pz orbitals
are probed.

We can write out the measured spin-components with p−polarised light for θ = 0 and θ = π/2.

Sx(θ = 0) = Spx,x + Spz,x (15)

Sy(θ = 0) = Spx,y + Spz,y (16)

Sz(θ = 0) = Spx,z + Spz,z (17)

Sx(θ =
π

2
) = Spy,y + Spz,y (18)

Sy(θ =
π

2
) = Spy,x + Spz,x (19)

Sz(θ =
π

2
) = Spy,z + Spz,z (20)

Summing Eqn. 4 and Eqn. 8 and making use of
∑
i Spi,x = 0:
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Sx(0) + Sy(
π

2
) = Spx,x + Spz,x + Spy,x + Spz,x = Spz,x (21)

Summing Eqn. 6 and Eqn. 9 and making use of
∑
i Spi,z = 0:

Sz(0) + Sz(
π

2
) = Spx,z + Spz,z + Spy,z + Spz,z = Spz,z (22)

In the case where the band is entirely px,y derived, or there is no pz contribution to the spin vector (Spz,x = Spz,y = Spz,z = 0),
the sums in Eqns. 10 and 11 evaluate to zero. The measured spin-polarisations in the x and y channels then obey the relation
Sx(θ) = −Sy(θ + π

2 ). In addition, the measured spin polarisation in the Sz(θ) channel becomes symmetric about Sz = 0
(Spy,z = −Spx,z) with period π.

In the case where there is a pz contribution, Sz(θ) will remain periodic but with a constant offset corresponding to the value
of Spz,z which is measured equivalently at all θ. The behaviour of Sx(θ) and Sy(θ) is more complex, with the summation
Sx(θ) + Sy(θ + π/2) periodic between limits determined from Spz,x and Spz,y .

We note that all spin functions should possess π/n periodicity (where n is an integer) in order to yield equivalent observations for
θ = 0 and θ = π, where the orbital-dependent matrix elements are equivalent. This condition does not hold for a time-reversal
symmetry breaking spin texture.

An analogous description can be made for s-polarised photons, resulting in opposite orientations for the measured spin-
polarisation in each of the x, y and z channels in the absence of a pz contribution.

† Corresponding author. E-mail address: oliver.clark@helmholtz-berlin.de
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