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Supplementary Figure 1. Hydrodynamic diameters of SPNs. Hydrodynamic diameters of SPNs 

(20 μg/mL) in 1× PBS (pH = 7.4) measured by DLS (n = 3). Data are presented as mean values ± SD. 

Source data are provided as a Source Data file. 

 

 

Supplementary Figure 2. Optical characterization of SPNs. Fluorescence spectra of SPNs in 1× 

PBS (pH = 7.4). Source data are provided as a Source Data file. 
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Supplementary Figure 3. Study of sonodynamic 1O2 generation. ESR spectra of SPN1, SPN2, 

SPN3, SPN4, SPN5, SPN6, SPN8, NCBS, ICG, AO and CUR at the concentration of 20 µg/mL after 

US irradiation (1.0 MHz, 1.2 W/cm2, 50% duty cycle, 5 min) using TEMP as the trap. Source data are 

provided as a Source Data file. 

 

 

Supplementary Figure 4. Study of photodynamic 1O2 generation. Fluorescence enhancement 

(F/F0) of SOSG (1 μM) at 528 nm in solutions containing SPN1-8, NCBS, ICG, PpIX, AO, CUR or 

TiO2 nanoparticles at the concentration of 20 µg/mL after white light irradiation (0.1 W/cm2, 1 min) (n 

= 3). Data are presented as mean values ± SD. Source data are provided as a Source Data file. 
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Supplementary Figure 5. Sonodynamic stability study. ESR spectra of ICG (a), PpIX (b) and AO 

(c) at the concentration of 20 µg/mL after 1, 2, 3, and 4 cycles of US irradiation (1.0 MHz, 1.2 W/cm2, 

50% duty cycle, 5 min for each cycle) with TEMP as the trap. Source data are provided as a Source 

Data file. 

 

Supplementary Figure 6. Sonodynamic stability study. UV-vis absorption spectra of SPN7 (a), 

ICG (b), PpIX (c) and AO (d) at the concentration of 20 µg/mL after US irradiation (1.0 MHz, 1.2 

W/cm2, 50% duty cycle, 5 min for each cycle). Source data are provided as a Source Data file. 

 

Supplementary Figure 7. Synthesis of SP7-N3. Reagents and conditions: i) Zn, NaOH, TBAB, H2O, 

100 ºC, 18 h; ii) Br2, DCM, room temperature, 6 h; iii) Pd(PPh3)4, K2CO3, methyltrioctylammonium 
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chloride, 100 ºC, 24 h; iv) NaN3, THF/DMF, room temperature, 12 h. 

 

 

Supplementary Figure 8. 1H NMR characterization. 1H NMR spectrum of compound 1 in CDCl3. 

 

 

Supplementary Figure 9. 1H NMR characterization. 1H NMR spectrum of compound 2 in CDCl3. 
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Supplementary Figure 10. 1H NMR characterization. 1H NMR spectrum of SP7-N3 in CDCl3. 

 

Supplementary Figure 11. Characterization of SP7-N3. Gel permeation chromatography (GPC) 

curve (a), UV-vis absorption spectrum (b), and fluorescence spectrum (c) of SP7-N3 in THF. Source 

data are provided as a Source Data file. 

 

Supplementary Figure 12. Synthesis of PEG-N. Reagents and conditions: i) Ac2O, TiCl3(OTf), 

room temperature, 3 h. ii) Acetone, TFA, room temperature, 24 h. iii) KOH, MeOH, room temperature, 

16 h. (iv) BTC, TEA, DMAP, DCM, room temperature, 10 h; v) EDCI, DMAP, DCM, room temperature, 

12 h. 
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Supplementary Figure 13. 1H NMR characterization. 1H NMR spectrum of PSDE in CDCl3. 

 

 

Supplementary Figure 14. 1H NMR characterization. 1H NMR spectrum of PSDE-NLG919 in 

CDCl3. 
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Supplementary Figure 15. 1H NMR characterization. 1H NMR spectrum of PEG-N in CDCl3. 

 

 

Supplementary Figure 16. Synthesis of SPIN0. Reagents and conditions: copper(I)bromide (CuBr), 

N,N,N’,N’’,N’’-pentamethyldiethylenetriamin (PMDETA), THF, room temperature, 24 h. 

 

 

Supplementary Figure 17. Synthesis of SPINN. Reagents and conditions: CuSO4, sodium 

ascorbate, DMF/THF, room temperature, 24 h. 
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Supplementary Figure 18. Synthesis of SPN-PEG1. Reagents and conditions: CuSO4, sodium 

ascorbate, DMF/THF, room temperature, 24 h. 

 

Supplementary Figure 19. Synthesis of SPN-PEG2. Reagents and conditions: CuSO4, sodium 

ascorbate, DMF/THF, room temperature, 24 h. 

 

Supplementary Figure 20. Synthesis of SPN-PEG3. Reagents and conditions: CuSO4, sodium 

ascorbate, DMF/THF, room temperature, 24 h. 
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Supplementary Figure 21. Morphology characterization of SPINs. Representative TEM images 

of SPIN0, SPINN, SPINA, SPIND1, and SPIND2. The experiments were repeated independently three 

times with similar results. 

 

 

Supplementary Figure 22. Colloidal stability study of SPINs. Hydrodynamic sizes of SPINs after 

different days of storage in 1× PBS buffer (pH = 7.4) (n = 3). Data are presented as mean 

values ± SD. Source data are provided as a Source Data file. 

 

 

Supplementary Figure 23. Optical property characterization of SPINs. UV-vis absorption (a) and 

fluorescence (b) spectra of SPINs in 1× PBS buffer (pH = 7.4). Source data are provided as a 

Source Data file. 
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Supplementary Figure 24. Cytotoxicity assay of SPINs. In vitro cell viability of Panc02 cancer 

cells after treatment with SPINs at the final concentrations of 0, 20, 40, 60, 80 and 100 μg/mL for 24 

h. The cells without treatment were used as control. The cell viability was measured using CCK-8 kit 

(n = 5). Data are presented as mean values ± SD. Source data are provided as a Source Data file. 

 

 

Supplementary Figure 25. Study of sonodynamic 1O2 generation for SPINs. ESR spectra of 

SPN7 (a), SPIN0 (b), SPINN (c), SPINA (d), SPIND1 (e), and SPIND2 (f) at the same concentration (10 

µg/mL) after US irradiation (1.0 MHz, 1.2 W/cm2, 50% duty cycle, 3 min) using TEMP as the trap. 

Source data are provided as a Source Data file. 
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Supplementary Figure 26. Photoirradiation-induced drug release. Release profiles of aPD-L1 

and NLG919 from SPIND2 (40 µg/mL) after white light irradiation for different time (n = 4). Data are 

presented as mean values ± SD. Source data are provided as a Source Data file. 

 

Supplementary Figure 27. In vivo NIR fluorescence imaging of tumor-bearing mice. (a) In vivo 

NIR fluorescence imaging of Panc02 tumor-bearing mice after systemic administrations of SPIN0, 

SPINN, SPINA, SPIND1, and SPIND2 (0.2 mL, 0.6 mg/mL) for different time. The white dotted circle 

indicated tumors. (b) NIR fluorescence (NIRF) intensity of tumors from Panc02 tumor-bearing mice 

at different post-injection time (n = 3). Data are presented as mean values ± SD. Source data are 

provided as a Source Data file. 

 

Supplementary Figure 28. Tumor accumulation of SPINs. Confocal fluorescence images of 

tumors from Panc02 tumor-bearing mice after systemic injection of SPINs (0.2 mL, 0.6 mg/mL) via 

tail vein for 24 h. The cell nucleus stained with 4’,6-diamidino-2-phenylindole (DAPI) shows blue 

fluorescence signal and nanoparticles shows red fluorescence signal. The experiments were 

repeated independently three times with similar results. 
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Supplementary Figure 29. In vivo biodistribution of SPINs. In vivo biodistribution of SPIN0 (a), 

SPINN (b), SPINA (c), SPIND1 (d), SPIND2 (e) and free NLG919 (f) in subcutaneous Panc02 

tumor-bearing mice (n = 5) at 24 h after systemic administration. Data are presented as mean 

values ± SD. Source data are provided as a Source Data file. 

 

 

Supplementary Figure 30. Intratumor 1O2 generation. (a) Representative confocal fluorescence 
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images of tumor sections from subcutaneous Panc02 tumor-bearing mice after systemic injection of 

saline, free drug mixture (4 mg/kg body weight for NLG919 and aPD-L1) or SPINs (0.2 mL, 0.6 

mg/mL) via tail vein with or without US irradiation (1.0 MHz, 1.2 W/cm2, 50% duty cycle, 10 min). The 

US irradiation of tumor tissues was conducted at 24 h post-injection time. The cell nucleus stained 

with DAPI shows blue fluorescence signal and SOSG shows green fluorescence signal. (b) Mean 

fluorescence intensity of SOSG in tumors of mice after different treatments (n = 4). Saline + US 

versus SPIN0 + US: P < 0.0001; Saline + US versus SPINN + US: P < 0.0001; Saline + US versus 

SPINA + US: P < 0.0001; Saline + US versus SPIND1 + US: P < 0.0001; Saline + US versus SPIND2 + 

US: P < 0.0001. Data are presented as mean values ± SD. Statistical significance was calculated via 

one-way ANOVA with a Tukey post-hoc test; ***P < 0.001. Source data are provided as a Source 

Data file. 

 

 

Supplementary Figure 31. Sonodynamically induced ICD. (a) Immunofluorescence CRT and 

HMGB1 staining images of tumor sections from Panc02 tumor-bearing mice after systemic injection 

of saline, free drug mixture (4 mg/kg body weight for NLG919 and aPD-L1) or SPINs (0.2 mL, 0.6 

mg/mL) via tail vein with or without US irradiation (1.0 MHz, 1.2 W/cm2, 50% duty cycle, 10 min). The 

assay was conducted at 24 h after treatments. The cell nucleus stained by DAPI shows blue 

fluorescence signal, CRT and HMGB1 stained by corresponding antibodies show green 

fluorescence signal. (b-c) Mean fluorescence intensity (MFI) of CRT (b) and HMGB1 (c) staining in 

tumor sections from different groups (n = 4). Saline + US versus SPIN0 + US: P < 0.0001; Saline + 
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US versus SPINN + US: P < 0.0001; Saline + US versus SPINA + US: P < 0.0001; Saline + US versus 

SPIND1 + US: P < 0.0001; Saline + US versus SPIND2 + US: P < 0.0001 for CRT (b); Saline + US 

versus SPIN0 + US: P = 0.0018; Saline + US versus SPINN + US: P < 0.0001; Saline + US versus 

SPINA + US: P < 0.0001; Saline + US versus SPIND1 + US: P < 0.0001; Saline + US versus SPIND2 + 

US: P < 0.0001 for HMGB1 (c). (d) Relative ATP levels in subcutaneous Panc02 tumors (n = 4) after 

different treatments for 24 h. Saline + US versus SPIN0 + US: P < 0.0001; Saline + US versus SPINN 

+ US: P = 0.0036; Saline + US versus SPINA + US: P < 0.0001; Saline + US versus SPIND1 + US: 

P = 0.0023; Saline + US versus SPIND2 + US: P = 0.0015. Data are presented as mean values ± SD. 

Statistical significance was calculated via one-way ANOVA with a Tukey post-hoc test; **P < 0.01, 

***P < 0.001. Source data are provided as a Source Data file. 

 

 

Supplementary Figure 32. Evaluation of PD-L1 expression. (a) Immunofluorescence PD-L1 

staining images of tumor sections from Panc02 tumor-bearing mice after systemic injection of saline, 

free drug mixture (4 mg/kg body weight for NLG919 and aPD-L1) or SPINs (0.2 mL, 0.6 mg/mL) via 

tail vein with or without US irradiation (1.0 MHz, 1.2 W/cm2, 50% duty cycle, 10 min). The cell 

nucleus stained by DAPI shows blue fluorescence signal, PD-L1 stained by corresponding antibody 

shows green fluorescence signal. (b) MFI of PD-L1 staining in tumor sections after different 

treatments (n = 4). Saline + US versus SPIN0 + US: P < 0.0001; Saline + US versus SPINN + US: 

P < 0.0001; Saline + US versus SPINA + US: P < 0.0001; Saline + US versus SPIND1 + US: 

P < 0.0001; Saline + US versus SPIND2 + US: P < 0.0001. Data are presented as mean values ± SD. 

Statistical significance was calculated via one-way ANOVA with a Tukey post-hoc test; ***P < 0.001. 

Source data are provided as a Source Data file. 
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Supplementary Figure 33. Study of sonodynamically induced tumor-infiltrating lymphocytes 

in tumor tissues. Representative immunohistochemical staining images of CD3+ (a) and CD8+ (b) 

tumor-infiltrating lymphocytes in tumor tissues from tumor-bearing mice after different treatments for 

3 days. Brown staining represents CD3+ and CD8+ tumor-infiltrating lymphocytes. The experiments 

in a and b were repeated independently three times with similar results. 

 

 

Supplementary Figure 34. Histological analysis of tumors after different treatments. (a) H&E 

staining images of primary and distant tumors of Panc02 tumor-bearing C57BL/6 mice after systemic 

injection of saline, free drug mixture (4 mg/kg body weight for NLG919 and aPD-L1), or SPINs (0.2 

mL, 0.6 mg/mL) with or without US irradiation (1.0 MHz, 1.2 W/cm2, 50% duty cycle, 10 min). (b) 

TUNEL staining images of primary and distant tumors of mice after different treatments. The cell 
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nucleus stained by DAPI shows blue fluorescence signal, TUNEL stained by corresponding antibody 

shows red fluorescence signal. The experiments in a and b were repeated independently three times 

with similar results. 

 

 

Supplementary Figure 35. Evaluation of tumor growth inhibition efficacy. Relative tumor 

volumes of primary (a) and distant (b) tumors of Panc02 tumor-bearing C57BL/6 mice (n = 6) after 

systemic injection of SPIN0, SPINN, SPINA, or SPIND1 (0.2 mL, 0.6 mg/mL) with US irradiation (1.0 

MHz, 1.2 W/cm2, 50% duty cycle, 10 min). Data are presented as mean values ± SD. Source data 

are provided as a Source Data file. 

 

 

Supplementary Figure 36. Evaluation of survival of mice after different treatments. Survival 

curves of Panc02 tumor-bearing C57BL/6 mice (n = 10) after systemic injection of SPIN0, SPINN, 

SPINA, or SPIND1 (0.2 mL, 0.6 mg/mL) with US irradiation (1.0 MHz, 1.2 W/cm2, 50% duty cycle, 10 

min). Source data are provided as a Source Data file. 
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Supplementary Figure 37. Flow cytometry analysis of effector memory T cells. (a) Gating 

strategy for flow cytometry analysis of effector memory T cells. (b) Representative flow cytometry 

plots of effector memory T cells (CD44+CD62L-) in spleen of Panc02 tumor-bearing mice after 

different treatments followed by tumor rechallenge. 

 

 

Supplementary Figure 38. Gene expression assay of immune-related genes. GO enrichment 

analysis of differentially upregulated genes associated with immune processes. Statistical 

significance was calculated via two-tailed Student’s t-test. 
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Supplementary Figure 39. Gating strategy for flow cytometry analysis. Gating strategy for flow 

cytometry analysis of matured DCs (a), CD3+CD8+ CTLs (b) and Treg cells (c). 

 

Supplementary Figure 40. Flow cytometry analysis of matured DCs. (a) Representative flow 

cytometry plots of matured DCs (CD80+CD86+ gating on CD11c+) in tumor-draining lymph nodes of 

Panc02 tumor-bearing C57BL/6 mice after different treatments. (b) Populations of CD80+CD86+ DCs 

in tumor-draining lymph nodes of mice after different treatments (n = 4). Saline + US versus SPIND2 

+ US: P < 0.0001; Drug + US versus SPIND2 + US: P < 0.0001; SPIND1 + US versus SPIND2 + US: 

P =0.0090. Data are presented as mean values ± SD. Statistical significance was calculated via 

two-tailed Student’s t-test; **P<0.01, ***P < 0.001. Source data are provided as a Source Data file. 
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Supplementary Figure 41. Flow cytometry analysis of CTLs. Populations of CD3+CD8+ T cells in 

primary tumors (a) and distant tumors (b) of mice after different treatments (n = 4). Saline + US 

versus SPIND2 + US: P < 0.0001; Drug + US versus SPIND2 + US: P < 0.0001; SPIND1 + US versus 

SPIND2 + US: P =0.0183 for primary tumors (a); Saline + US versus SPIND2 + US: P < 0.0001; Drug + 

US versus SPIND2 + US: P < 0.0001 for distant tumors (b). Data are presented as mean values ± SD. 

Statistical significance was calculated via two-tailed Student’s t-test; *P<0.05, ***P < 0.001. Source 

data are provided as a Source Data file. 

 

 

Supplementary Figure 42. Flow cytometry analysis of Treg cells. Populations of Treg cells in 

primary tumors (a) and distant tumors (b) of mice after different treatments (n = 4). Saline + US 

versus SPIND2 + US: P < 0.0001; Drug + US versus SPIND2 + US: P < 0.0001; SPIND1 + US versus 

SPIND2 + US: P =0.0216 for primary tumors (a); Saline + US versus SPIND2 + US: P < 0.0001; Drug + 

US versus SPIND2 + US: P < 0.0001 for distant tumors (b). Data are presented as mean values ± SD. 

Statistical significance was calculated via two-tailed Student’s t-test; *P<0.05, ***P < 0.001. Source 

data are provided as a Source Data file. 
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Supplementary Figure 43. Evaluation of CD8+ T cells in tumor tissues. Immunofluorescence 

CD8 staining images of tumor sections from Panc02 tumor-bearing mice after systemic injection of 

saline, free drug mixture (4 mg/kg body weight for NLG919 and aPD-L1) or SPIND2 (0.2 mL, 0.6 

mg/mL) via tail vein with or without US irradiation (1.0 MHz, 1.2 W/cm2, 50% duty cycle, 10 min). The 

cell nucleus stained by DAPI shows blue fluorescence signal, CD8 stained by corresponding 

antibody show red fluorescence signal. The experiments were repeated independently three times 

with similar results. 

 

 

Supplementary Figure 44. Evaluation of IFN-γ and Granzyme B expression levels in tumors. 

(a,b) Immunofluorescence IFN-γ (a) and Granzyme B (b) staining images of tumor sections from 

Panc02 tumor-bearing mice after systemic injection of saline, free drug mixture (4 mg/kg body 

weight for NLG919 and aPD-L1) or SPINs (0.2 mL, 0.6 mg/mL) via tail vein with or without US 

irradiation (1.0 MHz, 1.2 W/cm2, 50% duty cycle, 10 min). The cell nucleus stained by DAPI shows 

blue fluorescence signal, IFN-γ and Granzyme B stained by corresponding antibodies show green 

fluorescence signal. (c,d) MFI of IFN-γ (c) and Granzyme B (d) staining in tumor sections from 

different groups (n = 4). Saline + US versus SPIN0 + US: P < 0.0001; Saline + US versus SPINN + US: 
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P < 0.0001; Saline + US versus SPINA + US: P < 0.0001; Saline + US versus SPIND1 + US: 

P < 0.0001; Saline + US versus SPIND2 + US: P < 0.0001 for IFN-γ (c); Saline + US versus SPINN + 

US: P =0.0161; Saline + US versus SPINA + US: P < 0.0001; Saline + US versus SPIND1 + US: 

P =0.0023; Saline + US versus SPIND2 + US: P < 0.0001 for Granzyme B (d). Data are presented as 

mean values ± SD. Statistical significance was calculated via one-way ANOVA with a Tukey post-hoc 

test; *P < 0.05, ***P < 0.001. Source data are provided as a Source Data file. 

 

 

 

Supplementary Figure 45. Flow cytometry analysis of CTLs after deep-tissue therapy using 

SPINs. (a) Representative flow cytometry plots of CTLs (CD3+CD8+ gating on CD45+) in 5-cm tissue 

covered tumors from Panc02 tumor-bearing mice after systemic injection of saline, free drug mixture 

(4 mg/kg body weight for NLG919 and aPD-L1), SPIN0 or SPIND2 (0.2 mL, 0.6 mg/mL) with or 

without US irradiation (1.0 MHz, 1.2 W/cm2, 50% duty cycle, 10 min). (b) Populations of CD3+CD8+ T 

cells in 5-cm tissue covered tumors of mice after different treatments (n = 4). Drug + US versus 

SPIND2 + US: P =0.0012; SPIN0 + US versus SPIND2 + US: P =0.0041. Data are presented as mean 

values ± SD. Statistical significance was calculated via two-tailed Student’s t-test; **P < 0.01. Source 

data are provided as a Source Data file. 

 

 

Supplementary Figure 46. Histological analysis of orthotopic pancreatic rabbit tumors after 

different treatments. Immunofluorescence TUNEL staining images of orthotopic pancreatic rabbit 
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tumors after different treatments. The cell nucleus stained by DAPI shows blue fluorescence signal, 

TUNEL stained by corresponding antibody shows green fluorescence signal. The experiments were 

repeated independently three times with similar results. 

 

 

Supplementary Figure 47. Evaluation of T cells in blood. Representative flow cytometry plots of 

CD3+CD4+ and CD3+CD8+ T cells in blood of mice at day 30 after systemic administrations of saline, 

SPIN0, SPIND2 (0.2 mL, 1.2 mg/mL) or free drug mixture (8 mg/kg body weight for NLG919 and 

aPD-L1) with or without US irradiation (1.0 MHz, 1.2 W/cm2, 50% duty cycle, 10 min). 

 

 

Supplementary Figure 48. Evaluation of T cells in spleen. Representative flow cytometry plots of 

CD3+CD4+ and CD3+CD8+ T cells in spleen of mice at day 30 after systemic administrations of saline, 

SPIN0, SPIND2 (0.2 mL, 1.2 mg/mL) or free drug mixture (8 mg/kg body weight for NLG919 and 

aPD-L1) with or without US irradiation (1.0 MHz, 1.2 W/cm2, 50% duty cycle, 10 min). 
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Supplementary Figure 49. In vivo biocompatibility studies by histological analysis. 

Representative H&E staining images of heart, spleen, lung and kidney of mice at day 30 after 

systemic administrations of saline, SPIN0, SPIND2 (0.2 mL, 1.2 mg/mL) or free drug mixture (8 mg/kg 

body weight for NLG919 and aPD-L1) with or without US irradiation (1.0 MHz, 1.2 W/cm2, 50% duty 

cycle, 10 min). The experiments were repeated independently three times with similar results. 

 

 

Supplementary Figure 50. CD3+ T cell infiltration studies by immunofluorescence imaging. 

Representative immunofluorescence CD3 staining images of heart, liver, spleen, lung and kidney of 

mice at day 30 after systemic administrations of saline, SPIN0, SPIND2 (0.2 mL, 1.2 mg/mL) or free 

drug mixture (8 mg/kg body weight for NLG919 and aPD-L1) with or without US irradiation (1.0 MHz, 

1.2 W/cm2, 50% duty cycle, 10 min). Cell nucleus stained by DAPI shows blue fluorescence signal; 

CD3 stained by the corresponding antibody shows red fluorescence signal. The experiments were 
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repeated independently four times with similar results. 

 

 

Supplementary Figure 51. CD3+ T cell infiltration quantification in major organs. Relative MFI 

for CD3 staining in heart (a), lung (b), kidney (c), liver (d) and spleen (e) of mice at day 30 after 

systemic administrations of saline, SPIN0, SPIND2 (0.2 mL, 1.2 mg/mL) or free drug mixture (8 mg/kg 

body weight for NLG919 and aPD-L1) with or without US irradiation (1.0 MHz, 1.2 W/cm2, 50% duty 

cycle, 10 min) (n = 4). Saline - US versus Drug - US: P = 0.0012; Saline - US versus Drug + US: P = 

0.0030; Drug + US versus SPIND2 + US: P = 0.0047 for liver (d); Saline - US versus Drug - US: 

P<0.0001; Saline - US versus Drug + US: P<0.0001; Drug + US versus SPIND2 + US: P<0.0001 for 

spleen (e). Data are presented as mean values ± SD. Statistical significance was calculated via 

two-tailed Student’s t-test; **P<0.01, ***P < 0.001. Source data are provided as a Source Data file. 
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Supplementary Figure 52. C4+ T cell infiltration studies by immunofluorescence imaging. 

Representative immunofluorescence CD4 staining images of heart, liver, spleen, lung and kidney of 

mice at day 30 after systemic administrations of saline, SPIN0, SPIND2 (0.2 mL, 1.2 mg/mL) or free 

drug mixture (8 mg/kg body weight for NLG919 and aPD-L1) with or without US irradiation (1.0 MHz, 

1.2 W/cm2, 50% duty cycle, 10 min). Cell nucleus stained by DAPI shows blue fluorescence signal; 

CD4 stained by the corresponding antibody shows red fluorescence signal. The experiments were 

repeated independently four times with similar results. 

 

 

 

Supplementary Figure 53. CD4+ T cell infiltration quantification in major organs. Relative MFI 

for CD4 staining in heart (a), lung (b), kidney (c), liver (d) and spleen (e) of mice at day 30 after 
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systemic administrations of saline, SPIN0, SPIND2 (0.2 mL, 1.2 mg/mL) or free drug mixture (8 mg/kg 

body weight for NLG919 and aPD-L1) with or without US irradiation (1.0 MHz, 1.2 W/cm2, 50% duty 

cycle, 10 min) (n = 4). Saline - US versus Drug - US: P<0.0001; Saline - US versus Drug + US: 

P<0.0001; Drug + US versus SPIND2 + US: P=0.0002 for liver (d); Saline - US versus Drug - US: 

P<0.0001; Saline - US versus Drug + US: P<0.0001; Drug + US versus SPIND2 + US: P<0.0001 for 

spleen (e). Data are presented as mean values ± SD. Statistical significance was calculated via 

two-tailed Student’s t-test; ***P < 0.001. Source data are provided as a Source Data file. 

 

 

Supplementary Figure 54. C8+ T cell infiltration studies by immunofluorescence imaging. 

Representative immunofluorescence CD8 staining images of heart, liver, spleen, lung and kidney of 

mice at day 30 after systemic administrations of saline, SPIN0, SPIND2 (0.2 mL, 1.2 mg/mL) or free 

drug mixture (8 mg/kg body weight for NLG919 and aPD-L1) with or without US irradiation (1.0 MHz, 

1.2 W/cm2, 50% duty cycle, 10 min). Cell nucleus stained by DAPI shows blue fluorescence signal; 

CD8 stained by the corresponding antibody shows red fluorescence signal. The experiments were 

repeated independently four times with similar results. 
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Supplementary Figure 55. CD8+ T cell infiltration quantification in major organs. Relative MFI 

for CD8 staining in heart (a), lung (b), kidney (c), liver (d) and spleen (e) of mice at day 30 after 

systemic administrations of saline, SPIN0, SPIND2 (0.2 mL, 1.2 mg/mL) or free drug mixture (8 mg/kg 

body weight for NLG919 and aPD-L1) with or without US irradiation (1.0 MHz, 1.2 W/cm2, 50% duty 

cycle, 10 min) (n = 4). Saline - US versus Drug - US: P<0.0001; Saline - US versus Drug + US: 

P<0.0001; Drug + US versus SPIND2 + US: P<0.0001 for liver (d); Saline - US versus Drug - US: 

P<0.0001; Saline - US versus Drug + US: P<0.0001; Drug + US versus SPIND2 + US: P=0.0028 for 

spleen (e). Data are presented as mean values ± SD. Statistical significance was calculated via 

two-tailed Student’s t-test; **P < 0.01, ***P < 0.001. Source data are provided as a Source Data file. 
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Supplementary Figure 56. Evaluation of cytokine levels in serum. The levels of IL-23 (a), IL-1α 

(b), IFN-γ (c), TNF-α (d), MCP-1 (e), IL-1β (f), IL-10 (g), IL-6 (h), IL-27 (i), IL-17A (j), IFN-β (k) and 

GM-CSF (l) in serum of mice at day 30 after systemic administrations of saline, SPIN0, SPIND2 (0.2 

mL, 1.2 mg/mL) or free drug mixture (8 mg/kg body weight for NLG919 and aPD-L1) with or without 

US irradiation (1.0 MHz, 1.2 W/cm2, 50% duty cycle, 10 min) (n = 5). Data are presented as mean 

values ± SD. Statistical significance was calculated via two-tailed Student’s t-test; *P < 0.05, 

**P < 0.01, ***P < 0.001. Source data are provided as a Source Data file. 
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Supplementary Figure 57. Blood biochemical analysis. The levels of ALP (a), CREA (b), UREA 

(c), and GGT (d) in serum of mice at day 30 after systemic administrations of saline, SPIN0, SPIND2 

(0.2 mL, 1.2 mg/mL) or free drug mixture (8 mg/kg body weight for NLG919 and aPD-L1) with or 

without US irradiation (1.0 MHz, 1.2 W/cm2, 50% duty cycle, 10 min) (n = 5). Saline - US versus Drug 

+ US: P=0.0180 for ALP (a); Drug + US versus SPIND2 + US: P=0.0344 for GGT (d). Data are 

presented as mean values ± SD. Statistical significance was calculated via two-tailed Student’s t-test; 

*P < 0.05. Source data are provided as a Source Data file. 
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Supplementary Figure 58. Blood routine analysis. Blood routine analysis of RBC (a), WBC (b), 

HGB (c), MCH (d), MCHC (e), MCV (f), RDWSD (g), RDWCV (h), PLT (i), PCT (j), MPV (k), PDW (l) 

P-LCR (m) in serum of mice at day 30 after systemic administrations of saline, SPIN0, SPIND2 (0.2 

mL, 1.2 mg/mL) or free drug mixture (8 mg/kg body weight for NLG919 and aPD-L1) with or without 

US irradiation (1.0 MHz, 1.2 W/cm2, 50% duty cycle, 10 min) (n = 5). Data are presented as mean 

values ± SD. Source data are provided as a Source Data file. 
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Supplementary Figure 59. Evaluation of mouse body weight change. Body weights of mice after 

systemic administrations of saline, SPIN0, SPIND2 (0.2 mL, 1.2 mg/mL) or free drug mixture (8 mg/kg 

body weight for NLG919 and aPD-L1) with or without US irradiation (1.0 MHz, 1.2 W/cm2, 50% duty 

cycle, 10 min) (n = 5). Data are presented as mean values ± SD. Source data are provided as a 

Source Data file. 

 

Supplementary Table 1. Summary of nanomaterials for in vivo sonodynamic therapy of tumors. 

Tumor models and 
mouse strains 

Combinational 
therapy 

Material type US irradiation conditions Reference 

Subcutaneous C32 
tumor, Balb/c athymic 

nude mice 

No TiO2 nanoparticles 1 MHz, 1 W/cm2, 50% duty 
cycle, 2 min 

1 

Subcutaneous SCC7 
tumor, C3H/HeN 

mice. 

No Au-TiO2 nanocomposites 1.5 MHz, 30 W, 10% duty 
cycle, 30 s 

2 

Subcutaneous 4T1 
tumor, BALB/c nude 

mice 

No PpIX and manganese ions 
loaded silica nanoparticles 

1 MHz, 2.3 W/cm2, 50% 
duty cycle, 5 min 

3 

Subcutaneous 
PANC-1 tumor, nude 

mice 

No IR780/fluorocarbon modified 
silica nanoparticles 

1 MHz, 1 W/cm2, 100% 
duty cycle, 3 min 

4 

Subcutaneous U87 
tumor, BALB/c nude 

mice 

No Protoporphyrin/MnOx silica 
nanoparticles 

1 MHz, 1.5 W/cm2, 50% 
duty cycle, 3 min 

5 

Subcutaneous 4T1 
tumor, BALB/c mice 

No Porphyrin contained 
metal-organic framework 

1 MHz, 2.5 W/cm2, 50% 
duty cycle, 5 min 

6 

Subcutaneous 
MCF-7 tumor, nude 

mice 

No Methylphenylporphyrin based 
human serum albumin (HSA) 

1 MHz, 2 W/cm2, 50% duty 
cycle, 5 min 

7 

Subcutaneous 4T1 
tumor, BALB/c mice  

No Bimetallic oxide MnWOX 
nanoparticles 

40 kHz, 3 W/cm2, 50% duty 
cycle, 5 min 

8 

Subcutaneous 
MCF-7 tumor, 

BALB/c nude mice 

No  Au/TiO2 nanosheets 1 MHz, 1.5 W/cm2, 5 min 9 

Subcutaneous C6 
tumor, BALB/c nude 

mice 

No PpIX modified MnO2 
nanoparticles 

1 MHz, 1.5 W/cm2, 50% 
duty cycle, 3 min 

10 

Subcutaneous CT26 
tumor, BALB/c nude 

mice 

No Mn(III)-hemoporfin 
frameworks 

1 MHz, 2.5 W/cm2, 50% 
duty cycle, 10 min 

11 

Subcutaneous 4T1 
tumor, BALB/c nude 

mice 

No Carbon dot/MXene 
heterojunctions 

50 kHz, 3 W/cm2, 5 min 12 
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Subcutaneous 4T1 
tumor, BALB/c nude 

mice 

No Iridic-porphyrin complex 3 MHz, 0.3 W/cm2, 20 min 13 

Subcutaneous 
LNCaP tumor, 

BALB/c SCID mice 

No Hematoporphyrin loaded 
poly(L-glutamic 

acid-L-tyrosine) nanoparticles 

1 MHz, 3.5 W/cm2, 30% 
duty cycle, 3.5 min 

14 

Subcutaneous 
U87MG tumor, 

BALB/c nude mice 

No IR780 and MnO2 

encapsulated PLGA 
nanoparticles 

3 W/cm2, 50% duty cycle, 5 
min 

15 

Subcutaneous 
MDA-MB-231 tumor, 
BALB/c nude mice 

No N-doped graphene quantum 
dots 

1 MHz, 2.5 W/cm2, 50% 
duty cycle, 5 min 

16 

Subcutaneous B16 
tumor, C57BL/6 mice 

No δ-Aminolevulinic acid loaded 
manganese ferrite 

nanoparticles 

1 MHz, 1.5 W/cm2, 50% 
duty cycle 

17 

Patient-derived tumor 
xenograft, BALB/c 

nude mice 

No Patient-derived MVs/AIEgen 
hybrid system 

1 MHz, 0.75 W/cm2, 30% 
duty cycle, 10 min 

18 

Subcutaneous 4T1 
tumor, BALB/c mice 

No Hemoglobin-based 
metalloporphyrin 

1 MHz, 1.5 W/cm2, 50% 
duty cycle, 5 min 

19 

Subcutaneous 4T1 
tumor, BALB/c mice 

No Defect-rich Ti-based metal–
organic framework 

1 MHz, 1.5 W/cm2, 50% 
duty cycle, 5 min 

20 

Subcutaneous 4T1 
tumor, BALB/c mice 

No Pt-based branched vanadium 
tetrasulfide nanodendrites 

1 MHz, 1.5 W/cm2, 50% 
duty cycle, 5 min 

21 

Subcutaneous 
BxPC-3 tumor, 

BALB/c nude mice 

Starvation 
therapy 

Erythrocyte membrane 
camouflaged metal−organic 
framework integrated with 
platinum nanoparticles and 

glucose oxidase 

3 MHz, 1.5 W/cm2, 10 min 22 

Orthotopic BxPC-3 
tumor, Balb/c SCID 

mice 

Chemotherapy Rose bengal and 
5-fluorouracil functionalized 

magnetic microbubbles 

1 MHz, 3.5 W/cm2, 30% 
duty cycle, 3.5 min 

23 

Subcutaneous 
SMMC-7721 tumor, 
BALB/c nude mice 

Chemotherapy Doxorubicin loaded and PpIX 
conjugated silica 

nanoparticles 

1 MHz, 1.5 W/cm2, 50% 
duty cycle, 5 min 

24 

Subcutaneous 
MDA-MB-231 tumor, 
BALB/c nude mice 

Chemotherapy Doxorubicin loaded TiO2 
nanoparticles 

1.5 MHz, 15 W/cm2, 20% 
duty cycle, 5 min 

25 

Subcutaneous 4T1 
tumor, BALB/c mice 

Chemotherapy Doxorubicin loaded Pt/TiO2 
nanoparticles 

1 MHz, 1.5 W/cm2, 50% 
duty cycle, 5 min 

26 

Subcutaneous 
BxPC-3 tumour, 

SCID mice 

Chemotherapy Rose bengal and gemcitabine 
functionalized magnetic 

microbubbles 

1.17 MHz, 30% duty cycle, 
3.5 min 

27 

Subcutaneous HeLa 
tumor, Nu/Nu nude 

mice 

Chemodynamic 
therapy 

H2O2/Fe3O4-PLGA 
polymersomes 

40 MHz, 30 min 28 

Subcutaneous 
Saos-2 tumor, 

BALB/c nude mice 

Chemodynamic 
therapy 

Ferrate(VI) and PpIX loaded 
silica nanoplatforms 

1 MHz, 1.4 W/cm2, 5 min 29 

Orthotopic 97H 
tumor, BALB/c nude 

mice 

Chemodynamic 
therapy 

Gold/manganese oxide hybrid 
nanoparticles 

1 MHz, 2 W/cm2, 10 min 30 

Subcutaneous 4T1 
tumor, BALB/c mice 

Chemodynamic 
therapy 

PtCu3 nanocages 35 kHz, 3 W/cm2, 1 min per 
cycle for ten cycles, 10 min 

31 

Subcutaneous 4T1 
tumor, BALB/c nude 

mice 

Chemodynamic 
therapy 

TiO2-Fe3O4@PEG Janus 
nanostructure 

1 MHz, 1.5 W/cm2, 50% 
duty cycle, 5 min 

32 

Subcutaneous 4T1 
and H22 tumors, 

BALB/c mice 

Ferroptosis Manganese porphyrin-based 
metal-organic framework 

1 MHz, 1 W/cm2, 50% duty 
cycle, 5-10 min 

33 

Subcutaneous RIF-1 
tumor, C3H/HeN 

mice 

Photodynamic 
therapy 

Hematoporphyrin and 
indocyanine green loaded 

PLGA nanoparticles 

1 MHz, 3.5 W/cm2, 50% 
duty cycle, 3.5 min 

34 

Subcutaneous 4T1 
tumor, BALB/c nude 

Photothermal 
therapy 

Graphene-integrated TiO2 
nanoparticles 

1 MHz, 1 W/cm2, 50% duty 
cycle, 5 min 

35 
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mice 

Subcutaneous 4T1 
tumor, nude mice 

Photothermal 
therapy 

TiO2-x layer coated TiO2 
nanocrystals 

1 MHz, 1.5 W/cm2, 50% 
duty cycle, 5 min 

36 

Subcutaneous CT26 
tumor, BALB/c nude 

mice 

Photothermal 
therapy 

Tetra-(4-aminophenyl) 
porphyrin loaded Pt-CuS 

nanoparticles 

1 MHz, 1 W/cm2, 60% duty 
cycle, 5 min 

37 

Subcutaneous 4T1 
tumor, BALB/c mice 

Photothermal 
therapy, 

chemotherapy 

Polypyrrole coated and 
honokiol loaded TiO2 

nanoparticles 

1 MHz, 1.5 W/cm2, 1 min 38 

Subcutaneous 
MDA-MB-231 tumor, 

nude mice 

Photothermal and 
photodynamic 

therapy 

Peptide-ICG nanomicelles 1 MHz, 2.4 W/cm2, 50% 
duty cycle, 5 min 

39 

Subcutaneous 4T1 
tumor, BALB/c mice 

Photothermal 
therapy 

Polypeptide-capped Te 
nanorods 

1 MHz, 1 W/cm2, 2 min 40 

Subcutaneous 4T1 
tumor, BALB/c mice 

Photothermal 
therapy 

Titanium carbide nanosheets 40 kHz, 3 W/cm2, 1 min per 
cycle, 15 cycles 

41 

Subcutaneous HeLa 
tumor, BALB/c nude 

mice 

Photothermal 
therapy 

Cancer cell membrane 
camouflaged iridium 

complexes functionalized 
black-titanium nanoparticles 

1 MHz, 1 W/cm2, 50% duty 
cycle, 5 min 

42 

Subcutaneous 4T1 
tumor, BALB/c mice 

Photothermal 
therapy 

Titanium nitride nanodots 40 kHz, 3.0 W/cm2, 50% 
duty cycle, 10 min 

43 

Orthotopic 4T1 
tumor, BALB/c mice 

Immunotherapy 
(TLR7 agonist 
and aPD-L1) 

Hematoporphyrin loaded 
liposomes 

1 MHz, 1.5 W/cm2, 50% 
duty cycle, 5 min 

44 

Subcutaneous 4T1 
tumor, BALB/c mice 

Immunotherapy 
(NLG919), gas 

therapy 

Gold-black phosphorus 
quantum dots-doped 

mesoporous silica 
nanoframeworks 

1 MHz, 1 W/cm2, 3 min 45 

Subcutaneous 
B16F10 tumor, 
BALB/c mice 

Immunotherapy 
(aPD-L1) 

Melanoma cell 
membrane-coated TiO2 

nanoparticles modified with 
aPD-L1 

1 MHz, 3 W/cm2, 20% duty 
cycle, 5 min 

46 

Subcutaneous 4T1 
tumor, BALB/c mice 

Immunotherapy 
(immunogenic cell 

death) 

Protoporphyrin-modified 
mesoporous organosilica 

nanoparticles 

1 MHz, 1 W/cm2, 50% duty 
cycle, 5 min 

47 

Subcutaneous CT26 
tumor, BALB/c mice 

Immunotherapy 
(TLR9 agonist) 

Zn2+-tetrakis(4-carboxyphenyl) 
porphyrin nanosheets 

40 kHz, 2 W/cm2, 30 min. 48 

Subcutaneous 
hepa1-6 tumor, 
C57BL/6 mice 

Immunotherapy 
(CpG and 
aPD-L1) 

Titanium dioxide-Chlorin 
e6-CpG nanosonosensitizers 

1 MHz, 2 W/cm2, 50% duty 
cycle, 7 min 

49 

Subcutaneous U14 
tumor, BALB/c mice 

Immunotherapy 
(aPD-L1), gas 

therapy 

L-arginine (LA)-loaded 
black mesoporous titania 

nanosystems 

1 MHz, 1.5 W/cm2, 50% 
duty cycle, 5 min 

50 

Subcutaneous 4T1 
tumor, BALB/c mice 

Gas therapy, 
Immunotherapy 

(M1 
macrophages) 

Perfluorodecalin and IR780 
encapsulated human serum 

albumin-based NO donor 

1 MHz, 1 W/cm2, 5 min 51 

Subcutaneous 4T1 
tumor, BALB/c mice 

Immunotherapy 
(M1 

macrophages) 

Manganese 
protoporphyrin liposomes 

1 MHz, 2 W/cm2, 50% duty 
cycle, 5 min 

52 

Subcutaneous 4T1 
tumor, BALB/c mice 

Immunotherapy 
(aPD-L1) 

Titanium dioxide@CaP 
nanoparticles 

3 MHz, 2.1 W, 20 min 53 

Subcutaneous 
B16-OVA tumor, 
C57BL/6 mice 

Immunotherapy 
(CpG and 
aPD-L1) 

CpG loaded manganese 
porphyrin-based 

metal-organic frameworks 

1 MHz, 1 W/cm2, 50% duty 
cycle, 10 min 

54 

Subcutaneous 
B16-F10 tumor, 
C57BL/6 mice 

Immunotherapy 
(aPD-L1) 

Chlorin e6@aPD-L1 lipids 2 MHz, 2 W/cm2, 20% duty 
cycle, 10 min 

55 

Subcutaneous 4T1 
tumor, BALB/c mice 

Immunotherapy 
(aPD-L1) 

CoFe2O4 Nanoflowers 1 MHz, 1 W/cm2, 20% duty 
cycle, 5 min 

56 

 

Supplementary Table 2. Summary of injection dosage of NLG919 and aPD-L1 for combinational 

immunotherapy of different tumor models. 

Immunotherapeutic 
modulator 

Dosage 
(μg/mouse) 

Combinational therapy Tumor models and 
mouse strains 

Injection way Reference 
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NLG919 2500 Chemotherapy (paclitaxel) Subcutaneous 4T1 
tumor, BALB/c mice 

i.v. injection 57 

NLG919 2100 Chemotherapy 
(doxorubicin) 

Subcutaneous 4T1 
tumor, BALB/c mice 

i.v. injection 58 

NLG919 2000 Chemotherapy (paclitaxel) Subcutaneous 
B16-F10 tumor, 
C57BL/6 mice 

intragastric 
administration 

59 

NLG919 2500 Chemotherapy (oxaliplatin) Subcutaneous 4T1 
tumor, BALB/c mice 

i.v. injection 60 

NLG919 2500 Chemotherapy (paclitaxel) Subcutaneous 4T1 
tumor, BALB/c mice 

i.v. injection 61 

NLG919 2000 Chemotherapy 
(doxorubicin) 

Subcutaneous 4T1 
tumor, BALB/c mice 

Oral 
administration 

62 

NLG919 2100 Chemotherapy (docetaxel) Subcutaneous 4T1 
tumor, BALB/c mice 

i.v. injection 63 

NLG919 2400 Chemotherapy 
(gemcitabine and 

paclitaxel) 

Subcutaneous Panc02 
tumor, C57BL/6 mice 

i.v. injection 64 

NLG919 
 

480 Chemotherapy (curcumin) Subcutaneous B16F10 
tumor, C57BL/6 mice 

i.v. injection 65 

NLG919 400 Chemotherapy (oxaliplatin) Subcutaneous and 
orthotopic CT26 tumor, 

C57BL/6 mice 

i.v. injection 66 

NLG919 2000 Chemotherapy 
(doxorubicin) 

Subcutaneous 4T1 
tumor, BALB/c mice 

i.v. injection 67 

NLG919 300 Chemotherapy 
(chlorambucil) 

Subcutaneous 4T1 
tumor, BALB/c mice 

i.v. injection 68 

NLG919 900 Chemotherapy (paclitaxel) Subcutaneous B16F10 
tumor, C57BL/6 mice 

i.v. injection 69 

NLG919 1500 Chemotherapy 
(doxorubicin) 

Subcutaneous CT26 
and orthotopic 4T1 
tumor, BALB/c mice 

i.v. injection 70 

NLG919 636 Chemotherapy (docetaxel) Subcutaneous 4T1 
tumor, BALB/c mice 

i.v. injection 71 

NLG919 1400 Ferroptosis (sorafenib) Subcutaneous 4T1 
tumor, BALB/c mice 

i.v. injection 72 

NLG919 
 

120 Photothermal therapy Subcutaneous 4T1 
tumor, BALB/c mice 

i.v. injection 73 

NLG919 
 

400 Photothermal therapy, 
chemotherapy 
(gemcitabine) 

Subcutaneous 
Panc02, C57BL/6 mice 

i.v. injection 74 

NLG919 
 

102 Photodynamic therapy Subcutaneous 4T1 
tumor, BALB/c mice 

i.v. injection 75 

NLG919 
 

137.6 Photodynamic therapy Subcutaneous 4T1 
tumor, BALB/c mice 

intratumoral 
injection 

76 

NLG919 
 

600 Photodynamic therapy Subcutaneous 
4T1/CT26 tumor, 

BALB/c mice 

i.v. injection 77 

NLG919 
 

156 Photodynamic therapy Subcutaneous CT26 
tumor, BALB/c mice 

i.v. injection 78 

NLG919 
 

600 Photodynamic therapy Subcutaneous CT26 
tumor, BALB/c mice 

i.v. injection 79 

NLG919 390 Photodynamic therapy Subcutaneous CT26 
tumor, BALB/c mice 

i.v. injection 80 

NLG919 150 Photodynamic therapy Subcutaneous 
B16-F10 tumor, 
C57BL/6 mice 

i.t. injection 81 

NLG919 
 

120 Photodynamic therapy, 
chemotherapy (oxaliplatin) 

Subcutaneous 4T1 
tumor, BALB/c mice 

i.v. injection 82 

NLG919 120 Immunotherapy (PD-L1 
antagonist) 

Subcutaneous 
B16-F10 tumor, 
C57BL/6 mice 

i.v. injection 83 

NLG919 1000 Immunotherapy (aPD-L1) Subcutaneous Panc02 
tumor, C57BL/6 mice 

i.v. injection 84 

NLG919 
 

2800 Chemotherapy 
(combretastatin A4), 

immunotherapy (PI3Kγ 
inhibitor) 

Subcutaneous 4T1 
tumor, BALB/c mice 

i.p. injection 85 

NLG919 150 Sonodynamic therapy, Subcutaneous Panc02 i.v. injection This study 
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immunotherapy (aPD-L1) tumor, C57BL/6 mice 
aPD-L1 300 Chemotherapy 

(doxorubicin) 
Orthotopic C6 glioma, 

BALB/c mice 
i.p. injection 86 

aPD-L1 250 Chemotherapy 
(dimer-7-ethyl-10-hydroxyc

amptothecin, 
dimer-lonidamine) 

Subcutaneous 4T1 
tumor, BALB/c mice 

i.p. injection 87 

aPD-L1 500 Chemotherapy 
(doxorubicin) 

Orthotopic 4T1 tumor, 
BALB/c mice 

i.v. injection 88 

aPD-L1 225 Photodynamic therapy Subcutaneous 4T1 
tumor, BALB/c mice 

i.p. injection 89 

aPD-L1 375 Photodynamic therapy Subcutaneous CT26 
tumor, BALB/c mice 

i.p. injection 90 

aPD-L1 300 Photodynamic therapy Subcutaneous 4T1 
tumor, BALB/c mice 

i.p. injection 91 

aPD-L1 150 Photothermal therapy Subcutaneous 4T1 
tumor, BALB/c mice 

i.p. injection 92 

aPD-L1 250 Photothermal therapy, 
chemotherapy(doxorubicin) 

Subcutaneous CT26 
tumor, BALB/c mice 

i.v. injection 93 

aPD-L1 120 Photothermal therapy, 
chemotherapy(doxorubicin) 

Subcutaneous 4T1 
tumor, BALB/c mice 

i.v. injection 94 

aPD-L1 150 Photodynamic therapy, 
chemotherapy (oxaliplatin) 

Subcutaneous CT26 
tumor, BALB/c mice 

i.p. injection 95 

aPD-L1 300 Photodynamic therapy, 
ferroptosis (RSL-3) 

Subcutaneous 
B16-F10 tumor, 
C57BL/6 mice 

i.v. injection 96 

aPD-L1 135 Ferroptosis Subcutaneous MC38 
tumor, C57BL/6 mice 

i.v. injection 97 

aPD-L1 600 Pyroptosis Subcutaneous 
B16-F10 tumor, 
C57BL/6 mice 

i.v. injection 98 

aPD-L1 225 Photodynamic therapy, 
immunotherapy (CpG 

Oligodeoxynucleotides) 

Subcutaneous TUBO 
tumor, BALB/c mice 

i.p. injection 99 

aPD-L1 225 Photothermal therapy, 
immunotherapy (R837) 

Orthotopic 4T1 tumor, 
BALB/c mice 

i.v. injection 100 

aPD-L1 400 Photodynamic therapy, 
chemotherapy 
(doxorubicin) 

Subcutaneous CT26 
tumor, BALB/c mice 

i.v. injection 101 

aPD-L1 300 Photodynamic therapy, 
chemotherapy (oxaliplatin) 

Subcutaneous 4T1 
tumor, BALB/c mice 

i.p. injection 44 

aPD-L1 375 Magnetic hyperthermia 
therapy 

Orthotopic 4T1 tumor, 
BALB/c mice 

i.p. injection 102 

aPD-L1 300 Radiotherapy Subcutaneous CT26 
tumor, BALB/c mice 

i.p. injection 103 

aPD-L1 225 Radiotherapy, 
photothermal therapy 

Subcutaneous 4T1 
tumor, BALB/c mice 

i.t. injection 104 

aPD-L1 1200 Immunotherapy (aCD3, 
aCD28) 

Orthotopic 4T1 tumor, 
Subcutaneous CT26 
tumor, BALB/c mice 

i.v. injection 105 

aPD-L1 180 Sonodynamic therapy, 
immunotherapy (NLG919) 

Subcutaneous Panc02 
tumor, C57BL/6 mice 

i.v. injection This study 
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