Supplementary Information For

Precision Cancer Sono-immunotherapy Using Deep-tissue Activatable Semiconducting Polymer immunomodulatory nanoparticles

Jingchao Li¹, Yu Luo², Ziling Zeng¹, Dong Cui¹, Jiaguo Huang¹, Chenjie Xu¹, Liping Li³, Kanyi Pu^{1,*},

and Ruiping Zhang^{3,*}

¹School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.

² School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.

³ The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China.

*E-mail: kypu@ntu.edu.sg; zrp_7142@sxmu.edu.cn

Supplementary Figure 1. Hydrodynamic diameters of SPNs. Hydrodynamic diameters of SPNs ($20 \mu g/mL$) in 1× PBS (pH = 7.4) measured by DLS (n = 3). Data are presented as mean values ± SD. Source data are provided as a Source Data file.

Supplementary Figure 2. Optical characterization of SPNs. Fluorescence spectra of SPNs in 1× PBS (pH = 7.4). Source data are provided as a Source Data file.

Supplementary Figure 3. Study of sonodynamic ${}^{1}O_{2}$ generation. ESR spectra of SPN1, SPN2, SPN3, SPN4, SPN5, SPN6, SPN8, NCBS, ICG, AO and CUR at the concentration of 20 µg/mL after US irradiation (1.0 MHz, 1.2 W/cm², 50% duty cycle, 5 min) using TEMP as the trap. Source data are provided as a Source Data file.

Supplementary Figure 4. Study of photodynamic ${}^{1}O_{2}$ generation. Fluorescence enhancement (F/F₀) of SOSG (1 µM) at 528 nm in solutions containing SPN1-8, NCBS, ICG, PpIX, AO, CUR or TiO₂ nanoparticles at the concentration of 20 µg/mL after white light irradiation (0.1 W/cm², 1 min) (n = 3). Data are presented as mean values ± SD. Source data are provided as a Source Data file.

Supplementary Figure 5. Sonodynamic stability study. ESR spectra of ICG (**a**), PpIX (**b**) and AO (**c**) at the concentration of 20 µg/mL after 1, 2, 3, and 4 cycles of US irradiation (1.0 MHz, 1.2 W/cm², 50% duty cycle, 5 min for each cycle) with TEMP as the trap. Source data are provided as a Source Data file.

Supplementary Figure 6. Sonodynamic stability study. UV-vis absorption spectra of SPN7 (**a**), ICG (**b**), PpIX (**c**) and AO (**d**) at the concentration of 20 μg/mL after US irradiation (1.0 MHz, 1.2 W/cm², 50% duty cycle, 5 min for each cycle). Source data are provided as a Source Data file.

Supplementary Figure 7. Synthesis of SP7-N₃. Reagents and conditions: i) Zn, NaOH, TBAB, H₂O, 100 °C, 18 h; ii) Br₂, DCM, room temperature, 6 h; iii) Pd(PPh₃)₄, K₂CO₃, methyltrioctylammonium

Supplementary Figure 8. ¹H NMR characterization. ¹H NMR spectrum of compound 1 in CDCl₃.

Supplementary Figure 9. ¹H NMR characterization. ¹H NMR spectrum of compound 2 in CDCl₃.

Supplementary Figure 10. ¹H NMR characterization. ¹H NMR spectrum of SP7-N₃ in CDCI₃.

Supplementary Figure 11. Characterization of SP7-N₃. Gel permeation chromatography (GPC) curve (**a**), UV-vis absorption spectrum (**b**), and fluorescence spectrum (**c**) of SP7-N₃ in THF. Source data are provided as a Source Data file.

Supplementary Figure 12. Synthesis of PEG-N. Reagents and conditions: i) Ac₂O, TiCl₃(OTf), room temperature, 3 h. ii) Acetone, TFA, room temperature, 24 h. iii) KOH, MeOH, room temperature, 16 h. (iv) BTC, TEA, DMAP, DCM, room temperature, 10 h; v) EDCI, DMAP, DCM, room temperature, 12 h.

→ 3.82 3.78 3.78 2.91 2.87 2.87

Supplementary Figure 13. ¹H NMR characterization. ¹H NMR spectrum of PSDE in CDCl₃.

Supplementary Figure 14. ¹H NMR characterization. ¹H NMR spectrum of PSDE-NLG919 in CDCI₃.

Supplementary Figure 15. ¹H NMR characterization. ¹H NMR spectrum of PEG-N in CDCI₃.

Supplementary Figure 16. Synthesis of SPIN₀**.** Reagents and conditions: copper(I)bromide (CuBr), N,N,N',N'',Pentamethyldiethylenetriamin (PMDETA), THF, room temperature, 24 h.

Supplementary Figure 17. Synthesis of SPIN_N. Reagents and conditions: CuSO₄, sodium ascorbate, DMF/THF, room temperature, 24 h.

Supplementary Figure 18. Synthesis of SPN-PEG1. Reagents and conditions: CuSO₄, sodium ascorbate, DMF/THF, room temperature, 24 h.

Supplementary Figure 19. Synthesis of SPN-PEG2. Reagents and conditions: CuSO4, sodium

ascorbate, DMF/THF, room temperature, 24 h.

Supplementary Figure 20. Synthesis of SPN-PEG3. Reagents and conditions: CuSO₄, sodium ascorbate, DMF/THF, room temperature, 24 h.

Supplementary Figure 21. Morphology characterization of SPINs. Representative TEM images of SPIN₀, SPIN_N, SPIN_A, SPIN_{D1}, and SPIN_{D2}. The experiments were repeated independently three times with similar results.

Supplementary Figure 22. Colloidal stability study of SPINs. Hydrodynamic sizes of SPINs after different days of storage in $1 \times PBS$ buffer (pH = 7.4) (n = 3). Data are presented as mean values \pm SD. Source data are provided as a Source Data file.

Supplementary Figure 23. Optical property characterization of SPINs. UV-vis absorption (**a**) and fluorescence (**b**) spectra of SPINs in $1 \times PBS$ buffer (pH = 7.4). Source data are provided as a Source Data file.

Supplementary Figure 24. Cytotoxicity assay of SPINs. In vitro cell viability of Panc02 cancer cells after treatment with SPINs at the final concentrations of 0, 20, 40, 60, 80 and 100 μ g/mL for 24 h. The cells without treatment were used as control. The cell viability was measured using CCK-8 kit (n = 5). Data are presented as mean values ± SD. Source data are provided as a Source Data file.

Supplementary Figure 25. Study of sonodynamic ${}^{1}O_{2}$ generation for SPINs. ESR spectra of SPN7 (a), SPIN₀ (b), SPIN_N (c), SPIN_A (d), SPIN_{D1} (e), and SPIN_{D2} (f) at the same concentration (10 μ g/mL) after US irradiation (1.0 MHz, 1.2 W/cm², 50% duty cycle, 3 min) using TEMP as the trap. Source data are provided as a Source Data file.

Supplementary Figure 26. Photoirradiation-induced drug release. Release profiles of aPD-L1 and NLG919 from SPIN_{D2} (40 μ g/mL) after white light irradiation for different time (n = 4). Data are presented as mean values ± SD. Source data are provided as a Source Data file.

Supplementary Figure 27. In vivo NIR fluorescence imaging of tumor-bearing mice. (a) In vivo NIR fluorescence imaging of Panc02 tumor-bearing mice after systemic administrations of SPIN₀, SPIN_N, SPIN_A, SPIN_{D1}, and SPIN_{D2} (0.2 mL, 0.6 mg/mL) for different time. The white dotted circle indicated tumors. (b) NIR fluorescence (NIRF) intensity of tumors from Panc02 tumor-bearing mice at different post-injection time (n = 3). Data are presented as mean values \pm SD. Source data are provided as a Source Data file.

Supplementary Figure 28. Tumor accumulation of SPINs. Confocal fluorescence images of tumors from Panc02 tumor-bearing mice after systemic injection of SPINs (0.2 mL, 0.6 mg/mL) via tail vein for 24 h. The cell nucleus stained with 4',6-diamidino-2-phenylindole (DAPI) shows blue fluorescence signal and nanoparticles shows red fluorescence signal. The experiments were repeated independently three times with similar results.

Supplementary Figure 29. In vivo biodistribution of SPINs. In vivo biodistribution of SPIN₀ (**a**), SPIN_N (**b**), SPIN_A (**c**), SPIN_{D1} (**d**), SPIN_{D2} (**e**) and free NLG919 (**f**) in subcutaneous Panc02 tumor-bearing mice (n = 5) at 24 h after systemic administration. Data are presented as mean values \pm SD. Source data are provided as a Source Data file.

Supplementary Figure 30. Intratumor ${}^{1}O_{2}$ generation. (a) Representative confocal fluorescence

images of tumor sections from subcutaneous Panc02 tumor-bearing mice after systemic injection of saline, free drug mixture (4 mg/kg body weight for NLG919 and aPD-L1) or SPINs (0.2 mL, 0.6 mg/mL) via tail vein with or without US irradiation (1.0 MHz, 1.2 W/cm², 50% duty cycle, 10 min). The US irradiation of tumor tissues was conducted at 24 h post-injection time. The cell nucleus stained with DAPI shows blue fluorescence signal and SOSG shows green fluorescence signal. (**b**) Mean fluorescence intensity of SOSG in tumors of mice after different treatments (n = 4). Saline + US versus SPIN₀ + US: P < 0.0001; Saline + US versus SPIN_N + US: P < 0.0001; Saline + US versus SPIN_A + US: P < 0.0001; Saline + US versus SPIN_{D1} + US: P < 0.0001; Saline + US versus SPIN_{D2} + US: P < 0.0001. Data are presented as mean values ± SD. Statistical significance was calculated via one-way ANOVA with a Tukey post-hoc test; ***P < 0.001. Source data are provided as a Source Data file.

Supplementary Figure 31. Sonodynamically induced ICD. (a) Immunofluorescence CRT and HMGB1 staining images of tumor sections from Panc02 tumor-bearing mice after systemic injection of saline, free drug mixture (4 mg/kg body weight for NLG919 and aPD-L1) or SPINs (0.2 mL, 0.6 mg/mL) via tail vein with or without US irradiation (1.0 MHz, 1.2 W/cm², 50% duty cycle, 10 min). The assay was conducted at 24 h after treatments. The cell nucleus stained by DAPI shows blue fluorescence signal, CRT and HMGB1 stained by corresponding antibodies show green fluorescence signal. (b-c) Mean fluorescence intensity (MFI) of CRT (b) and HMGB1 (c) staining in tumor sections from different groups (n = 4). Saline + US versus SPIN₀ + US: P < 0.0001; Saline +

US versus SPIN_N + US: P < 0.0001; Saline + US versus SPIN_A + US: P < 0.0001; Saline + US versus SPIN_{D1} + US: P < 0.0001; Saline + US versus SPIN_{D2} + US: P < 0.0001 for CRT (**b**); Saline + US versus SPIN₀ + US: P = 0.0018; Saline + US versus SPIN_N + US: P < 0.0001; Saline + US versus SPIN_A + US: P < 0.0001; Saline + US versus SPIN_{D1} + US: P < 0.0001; Saline + US versus SPIN_{D2} + US: P < 0.0001; Saline + US versus SPIN_{D1} + US: P < 0.0001; Saline + US versus SPIN_{D2} + US: P < 0.0001 for HMGB1 (**c**). (**d**) Relative ATP levels in subcutaneous Panc02 tumors (n = 4) after different treatments for 24 h. Saline + US versus SPIN₀ + US: P < 0.0001; Saline + US versus SPIN_A + US: P < 0.0001; Saline + US versus SPIN_A + US: P = 0.0036; Saline + US versus SPIN_A + US: P < 0.0001; Saline + US versus SPIN_{D2} + US: P = 0.0023; Saline + US versus SPIN_{D2} + US: P = 0.0015. Data are presented as mean values ± SD. Statistical significance was calculated via one-way ANOVA with a Tukey post-hoc test; **P < 0.01, ***P < 0.001. Source data are provided as a Source Data file.

Supplementary Figure 32. Evaluation of PD-L1 expression. (a) Immunofluorescence PD-L1 staining images of tumor sections from Panc02 tumor-bearing mice after systemic injection of saline, free drug mixture (4 mg/kg body weight for NLG919 and aPD-L1) or SPINs (0.2 mL, 0.6 mg/mL) via tail vein with or without US irradiation (1.0 MHz, 1.2 W/cm², 50% duty cycle, 10 min). The cell nucleus stained by DAPI shows blue fluorescence signal, PD-L1 stained by corresponding antibody shows green fluorescence signal. (b) MFI of PD-L1 staining in tumor sections after different treatments (n = 4). Saline + US versus SPIN₀ + US: P < 0.0001; Saline + US versus SPIN_A + US: P < 0.0001; Saline + US versus SPIN_{D2} + US: P < 0.0001; Saline + US versus SPIN_{D2} + US: P < 0.0001. Data are presented as mean values ± SD. Statistical significance was calculated via one-way ANOVA with a Tukey post-hoc test; ***P < 0.001.

Supplementary Figure 33. Study of sonodynamically induced tumor-infiltrating lymphocytes in tumor tissues. Representative immunohistochemical staining images of CD3⁺ (a) and CD8⁺ (b) tumor-infiltrating lymphocytes in tumor tissues from tumor-bearing mice after different treatments for 3 days. Brown staining represents CD3⁺ and CD8⁺ tumor-infiltrating lymphocytes. The experiments in a and b were repeated independently three times with similar results.

nucleus stained by DAPI shows blue fluorescence signal, TUNEL stained by corresponding antibody shows red fluorescence signal. The experiments in a and b were repeated independently three times with similar results.

Supplementary Figure 35. Evaluation of tumor growth inhibition efficacy. Relative tumor volumes of primary (a) and distant (b) tumors of Panc02 tumor-bearing C57BL/6 mice (n = 6) after systemic injection of SPIN₀, SPIN_N, SPIN_A, or SPIN_{D1} (0.2 mL, 0.6 mg/mL) with US irradiation (1.0 MHz, 1.2 W/cm², 50% duty cycle, 10 min). Data are presented as mean values \pm SD. Source data are provided as a Source Data file.

Supplementary Figure 36. Evaluation of survival of mice after different treatments. Survival curves of Panc02 tumor-bearing C57BL/6 mice (n = 10) after systemic injection of SPIN₀, SPIN_N, SPIN_A, or SPIN_{D1} (0.2 mL, 0.6 mg/mL) with US irradiation (1.0 MHz, 1.2 W/cm², 50% duty cycle, 10 min). Source data are provided as a Source Data file.

Supplementary Figure 37. Flow cytometry analysis of effector memory T cells. (**a**) Gating strategy for flow cytometry analysis of effector memory T cells. (**b**) Representative flow cytometry plots of effector memory T cells (CD44⁺CD62L⁻) in spleen of Panc02 tumor-bearing mice after different treatments followed by tumor rechallenge.

Supplementary Figure 38. Gene expression assay of immune-related genes. GO enrichment analysis of differentially upregulated genes associated with immune processes. Statistical significance was calculated via two-tailed Student's t-test.

Supplementary Figure 39. Gating strategy for flow cytometry analysis. Gating strategy for flow

Supplementary Figure 40. Flow cytometry analysis of matured DCs. (a) Representative flow cytometry plots of matured DCs (CD80⁺CD86⁺ gating on CD11c⁺) in tumor-draining lymph nodes of Panc02 tumor-bearing C57BL/6 mice after different treatments. (b) Populations of CD80⁺CD86⁺ DCs in tumor-draining lymph nodes of mice after different treatments (n = 4). Saline + US versus SPIN_{D2} + US: P < 0.0001; Drug + US versus SPIN_{D2} + US: P < 0.0001; SPIN_{D1} + US versus SPIN_{D2} + US: P = 0.0090. Data are presented as mean values ± SD. Statistical significance was calculated via two-tailed Student's t-test; **P < 0.01, ***P < 0.001. Source data are provided as a Source Data file.

Supplementary Figure 41. Flow cytometry analysis of CTLs. Populations of CD3⁺CD8⁺ T cells in primary tumors (**a**) and distant tumors (**b**) of mice after different treatments (n = 4). Saline + US versus SPIN_{D2} + US: P < 0.0001; Drug + US versus SPIN_{D2} + US: P < 0.0001; SPIN_{D1} + US versus SPIN_{D2} + US: P = 0.0183 for primary tumors (**a**); Saline + US versus SPIN_{D2} + US: P < 0.0001; Drug + US versus SPIN_{D2} + US: P < 0.0001; Drug + US versus SPIN_{D2} + US: P < 0.0001; Drug + US versus SPIN_{D2} + US: P < 0.0001; Drug + US versus SPIN_{D2} + US: P < 0.0001; Drug + US versus SPIN_{D2} + US: P < 0.0001; Drug + US versus SPIN_{D2} + US: P < 0.0001; Drug + US versus SPIN_{D2} + US: P < 0.0001; Drug + US versus SPIN_{D2} + US: P < 0.0001; Drug + US versus SPIN_{D2} + US: P < 0.0001; Drug + US versus SPIN_{D2} + US: P < 0.0001; Drug + US versus SPIN_{D2} + US: P < 0.0001; Drug + US versus SPIN_{D2} + US: P < 0.0001; Drug + US versus SPIN_{D2} + US: P < 0.0001; Drug + US versus SPIN_{D2} + US: P < 0.0001; Drug + US versus SPIN_{D2} + US: P < 0.0001; Drug + US versus SPIN_{D2} + US: P < 0.0001; Drug + US versus SPIN_{D2} + US: P < 0.0001; Drug + US versus SPIN_{D2} + US: P < 0.0001; Drug + US versus SPIN_{D2} + US: P < 0.0001; Drug + US versus SPIN_{D2} + US: P < 0.0001; Drug + US versus SPIN_{D2} + VS versus SPIN_{D2}

Supplementary Figure 42. Flow cytometry analysis of T_{reg} **cells.** Populations of T_{reg} cells in primary tumors (**a**) and distant tumors (**b**) of mice after different treatments (n = 4). Saline + US versus SPIN_{D2} + US: P < 0.0001; Drug + US versus SPIN_{D2} + US: P < 0.0001; SPIN_{D1} + US versus SPIN_{D2} + US: P = 0.0216 for primary tumors (**a**); Saline + US versus SPIN_{D2} + US: P < 0.0001; Drug + US versus SPIN_{D2} + US: P < 0.0001; Drug + US versus SPIN_{D2} + US: P < 0.0001; Drug + US versus SPIN_{D2} + US: P < 0.0001; Drug + US versus SPIN_{D2} + US: P < 0.0001; Drug + US versus SPIN_{D2} + US: P < 0.0001; Drug + US versus SPIN_{D2} + US: P < 0.0001; Drug + US versus SPIN_{D2} + US: P < 0.0001; Drug + US versus SPIN_{D2} + US: P < 0.0001; Drug + US versus SPIN_{D2} + US: P < 0.0001; Drug + US versus SPIN_{D2} + US: P < 0.0001; Drug + US versus SPIN_{D2} + US: P < 0.0001; Drug + US versus SPIN_{D2} + US: P < 0.0001; Drug + US versus SPIN_{D2} + US: P < 0.0001; Drug + US versus SPIN_{D2} + US: P < 0.0001; Drug + US versus SPIN_{D2} + US: P < 0.0001; Drug + US versus SPIN_{D2} + US: P < 0.0001; Drug + US versus SPIN_{D2} + US: P < 0.0001; Drug + US versus SPIN_{D2} + US: P < 0.0001; Drug + US versus SPIN_{D2} + US: P < 0.0001; Drug + US versus SPIN_{D2} + VS versus SPIN_{D2} + VS versus SPIN_{D2} + VS versus SPIN_{D2} +

Supplementary Figure 43. Evaluation of CD8⁺ T cells in tumor tissues. Immunofluorescence CD8 staining images of tumor sections from Panc02 tumor-bearing mice after systemic injection of saline, free drug mixture (4 mg/kg body weight for NLG919 and aPD-L1) or SPIN_{D2} (0.2 mL, 0.6 mg/mL) via tail vein with or without US irradiation (1.0 MHz, 1.2 W/cm², 50% duty cycle, 10 min). The cell nucleus stained by DAPI shows blue fluorescence signal, CD8 stained by corresponding antibody show red fluorescence signal. The experiments were repeated independently three times with similar results.

Supplementary Figure 44. Evaluation of IFN- γ and Granzyme B expression levels in tumors. (a,b) Immunofluorescence IFN- γ (a) and Granzyme B (b) staining images of tumor sections from Panc02 tumor-bearing mice after systemic injection of saline, free drug mixture (4 mg/kg body weight for NLG919 and aPD-L1) or SPINs (0.2 mL, 0.6 mg/mL) via tail vein with or without US irradiation (1.0 MHz, 1.2 W/cm², 50% duty cycle, 10 min). The cell nucleus stained by DAPI shows blue fluorescence signal, IFN- γ and Granzyme B stained by corresponding antibodies show green fluorescence signal. (c,d) MFI of IFN- γ (c) and Granzyme B (d) staining in tumor sections from different groups (n = 4). Saline + US versus SPIN₀ + US: *P* < 0.0001; Saline + US versus SPIN_N + US: P < 0.0001; Saline + US versus SPIN_A + US: P < 0.0001; Saline + US versus SPIN_{D1} + US: P < 0.0001; Saline + US versus SPIN_{D2} + US: P < 0.0001 for IFN- γ (**c**); Saline + US versus SPIN_N + US: P = 0.0161; Saline + US versus SPIN_A + US: P < 0.0001; Saline + US versus SPIN_{D1} + US: P = 0.0023; Saline + US versus SPIN_{D2} + US: P < 0.0001 for Granzyme B (**d**). Data are presented as mean values ± SD. Statistical significance was calculated via one-way ANOVA with a Tukey post-hoc test; *P < 0.05, ***P < 0.001. Source data are provided as a Source Data file.

Supplementary Figure 45. Flow cytometry analysis of CTLs after deep-tissue therapy using SPINs. (a) Representative flow cytometry plots of CTLs (CD3⁺CD8⁺ gating on CD45⁺) in 5-cm tissue covered tumors from Panc02 tumor-bearing mice after systemic injection of saline, free drug mixture (4 mg/kg body weight for NLG919 and aPD-L1), SPIN₀ or SPIN_{D2} (0.2 mL, 0.6 mg/mL) with or without US irradiation (1.0 MHz, 1.2 W/cm², 50% duty cycle, 10 min). (b) Populations of CD3⁺CD8⁺ T cells in 5-cm tissue covered tumors of mice after different treatments (n = 4). Drug + US versus SPIN_{D2} + US: P=0.0012; SPIN₀ + US versus SPIN_{D2} + US: P=0.0041. Data are presented as mean values ± SD. Statistical significance was calculated via two-tailed Student's t-test; **P < 0.01. Source data are provided as a Source Data file.

Supplementary Figure 46. Histological analysis of orthotopic pancreatic rabbit tumors after different treatments. Immunofluorescence TUNEL staining images of orthotopic pancreatic rabbit

tumors after different treatments. The cell nucleus stained by DAPI shows blue fluorescence signal, TUNEL stained by corresponding antibody shows green fluorescence signal. The experiments were repeated independently three times with similar results.

Supplementary Figure 47. Evaluation of T cells in blood. Representative flow cytometry plots of CD3⁺CD4⁺ and CD3⁺CD8⁺ T cells in blood of mice at day 30 after systemic administrations of saline, SPIN₀, SPIN_{D2} (0.2 mL, 1.2 mg/mL) or free drug mixture (8 mg/kg body weight for NLG919 and aPD-L1) with or without US irradiation (1.0 MHz, 1.2 W/cm², 50% duty cycle, 10 min).

Supplementary Figure 48. Evaluation of T cells in spleen. Representative flow cytometry plots of CD3⁺CD4⁺ and CD3⁺CD8⁺ T cells in spleen of mice at day 30 after systemic administrations of saline, SPIN₀, SPIN_{D2} (0.2 mL, 1.2 mg/mL) or free drug mixture (8 mg/kg body weight for NLG919 and aPD-L1) with or without US irradiation (1.0 MHz, 1.2 W/cm², 50% duty cycle, 10 min).

Supplementary Figure 49. In vivo biocompatibility studies by histological analysis. Representative H&E staining images of heart, spleen, lung and kidney of mice at day 30 after systemic administrations of saline, $SPIN_0$, $SPIN_{D2}$ (0.2 mL, 1.2 mg/mL) or free drug mixture (8 mg/kg body weight for NLG919 and aPD-L1) with or without US irradiation (1.0 MHz, 1.2 W/cm², 50% duty cycle, 10 min). The experiments were repeated independently three times with similar results.

Supplementary Figure 50. CD3⁺ T cell infiltration studies by immunofluorescence imaging. Representative immunofluorescence CD3 staining images of heart, liver, spleen, lung and kidney of mice at day 30 after systemic administrations of saline, SPIN₀, SPIN_{D2} (0.2 mL, 1.2 mg/mL) or free drug mixture (8 mg/kg body weight for NLG919 and aPD-L1) with or without US irradiation (1.0 MHz, 1.2 W/cm², 50% duty cycle, 10 min). Cell nucleus stained by DAPI shows blue fluorescence signal; CD3 stained by the corresponding antibody shows red fluorescence signal. The experiments were repeated independently four times with similar results.

Supplementary Figure 51. CD3⁺ T cell infiltration quantification in major organs. Relative MFI for CD3 staining in heart (**a**), lung (**b**), kidney (**c**), liver (**d**) and spleen (**e**) of mice at day 30 after systemic administrations of saline, SPIN₀, SPIN_{D2} (0.2 mL, 1.2 mg/mL) or free drug mixture (8 mg/kg body weight for NLG919 and aPD-L1) with or without US irradiation (1.0 MHz, 1.2 W/cm², 50% duty cycle, 10 min) (n = 4). Saline - US versus Drug - US: P = 0.0012; Saline - US versus Drug + US: P = 0.0030; Drug + US versus SPIN_{D2} + US: P = 0.0047 for liver (**d**); Saline - US versus Drug - US: P < 0.0001; Saline - US versus Drug + US: P < 0.0001; Drug + US versus Drug + US: P < 0.0001; Drug + US versus Drug + US: P < 0.0001; Drug + US versus Drug + US: P < 0.0001; Drug + US versus Drug + US: P < 0.0001; Drug + US versus Drug + US: P < 0.0001; Drug + US versus Drug + US: P < 0.0001; Drug + US versus Drug + US: P < 0.0001; Drug + US versus Drug + US: P < 0.0001; Drug + US versus Drug + US: P < 0.0001; Drug + US versus Drug + US: P < 0.0001; Drug + US versus Drug + US: P < 0.0001; Drug + US versus Drug + US: P < 0.0001; Drug + US versus Drug + US: P < 0.0001; Drug + US versus Drug + US: P < 0.0001 for spleen (**e**). Data are presented as mean values ± SD. Statistical significance was calculated via two-tailed Student's t-test; **P < 0.01, ***P < 0.001. Source data are provided as a Source Data file.

Supplementary Figure 52. C4⁺ T cell infiltration studies by immunofluorescence imaging. Representative immunofluorescence CD4 staining images of heart, liver, spleen, lung and kidney of mice at day 30 after systemic administrations of saline, SPIN₀, SPIN_{D2} (0.2 mL, 1.2 mg/mL) or free drug mixture (8 mg/kg body weight for NLG919 and aPD-L1) with or without US irradiation (1.0 MHz, 1.2 W/cm², 50% duty cycle, 10 min). Cell nucleus stained by DAPI shows blue fluorescence signal; CD4 stained by the corresponding antibody shows red fluorescence signal. The experiments were repeated independently four times with similar results.

Supplementary Figure 53. CD4⁺ T cell infiltration quantification in major organs. Relative MFI for CD4 staining in heart (a), lung (b), kidney (c), liver (d) and spleen (e) of mice at day 30 after

systemic administrations of saline, SPIN₀, SPIN_{D2} (0.2 mL, 1.2 mg/mL) or free drug mixture (8 mg/kg body weight for NLG919 and aPD-L1) with or without US irradiation (1.0 MHz, 1.2 W/cm², 50% duty cycle, 10 min) (n = 4). Saline - US versus Drug - US: *P*<0.0001; Saline - US versus Drug + US: *P*<0.0001; Drug + US versus SPIN_{D2} + US: *P*=0.0002 for liver (d); Saline - US versus Drug - US: *P*<0.0001; Saline - US versus Drug + US: *P*<0.0001; Drug + US versus SPIN_{D2} + US: *P*<0.0001 for spleen (e). Data are presented as mean values ± SD. Statistical significance was calculated via two-tailed Student's t-test; ****P* < 0.001. Source data are provided as a Source Data file.

Supplementary Figure 54. C8⁺ T cell infiltration studies by immunofluorescence imaging. Representative immunofluorescence CD8 staining images of heart, liver, spleen, lung and kidney of mice at day 30 after systemic administrations of saline, SPIN₀, SPIN_{D2} (0.2 mL, 1.2 mg/mL) or free drug mixture (8 mg/kg body weight for NLG919 and aPD-L1) with or without US irradiation (1.0 MHz, 1.2 W/cm², 50% duty cycle, 10 min). Cell nucleus stained by DAPI shows blue fluorescence signal; CD8 stained by the corresponding antibody shows red fluorescence signal. The experiments were repeated independently four times with similar results.

Supplementary Figure 55. CD8⁺ T cell infiltration quantification in major organs. Relative MFI for CD8 staining in heart (**a**), lung (**b**), kidney (**c**), liver (**d**) and spleen (**e**) of mice at day 30 after systemic administrations of saline, SPIN₀, SPIN_{D2} (0.2 mL, 1.2 mg/mL) or free drug mixture (8 mg/kg body weight for NLG919 and aPD-L1) with or without US irradiation (1.0 MHz, 1.2 W/cm², 50% duty cycle, 10 min) (n = 4). Saline - US versus Drug - US: *P*<0.0001; Saline - US versus Drug + US: *P*<0.0001; Drug + US versus SPIN_{D2} + US: *P*<0.0001 for liver (**d**); Saline - US versus Drug - US: *P*<0.0001; Saline - US versus Drug + US: *P*<0.0001; Drug + US versus Drug + US: *P*<0.0028 for spleen (**e**). Data are presented as mean values ± SD. Statistical significance was calculated via two-tailed Student's t-test; ***P*<0.01, ****P*<0.001. Source data are provided as a Source Data file.

Supplementary Figure 56. Evaluation of cytokine levels in serum. The levels of IL-23 (a), IL-1a (b), IFN- γ (c), TNF- α (d), MCP-1 (e), IL-1 β (f), IL-10 (g), IL-6 (h), IL-27 (i), IL-17A (j), IFN- β (k) and GM-CSF (I) in serum of mice at day 30 after systemic administrations of saline, SPIN₀, SPIN_{D2} (0.2 mL, 1.2 mg/mL) or free drug mixture (8 mg/kg body weight for NLG919 and aPD-L1) with or without US irradiation (1.0 MHz, 1.2 W/cm², 50% duty cycle, 10 min) (n = 5). Data are presented as mean values ± SD. Statistical significance was calculated via two-tailed Student's t-test; **P*<0.05, ***P*<0.01, ****P*<0.001. Source data are provided as a Source Data file.

Supplementary Figure 57. Blood biochemical analysis. The levels of ALP (**a**), CREA (**b**), UREA (**c**), and GGT (**d**) in serum of mice at day 30 after systemic administrations of saline, SPIN₀, SPIN_{D2} (0.2 mL, 1.2 mg/mL) or free drug mixture (8 mg/kg body weight for NLG919 and aPD-L1) with or without US irradiation (1.0 MHz, 1.2 W/cm², 50% duty cycle, 10 min) (n = 5). Saline - US versus Drug + US: *P*=0.0180 for ALP (**a**); Drug + US versus SPIN_{D2} + US: *P*=0.0344 for GGT (**d**). Data are presented as mean values ± SD. Statistical significance was calculated via two-tailed Student's t-test; **P* < 0.05. Source data are provided as a Source Data file.

Supplementary Figure 58. Blood routine analysis. Blood routine analysis of RBC (a), WBC (b), HGB (c), MCH (d), MCHC (e), MCV (f), RDWSD (g), RDWCV (h), PLT (i), PCT (j), MPV (k), PDW (I) P-LCR (m) in serum of mice at day 30 after systemic administrations of saline, SPIN₀, SPIN_{D2} (0.2 mL, 1.2 mg/mL) or free drug mixture (8 mg/kg body weight for NLG919 and aPD-L1) with or without US irradiation (1.0 MHz, 1.2 W/cm², 50% duty cycle, 10 min) (n = 5). Data are presented as mean values \pm SD. Source data are provided as a Source Data file.

Supplementary Figure 59. Evaluation of mouse body weight change. Body weights of mice after systemic administrations of saline, $SPIN_0$, $SPIN_{D2}$ (0.2 mL, 1.2 mg/mL) or free drug mixture (8 mg/kg body weight for NLG919 and aPD-L1) with or without US irradiation (1.0 MHz, 1.2 W/cm², 50% duty cycle, 10 min) (n = 5). Data are presented as mean values ± SD. Source data are provided as a Source Data file.

Tumor models and	Combinational	Material type	LIS irradiation conditions	Reference
mouse strains	therapy	Material type		Reference
Subcutaneous C32 tumor, Balb/c athymic nude mice	No	TiO ₂ nanoparticles	1 MHz, 1 W/cm², 50% duty cycle, 2 min	1
Subcutaneous SCC7 tumor, C3H/HeN mice.	No	Au-TiO ₂ nanocomposites	1.5 MHz, 30 W, 10% duty cycle, 30 s	2
Subcutaneous 4T1 tumor, BALB/c nude mice	No	PpIX and manganese ions loaded silica nanoparticles	1 MHz, 2.3 W/cm², 50% duty cycle, 5 min	3
Subcutaneous PANC-1 tumor, nude mice	No	IR780/fluorocarbon modified silica nanoparticles	1 MHz, 1 W/cm², 100% duty cycle, 3 min	4
Subcutaneous U87 tumor, BALB/c nude mice	No	Protoporphyrin/MnO _x silica nanoparticles	1 MHz, 1.5 W/cm², 50% duty cycle, 3 min	5
Subcutaneous 4T1 tumor, BALB/c mice	No	Porphyrin contained metal-organic framework	1 MHz, 2.5 W/cm², 50% duty cycle, 5 min	6
Subcutaneous MCF-7 tumor, nude mice	No	Methylphenylporphyrin based human serum albumin (HSA)	1 MHz, 2 W/cm ² , 50% duty cycle, 5 min	7
Subcutaneous 4T1 tumor, BALB/c mice	No	Bimetallic oxide MnWO _X nanoparticles	40 kHz, 3 W/cm², 50% duty cycle, 5 min	8
Subcutaneous MCF-7 tumor, BALB/c nude mice	No	Au/TiO ₂ nanosheets	1 MHz, 1.5 W/cm², 5 min	9
Subcutaneous C6 tumor, BALB/c nude mice	No	PpIX modified MnO ₂ nanoparticles	1 MHz, 1.5 W/cm², 50% duty cycle, 3 min	10
Subcutaneous CT26 tumor, BALB/c nude mice	No	Mn(III)-hemoporfin frameworks	1 MHz, 2.5 W/cm ² , 50% duty cycle, 10 min	11
Subcutaneous 4T1 tumor, BALB/c nude mice	No	Carbon dot/MXene heterojunctions	50 kHz, 3 W/cm ² , 5 min	12

Supplementary lable 1. Summary of nanomaterials for in vivo sonodynamic therapy of	of tumors.
--	------------

Subcutaneous 4T1 tumor, BALB/c nude mice	No	Iridic-porphyrin complex	3 MHz, 0.3 W/cm ² , 20 min	13
Subcutaneous LNCaP tumor, BALB/c SCID mice	No	Hematoporphyrin loaded poly(L-glutamic acid-L-tyrosine) nanoparticles	1 MHz, 3.5 W/cm ² , 30% duty cycle, 3.5 min	14
Subcutaneous U87MG tumor, BALB/c nude mice	No	IR780 and MnO₂ encapsulated PLGA nanoparticles	3 W/cm², 50% duty cycle, 5 min	15
Subcutaneous MDA-MB-231 tumor, BALB/c nude mice	No	N-doped graphene quantum dots	1 MHz, 2.5 W/cm ² , 50% duty cycle, 5 min	16
Subcutaneous B16 tumor, C57BL/6 mice	No	δ-Aminolevulinic acid loaded manganese ferrite nanoparticles	1 MHz, 1.5 W/cm², 50% duty cycle	17
Patient-derived tumor xenograft, BALB/c nude mice	No	Patient-derived MVs/AIEgen hybrid system	1 MHz, 0.75 W/cm ² , 30% duty cycle, 10 min	18
Subcutaneous 4T1 tumor, BALB/c mice	No	Hemoglobin-based metalloporphyrin	1 MHz, 1.5 W/cm², 50% duty cycle, 5 min	19
Subcutaneous 4T1 tumor, BALB/c mice	No	Defect-rich Ti-based metal– organic framework	1 MHz, 1.5 W/cm², 50% duty cycle, 5 min	20
Subcutaneous 4T1 tumor, BALB/c mice	No	Pt-based branched vanadium tetrasulfide nanodendrites	1 MHz, 1.5 W/cm², 50% duty cycle, 5 min	21
Subcutaneous BxPC-3 tumor, BALB/c nude mice	Starvation therapy	Erythrocyte membrane camouflaged metal–organic framework integrated with platinum nanoparticles and glucose oxidase	3 MHz, 1.5 W/cm ² , 10 min	22
Orthotopic BxPC-3 tumor, Balb/c SCID mice	Chemotherapy	Rose bengal and 5-fluorouracil functionalized magnetic microbubbles	1 MHz, 3.5 W/cm ² , 30% duty cycle, 3.5 min	23
Subcutaneous SMMC-7721 tumor, BALB/c nude mice	Chemotherapy	Doxorubicin loaded and PpIX conjugated silica nanoparticles	1 MHz, 1.5 W/cm², 50% duty cycle, 5 min	24
Subcutaneous MDA-MB-231 tumor, BALB/c nude mice	Chemotherapy	Doxorubicin loaded TiO ₂ nanoparticles	1.5 MHz, 15 W/cm ² , 20% duty cycle, 5 min	25
Subcutaneous 4T1 tumor, BALB/c mice	Chemotherapy	Doxorubicin loaded Pt/TiO ₂ nanoparticles	1 MHz, 1.5 W/cm², 50% duty cycle, 5 min	26
Subcutaneous BxPC-3 tumour, SCID mice	Chemotherapy	Rose bengal and gemcitabine functionalized magnetic microbubbles	1.17 MHz, 30% duty cycle, 3.5 min	27
Subcutaneous HeLa tumor, Nu/Nu nude mice	Chemodynamic therapy	H ₂ O ₂ /Fe ₃ O ₄ -PLGA polymersomes	40 MHz, 30 min	28
Subcutaneous Saos-2 tumor, BALB/c nude mice	Chemodynamic therapy	Ferrate(VI) and PpIX loaded silica nanoplatforms	1 MHz, 1.4 W/cm ² , 5 min	29
Orthotopic 97H tumor, BALB/c nude mice	Chemodynamic therapy	Gold/manganese oxide hybrid nanoparticles	1 MHz, 2 W/cm ² , 10 min	30
Subcutaneous 4T1 tumor, BALB/c mice	Chemodynamic therapy	PtCu₃ nanocages	35 kHz, 3 W/cm ² , 1 min per cycle for ten cycles, 10 min	31
Subcutaneous 4T1 tumor, BALB/c nude mice	Chemodynamic therapy	TiO ₂ -Fe ₃ O₄@PEG Janus nanostructure	1 MHz, 1.5 W/cm², 50% duty cycle, 5 min	32
Subcutaneous 4T1 and H22 tumors, BALB/c mice	Ferroptosis	Manganese porphyrin-based metal-organic framework	1 MHz, 1 W/cm², 50% duty cycle, 5-10 min	33
Subcutaneous RIF-1 tumor, C3H/HeN mice	Photodynamic therapy	Hematoporphyrin and indocyanine green loaded PLGA nanoparticles	1 MHz, 3.5 W/cm ² , 50% duty cycle, 3.5 min	34
Subcutaneous 4T1 tumor, BALB/c nude	Photothermal therapy	Graphene-integrated TiO ₂ nanoparticles	1 MHz, 1 W/cm ² , 50% duty cycle, 5 min	35

mice				
Subcutaneous 4T1	Photothermal	TiO _{2-x} laver coated TiO ₂	1 MHz 1 5 W/cm ² 50%	36
tumor, nude mice	therapy	nanocrystals	duty cycle, 5 min	
Subcutaneous CT26	Photothermal	Tetra-(4-aminophenyl)	1 MHz, 1 W/cm ² , 60% duty	37
tumor, BALB/c nude	therapy	porphyrin loaded Pt-CuS	cycle, 5 min	
mice		nanoparticles		
Subcutaneous 4T1	Photothermal	Polypyrrole coated and	1 MHz, 1.5 W/cm ² , 1 min	38
tumor, BALB/c mice	therapy,	honokiol loaded IiO ₂		
Subautanaaya	Chemotherapy	nanoparticles	$1 \text{ MHz} 2 4 \text{ M/sm}^2 = 60\%$	20
MDA-MB-231 tumor	nhotodynamic	Peplide-ICG hanomicelles	duty cycle 5 min	39
nude mice	therapy		duty cycle, 5 min	
Subcutaneous 4T1	Photothermal	Polypeptide-capped Te	1 MHz, 1 W/cm ² , 2 min	40
tumor, BALB/c mice	therapy	nanorods	, , ,	
Subcutaneous 4T1	Photothermal	Titanium carbide nanosheets	40 kHz, 3 W/cm ² , 1 min per	41
tumor, BALB/c mice	therapy		cycle, 15 cycles	
Subcutaneous HeLa	Photothermal	Cancer cell membrane	1 MHz, 1 W/cm ² , 50% duty	42
tumor, BALB/c nude	therapy	camouflaged iridium	cycle, 5 min	
mice		complexes functionalized		
Cubautanaaua 4T4	Dhatatha waal	black-titanium nanoparticles	40 kl l= 2.0 \ \ / am ² 50%	40
Subcutaneous 411	Photothermal	l itanium nitride nanodots	40 KHZ, 3.0 W/Cm ² , 50%	43
Orthotopic 4T1	Immunotherany	Hematoporphyrin loaded	$1 \text{ MHz} \ 1.5 \text{ W/cm}^2 \ 50\%$	11
tumor BAI B/c mice	(TI R7 agonist	liposomes	duty cycle 5 min	
	and aPD-L1)	ipeceniec		
Subcutaneous 4T1	Immunotherapy	Gold-black phosphorus	1 MHz, 1 W/cm ² , 3 min	45
tumor, BALB/c mice	(NLG919), gas	quantum dots-doped		
	therapy	mesoporous silica		
		nanoframeworks		
Subcutaneous	Immunotherapy	Melanoma cell	1 MHz, 3 W/cm ² , 20% duty	46
B16F10 tumor,	(aPD-L1)	membrane-coated IIO ₂	cycle, 5 min	
BALB/C MICE				
Subcutaneous 4T1	Immunotherapy	Protoporphyrin-modified	1 MHz 1 W/cm ² 50% duty	47
tumor. BALB/c mice	(immunogenic cell	mesoporous organosilica	cvcle, 5 min	.,
	death)	nanoparticles	- y , e	
Subcutaneous CT26	Immunotherapy	Zn ²⁺ -tetrakis(4-carboxyphenyl)	40 kHz, 2 W/cm ² , 30 min.	48
tumor, BALB/c mice	(TLR9 agonist)	porphyrin nanosheets		
Subcutaneous	Immunotherapy	Titanium dioxide-Chlorin	1 MHz, 2 W/cm ² , 50% duty	49
hepa1-6 tumor,	(CpG and	e6-CpG nanosonosensitizers	cycle, 7 min	
C57BL/6 mice	aPD-L1)			
Subcutaneous U14	Immunotherapy	L-arginine (LA)-loaded	1 MHz, 1.5 W/cm ² , 50%	50
tumor, BALB/C mice	(aPD-L1), gas	black mesoporous titania	duty cycle, 5 min	
Subcutaneous /T1	Gas therany	Perfluorodecalin and IR780	1 MHz 1 W/cm ² 5 min	51
tumor BAI B/c mice	Immunotherapy,	encapsulated human serum		51
	(M1	albumin-based NO donor		
	macrophages)			
Subcutaneous 4T1	Immunotherapy	Manganese	1 MHz, 2 W/cm ² , 50% duty	52
tumor, BALB/c mice	(M1	protoporphyrin liposomes	cycle, 5 min	
	macrophages)			
Subcutaneous 4T1	Immunotherapy	Titanium dioxide@CaP	3 MHz, 2.1 W, 20 min	53
tumor, BALB/c mice	(aPD-L1)	nanoparticles		F 4
Subcutaneous	immunotherapy	CpG loaded manganese	1 MHZ, 1 W/cm ² , 50% duty	54
C57BL/6 mico		porpriyrin-based	cycle, 10 min	
Subcutaneous	Immunotherapy	Chlorin e6@aPD_I 1 linide	2 MHz 2 W/cm ² 20% duty	55
B16-F10 tumor	(aPD-I 1)		z when z , z when z , z of	55
C57BL/6 mice			<i>cycle</i> , 10 mm	
Subcutaneous 4T1	Immunotherapy	CoFe ₂ O ₄ Nanoflowers	1 MHz, 1 W/cm ² , 20% dutv	56
tumor, BALB/c mice	(aPD-L1)		cycle, 5 min	

Supplementary Table 2. Summary of injection dosage of NLG919 and aPD-L1 for combinational

immunotherapy of different tumor models.

Immunotherapeutic	Dosage	Combinational therapy	Tumor models and	Injection way	Reference
modulator	(µg/mouse)		mouse strains		

NLG919	2500	Chemotherapy (paclitaxel)	Subcutaneous 4T1 tumor, BALB/c mice	i.v. injection	57
NLG919	2100	Chemotherapy	Subcutaneous 4T1	i.v. injection	58
NIL CO10	2000	(doxorubicin)	tumor, BALB/c mice	intragastria	50
INLO919	2000		B16-F10 tumor,	administration	55
			C57BL/6 mice		
NLG919	2500	Chemotherapy (oxaliplatin)	Subcutaneous 4T1	i.v. injection	60
NLG919	2500	Chemotherapy (paclitaxel)	Subcutaneous 4T1	i.v. injection	61
NII 0040	0000	Oh a waa tiha waxaya	tumor, BALB/c mice	Qual	<u> </u>
NLG919	2000	(doxorubicin)	tumor. BALB/c mice	orai administration	62
NLG919	2100	Chemotherapy (docetaxel)	Subcutaneous 4T1	i.v. injection	63
NIL C010	2400	Chamatharany	tumor, BALB/c mice	iv injection	64
NEG919	2400	(gemcitabine and paclitaxel)	tumor, C57BL/6 mice	i.v. injection	04
NLG919	480	Chemotherapy (curcumin)	Subcutaneous B16F10 tumor, C57BL/6 mice	i.v. injection	65
NLG919	400	Chemotherapy (oxaliplatin)	Subcutaneous and	i.v. injection	66
			C57BL/6 mice		
NLG919	2000	Chemotherapy	Subcutaneous 4T1	i.v. injection	67
NIL CO10	300	(doxorubicin)	tumor, BALB/c mice	i v injection	68
NEG919	500	(chlorambucil)	tumor, BALB/c mice	i.v. injection	00
NLG919	900	Chemotherapy (paclitaxel)	Subcutaneous B16F10 tumor, C57BL/6 mice	i.v. injection	69
NLG919	1500	Chemotherapy	Subcutaneous CT26	i.v. injection	70
			tumor, BALB/c mice		
NLG919	636	Chemotherapy (docetaxel)	Subcutaneous 4T1	i.v. injection	71
NI G010	1/100	Ferrontosis (sorafenih)	tumor, BALB/c mice	i v injection	72
NEG919	1400		tumor, BALB/c mice	i.v. injection	12
NLG919	120	Photothermal therapy	Subcutaneous 4T1 tumor, BALB/c mice	i.v. injection	73
NLG919	400	Photothermal therapy, chemotherapy (gemcitabine)	Subcutaneous Panc02, C57BL/6 mice	i.v. injection	74
NLG919	102	Photodynamic therapy	Subcutaneous 4T1 tumor. BALB/c mice	i.v. injection	75
NLG919	137.6	Photodynamic therapy	Subcutaneous 4T1	intratumoral	76
NI G919	600	Photodynamic therapy	tumor, BALB/c mice	injection	77
NEGOTO	000	Thotodynamic therapy	4T1/CT26 tumor,	i.v. injection	
NII C010	150	Dhatadunamia tharanu	BALB/c mice	iv injection	70
NLG919	150		tumor, BALB/c mice	I.v. Injection	10
NLG919	600	Photodynamic therapy	Subcutaneous CT26 tumor, BALB/c mice	i.v. injection	79
NLG919	390	Photodynamic therapy	Subcutaneous CT26 tumor, BALB/c mice	i.v. injection	80
NLG919	150	Photodynamic therapy	Subcutaneous B16-F10 tumor, C57BL/6 mice	i.t. injection	81
NLG919	120	Photodynamic therapy,	Subcutaneous 4T1	i.v. injection	82
NIL C010	100	chemotherapy (oxaliplatin)	tumor, BALB/c mice	iv injection	00
NLG919	120	antagonist)	B16-F10 tumor, C57BL/6 mice	i.v. injection	03
NLG919	1000	Immunotherapy (aPD-L1)	Subcutaneous Panc02 tumor, C57BL/6 mice	i.v. injection	84
NLG919	2800	Chemotherapy (combretastatin A4), immunotherapy (ΡΙ3Κγ inhibitor)	Subcutaneous 4T1 tumor, BALB/c mice	i.p. injection	85
NLG919	150	Sonodynamic therapy,	Subcutaneous Panc02	i.v. injection	This study

		immunotherapy (aPD-L1)	tumor. C57BL/6 mice		
aPD-L1	300	Chemotherapy (doxorubicin)	Orthotopic C6 glioma, BALB/c mice	i.p. injection	86
aPD-I 1	250	Chemotherapy	Subcutaneous 4T1	i.p. injection	87
		(dimer-7-ethyl-10-hydroxyc	tumor. BALB/c mice		•••
		amptothecin			
		dimer-lonidamine)			
aPD-I 1	500	Chemotherapy	Orthotopic 4T1 tumor.	i.v. injection	88
		(doxorubicin)	BAI B/c mice		
aPD-I 1	225	Photodynamic therapy	Subcutaneous 4T1	i.p. injection	89
	220	i notodynamie inerapy	tumor. BAI B/c mice	np: njeodoli	
aPD-L1	375	Photodynamic therapy	Subcutaneous CT26	i p injection	90
	0.0		tumor BAI B/c mice	pjeenen	
aPD-L1	300	Photodynamic therapy	Subcutaneous 4T1	in injection	91
	000	i notodynamie inerapy	tumor. BAI B/c mice	np: njeodoli	01
aPD-L1	150	Photothermal therapy	Subcutaneous 4T1	i p injection	92
	100	i netetherina arerapy	tumor BAI B/c mice	np: njeodoli	02
aPD-L1	250	Photothermal therapy	Subcutaneous CT26	i v injection	93
	200	chemotherapy(doxorubicin)	tumor. BAI B/c mice	in injection	
aPD-L1	120	Photothermal therapy	Subcutaneous 4T1	i v injection	94
	120	chemotherapy(doxorubicin)	tumor BAI B/c mice	in injection	01
aPD-L1	150	Photodynamic therapy	Subcutaneous CT26	in injection	95
	100	chemotherapy (oxaliplatin)	tumor BAI B/c mice	i.p. injeetion	00
aPD-L1	300	Photodynamic therapy	Subcutaneous	i v injection	96
	000	ferrontosis (RSI -3)	B16-E10 tumor	n.v. mjeodom	50
			C57BL/6 mice		
aPD-L1	135	Ferrontosis	Subcutaneous MC38	i v injection	97
	100	l enoptodio	tumor C57BL/6 mice	n.v. mjoodom	01
aPD-L1	600	Pyroptosis	Subcutaneous	i v injection	98
	000	i yroptoolo	B16-E10 tumor	n.v. mjoodom	00
			C57BL/6 mice		
aPD-L1	225	Photodynamic therapy	Subcutaneous TUBO	i p injection	99
		immunotherapy (CpG	tumor. BAI B/c mice	pjeenen	
		Oligodeoxynucleotides)			
aPD-I 1	225	Photothermal therapy.	Orthotopic 4T1 tumor.	i.v. injection	100
		immunotherapy (R837)	BALB/c mice		
aPD-L1	400	Photodynamic therapy.	Subcutaneous CT26	i.v. injection	101
		chemotherapy	tumor. BALB/c mice	···· ,··	
		(doxorubicin)	, -		
aPD-L1	300	Photodynamic therapy.	Subcutaneous 4T1	i.p. injection	44
		chemotherapy (oxaliplatin)	tumor. BALB/c mice		
aPD-L1	375	Magnetic hyperthermia	Orthotopic 4T1 tumor.	i.p. injection	102
		therapy	BALB/c mice		
aPD-L1	300	Radiotherapy	Subcutaneous CT26	i.p. injection	103
			tumor, BALB/c mice	, ,	
aPD-L1	225	Radiotherapy.	Subcutaneous 4T1	i.t. injection	104
		photothermal therapy	tumor. BALB/c mice		
aPD-L1	1200	Immunotherapy (aCD3	Orthotopic 4T1 tumor	i.v. injection	105
		aCD28)	Subcutaneous CT26	,	
		-,	tumor, BALB/c mice		
aPD-L1	180	Sonodynamic therapy.	Subcutaneous Panc02	i.v. injection	This study
		immunotherapy (NLG919)	tumor, C57BL/6 mice	,	

Supplementary Reference:

- 1. Harada, Y. et al. Ultrasound activation of TiO₂ in melanoma tumors. *J. Controlled Release* **149**, 190-195 (2011).
- 2. Deepagan, V. et al. Long-circulating Au-TiO₂ nanocomposite as a sonosensitizer for ROS-mediated eradication of cancer. *Nano Lett.* **16**, 6257-6264 (2016).
- 3. Huang, P. et al. Metalloporphyrin-encapsulated biodegradable nanosystems for highly efficient magnetic resonance imaging-guided sonodynamic cancer therapy. *J. Am. Chem. Soc.* **139**, 1275-1284 (2017).
- 4. Chen, J. et al. Oxygen-self-produced nanoplatform for relieving hypoxia and breaking resistance to sonodynamic treatment of pancreatic cancer. *ACS Nano* **11**, 12849-12862 (2017).

- 5. Zhu, P., Chen, Y. & Shi, J. Nanoenzyme-augmented cancer sonodynamic therapy by catalytic tumor oxygenation. *ACS Nano* **12**, 3780-3795 (2018).
- 6. Pan, X. et al. Metal-organic-framework-derived carbon nanostructure augmented sonodynamic cancer therapy. *Adv. Mater.* **30**, 1800180 (2018).
- 7. Ma, A. et al. Metalloporphyrin complex-based nanosonosensitizers for deep-tissue tumor theranostics by noninvasive sonodynamic therapy. *Small* **15**, 1804028 (2019).
- 8. Gong, F. et al. Ultrasmall oxygen-deficient bimetallic oxide MnWO_X nanoparticles for depletion of endogenous GSH and enhanced sonodynamic cancer therapy. *Adv. Mater.* **31**, 1900730 (2019).
- 9. Cao, Y., Wu, T., Dai, W., Dong, H. & Zhang, X. TiO2 nanosheets with the Au nanocrystal-decorated edge for mitochondria-targeting enhanced sonodynamic therapy. *Chem. Mater.* **31**, 9105-9114 (2019).
- 10. Liang, K. et al. Intelligent nanocomposites with intrinsic blood-brain-barrier crossing ability designed for highly specific MR imaging and sonodynamic therapy of glioblastoma. *Small* **16**, 1906985 (2020).
- 11. Geng, P. et al. One responsive stone, three birds: Mn(III)-hemoporfin frameworks with glutathione-enhanced degradation, MRI, and sonodynamic therapy. *Adv. Healthcare Mater.* **10**, 2001463 (2021).
- 12. Geng, B. et al. Multifunctional carbon dot/MXene heterojunctions for alleviation of tumor hypoxia and enhanced sonodynamic therapy. *Carbon* **179**, 493-504 (2021).
- 13. Xie, J. et al. Water-soluble iridic-porphyrin complex for non-invasive sonodynamic and sono-oxidation therapy of deep tumors. *ACS Appl. Mater. Interfaces* **13**, 27934-27944 (2021).
- 14. Hadi, M.M. et al. Investigating the performance of a novel pH and cathepsin B sensitive, stimulus-responsive nanoparticle for optimised sonodynamic therapy in prostate cancer. *J. Controlled Release* **329**, 76-86 (2021).
- 15. Liu, S. et al. Multifunctional nanozyme for multimodal imaging-guided enhanced sonodynamic therapy by regulating the tumor microenvironment. *Nanoscale* **13**, 14049-14066 (2021).
- 16. Yang, S. et al. Graphene quantum dots with pyrrole N and pyridine N: superior reactive oxygen species generation efficiency for metal-free sonodynamic tumor therapy. *Small* **17**, 2004867 (2021).
- 17. Yang, K. et al. A hypoxia responsive nanoassembly for tumor specific oxygenation and enhanced sonodynamic therapy. *Biomaterials* **275**, 120822 (2021).
- 18. Duo, Y. et al. Patient-derived microvesicles/AIE luminogen hybrid system for personalized sonodynamic cancer therapy in patient-derived xenograft models. *Biomaterials* **272**, 120755 (2021).
- 19. Yuan, M. et al. A robust oxygen-carrying hemoglobin-based natural sonosensitizer for sonodynamic cancer therapy. *Nano Lett.* **21**, 6042-6050 (2021).
- 20. Liang, S. et al. Conferring Ti-based MOFs with defects for enhanced sonodynamic cancer therapy. *Adv. Mater.* **33**, 2100333 (2021).
- 21. Liang, S. et al. A robust narrow bandgap vanadium tetrasulfide sonosensitizer optimized by charge separation engineering for enhanced sonodynamic cancer therapy. *Adv. Mater.* **33**, 2101467 (2021).
- 22. Bao, Y. et al. Erythrocyte membrane-camouflaged PCN-224 nanocarriers integrated with platinum nanoparticles and glucose oxidase for enhanced tumor sonodynamic therapy and synergistic starvation therapy. *ACS Appl. Mater. Interfaces* **13**, 24532-24542 (2021).
- 23. Sheng, Y. et al. Magnetically responsive microbubbles as delivery vehicles for targeted sonodynamic and antimetabolite therapy of pancreatic cancer. *J. Controlled Release* **262**, 192-200 (2017).

- 24. Li, Z. et al. Synergistic sonodynamic/chemotherapeutic suppression of hepatocellular carcinoma by targeted biodegradable mesoporous nanosonosensitizers. *Adv. Funct. Mater.* **28**, 1800145 (2018).
- 25. Kim, S. et al. Drug-loaded titanium dioxide nanoparticle coated with tumor targeting polymer as a sonodynamic chemotherapeutic agent for anti-cancer therapy. *Nanomedicine* **24**, 102110 (2020).
- Liang, S. et al. A novel Pt-TiO₂ heterostructure with oxygen-deficient layer as bilaterally enhanced sonosensitizer for synergistic chemo-sonodynamic cancer therapy. *Adv. Funct. Mater.* **30**, 1908598 (2020).
- 27. Beguin, E. et al. Magnetic microbubble mediated chemo-sonodynamic therapy using a combined magnetic-acoustic device. *J. Controlled Release* **317**, 23-33 (2020).
- 28. Li, W.-P., Su, C.-H., Chang, Y.-C., Lin, Y.-J. & Yeh, C.-S. Ultrasound-induced reactive oxygen species mediated therapy and imaging using a fenton reaction activable polymersome. *ACS Nano* **10**, 2017-2027 (2016).
- 29. Fu, J., Li, T., Zhu, Y. & Hao, Y. Ultrasound activated oxygen and ROS generation nanosystem systematically modulates tumor microenvironment and sensitizes sonodynamic therapy for hypoxic solid tumors. *Adv. Funct. Mater.* **29**, 1906195 (2019).
- Lin, X. et al. An ultrasound activated vesicle of janus Au-MnO nanoparticles for promoted tumor penetration and sono-chemodynamic therapy of orthotopic liver cancer. *Angew. Chem. Int. Ed.* 59, 1682-1688 (2020).
- 31. Zhong, X. et al. GSH-depleted PtCu₃ nanocages for chemodynamic-enhanced sonodynamic cancer therapy. *Adv. Funct. Mater.* **30**, 1907954 (2020).
- 32. Xu, W. et al. Engineering Janus Chemoreactive Nanosonosensitizers for Bilaterally Augmented Sonodynamic and Chemodynamic Cancer Nanotherapy. *Adv. Funct. Mater.* **31**, 2103134 (2021).
- 33. Xu, Q. et al. Manganese porphyrin-based metal-organic framework for synergistic sonodynamic therapy and ferroptosis in hypoxic tumors. *Theranostics* **11**, 1937 (2021).
- 34. Nomikou, N. et al. A versatile, stimulus-responsive nanoparticle-based platform for use in both sonodynamic and photodynamic cancer therapy. *Acta Biomater.* **49**, 414-421 (2017).
- 35. Dai, C., Zhang, S., Liu, Z., Wu, R. & Chen, Y. Two-dimensional graphene augments nanosonosensitized sonocatalytic tumor eradication. *ACS Nano* **11**, 9467-9480 (2017).
- 36. Han, X. et al. Oxygen-deficient black titania for synergistic/enhanced sonodynamic and photoinduced cancer therapy at near infrared-II biowindow. *ACS Nano* **12**, 4545-4555 (2018).
- 37. Liang, S. et al. Intelligent hollow Pt-CuS janus architecture for synergistic catalysis-enhanced sonodynamic and photothermal cancer therapy. *Nano Lett.* **19**, 4134-4145 (2019).
- 38. He, Y. et al. Multifunctional polypyrrole-coated mesoporous TiO₂ nanocomposites for photothermal, sonodynamic, and chemotherapeutic treatments and dual-modal ultrasound/photoacoustic imaging of tumors. *Adv. Healthcare Mater.* **8**, 1801254 (2019).
- 39. Liu, Z., Li, J., Chen, W., Liu, L. & Yu, F. Light and sound to trigger the Pandora's box against breast cancer: A combination strategy of sonodynamic, photodynamic and photothermal therapies. *Biomaterials* **232**, 119685 (2020).
- 40. Li, C.-Q. et al. In situ synthesis of multifunctional tellurium nanorods stabilized by polypeptide-engineered for photothermal-sonodynamic combination therapy of tumors. *Chem. Eng. J.* **417**, 127989 (2021).
- 41. Li, G. et al. Titanium carbide nanosheets with defect structure for photothermal-enhanced sonodynamic therapy. *Bioact. Mater.* **8**, 409-419 (2022).
- 42. Shen, J. et al. Cancer cell membrane camouflaged iridium complexes functionalized black-titanium nanoparticles for hierarchical-targeted synergistic NIR-II photothermal and sonodynamic therapy. *Biomaterials* **275**, 120979 (2021).

- 43. Wang, X. et al. Liquid exfoliation of TiN nanodots as novel sonosensitizers for photothermal-enhanced sonodynamic therapy against cancer. *Nano Today* **39**, 101170 (2021).
- 44. Yue, W. et al. Checkpoint blockade and nanosonosensitizer-augmented noninvasive sonodynamic therapy combination reduces tumour growth and metastases in mice. *Nat. Commun.* **10**, 2025 (2019).
- 45. Zhang, D. et al. Ultrasound-driven biomimetic nanosystem suppresses tumor growth and metastasis through sonodynamic therapy, CO therapy, and indoleamine 2, 3-dioxygenase inhibition. *ACS Nano* **14**, 8985-8999 (2020).
- 46. Wei, X. et al. Homology and immune checkpoint dual-targeted sonocatalytic nanoagents for enhancing sonodynamic tumor therapy. *ACS Appl. Mater. Interfaces* **13**, 32810-32822 (2021).
- 47. Yin, Y. et al. Continuous inertial cavitation evokes massive ROS for reinforcing sonodynamic therapy and immunogenic cell death against breast carcinoma. *Nano Today* **36**, 101009 (2021).
- 48. Zhu, W. et al. Sonodynamic therapy with immune modulatable two-dimensional coordination nanosheets for enhanced anti-tumor immunotherapy. *Nano Res.* **14**, 212-221 (2021).
- 49. Lin, X. et al. Nanosonosensitizer-augmented sonodynamic therapy combined with checkpoint blockade for cancer immunotherapy. *Int. J. Nanomed.* **16**, 1889-1899 (2021).
- 50. Wang, M. et al. A multifunctional nanovaccine based on L-arginine-loaded black mesoporous titania: ultrasound-triggered synergistic cancer sonodynamic therapy/gas therapy/immunotherapy with remarkably enhanced efficacy. *Small* **17**, 2005728 (2021).
- 51. Ji, C. et al. Mitochondria-targeted and ultrasound-responsive nanoparticles for oxygen and nitric oxide codelivery to reverse immunosuppression and enhance sonodynamic therapy for immune activation. *Theranostics* **11**, 8587-8604 (2021).
- 52. Chen, H. et al. Noninvasively immunogenic sonodynamic therapy with manganese protoporphyrin liposomes against triple-negative breast cancer. *Biomaterials* **269**, 120639 (2021).
- 53. Tan, X. et al. Transformable nanosensitizer with tumor microenvironment activated sonodynamic process and calcium release for enhanced cancer immunotherapy. *Angew. Chem. Int. Ed.* **60**, 14051-14059 (2021).
- 54. Zhan, G. et al. Biomimetic sonodynamic therapy-nanovaccine integration platform potentiates Anti-PD-1 therapy in hypoxic tumors. *Nano Today* **38**, 101195 (2021).
- 55. Huang, J. et al. Nanodrug with dual-sensitivity to tumor microenvironment for immuno-sonodynamic anti-cancer therapy. *Biomaterials* **269**, 120636 (2021).
- 56. Fu, S. et al. Catalytically active CoFe₂O₄ nanoflowers for augmented sonodynamic and chemodynamic combination therapy with elicitation of robust immune response. *ACS Nano* **15**, 11953-11969 (2021).
- 57. Chen, Y. et al. An immunostimulatory dual-functional nanocarrier that improves cancer immunochemotherapy. *Nat. Commun.* **7**, 13443 (2016).
- 58. Sun, J.-j. et al. Programmable co-delivery of the immune checkpoint inhibitor NLG919 and chemotherapeutic doxorubicin via a redox-responsive immunostimulatory polymeric prodrug carrier. *Acta Pharmacol. Sin.* **38**, 823-834 (2017).
- 59. Meng, X. et al. Combinatorial antitumor effects of indoleamine 2,3-dioxygenase inhibitor NLG919 and paclitaxel in a murine B16-F10 melanoma model. *Int. J. Immunopathol. Pharmacol.* **30**, 215-226 (2017).
- 60. Feng, B. et al. Binary cooperative prodrug nanoparticles improve immunotherapy by synergistically modulating immune tumor microenvironment. *Adv. Mater.* **30**, 1803001 (2018).
- 61. Xu, J. et al. NLG919/cyclodextrin complexation and anti-cancer therapeutic benefit as a potential immunotherapy in combination with paclitaxel. *Eur. J. Pharm. Sci.* **138**, 105034 (2019).

- 62. Gao, J., Deng, F. & Jia, W. Inhibition of indoleamine 2,3-dioxygenase enhances the therapeutic efficacy of immunogenic chemotherapeutics in breast cancer. *J. Breast. Cancer* **22**, 196-209 (2019).
- 63. Qiao, H. et al. Folated pH-degradable nanogels for the simultaneous delivery of docetaxel and an IDO1-inhibitor in enhancing cancer chemo-immunotherapy. *Biomater. Sci.* **7**, 2749-2758 (2019).
- 64. Sun, J. et al. Triple drugs co-delivered by a small gemcitabine-based carrier for pancreatic cancer immunochemotherapy. *Acta Biomater.* **106**, 289-300 (2020).
- 65. Dai, L. et al. Programmable prodrug micelle with size-shrinkage and charge-reversal for chemotherapy-improved IDO immunotherapy. *Biomaterials* **241**, 119901 (2020).
- 66. Shen, F. et al. Oxaliplatin-/NLG919 prodrugs-constructed liposomes for effective chemo-immunotherapy of colorectal cancer. *Biomaterials* **255**, 120190 (2020).
- 67. Zhao, L. et al. Self-delivery oxidative stress amplifier for chemotherapy sensitized immunotherapy. *Biomaterials* **275**, 120970 (2021).
- 68. Ding, Y. et al. Plasmon-driven catalytic chemotherapy augments cancer immunotherapy through induction of immunogenic cell death and blockage of IDO pathway. *Adv. Mater.* **33**, 2102188 (2021).
- 69. Luo, K. et al. Charge convertible biomimetic micellar nanoparticles for enhanced melanoma-targeted therapy through tumor cells and tumor-associated macrophages dual chemotherapy with IDO immunotherapy. *Chem. Eng. J.* **412**, 128659 (2021).
- 70. Zhu, Y. et al. CaCO₃-assisted preparation of pH-responsive immune-modulating nanoparticles for augmented chemo-immunotherapy. *Nano-Micro Lett.* **13**, 29 (2021).
- 71. Lang, T. et al. Ternary regulation of tumor microenvironment by heparanase-sensitive micelle-loaded monocytes improves chemo-immunotherapy of metastatic breast cancer. *Adv. Funct. Mater.* **31**, 2007402 (2021).
- 72. Zuo, T. et al. pH-sensitive molecular-switch-containing polymer nanoparticle for breast cancer therapy with ferritinophagy-cascade ferroptosis and tumor immune activation. *Adv. Healthcare Mater.* **10**, 2100683 (2021).
- 73. Peng, J. et al. Photosensitizer micelles together with IDO inhibitor enhance cancer photothermal therapy and immunotherapy. *Adv. Sci.* **5**, 1700891 (2018).
- 74. Sun, J. et al. Tumor size-dependent abscopal effect of polydopamine-coated all-in-one nanoparticles for immunochemo-photothermal therapy of early-and late-stage metastatic cancer. *Biomaterials* **269**, 120629 (2021).
- 75. Huang, Z. et al. Enhanced cancer therapy through synergetic photodynamic/immune checkpoint blockade mediated by a liposomal conjugate comprised of porphyrin and IDO inhibitor. *Theranostics* **9**, 5542-5557 (2019).
- 76. Xing, L. et al. Hypoxia alleviation-triggered enhanced photodynamic therapy in combination with IDO inhibitor for preferable cancer therapy. *Biomaterials* **206**, 170-182 (2019).
- 77. Gao, A. et al. Sheddable prodrug vesicles combating adaptive immune resistance for improved photodynamic immunotherapy of cancer. *Nano Lett.* **20**, 353-362 (2019).
- 78. Hu, X. et al. Supramolecular prodrug nanovectors for active tumor targeting and combination immunotherapy of colorectal cancer. *Adv. Sci.* **7**, 1903332 (2020).
- 79. Hou, B. et al. Engineering stimuli-activatable boolean logic prodrug nanoparticles for combination cancer immunotherapy. *Adv. Mater.* **32**, 1907210 (2020).
- 80. Zhao, L.-P. et al. Self-delivery photo-immune stimulators for photodynamic sensitized tumor immunotherapy. *ACS Nano* **14**, 17100-17113 (2020).
- 81. Yang, X. et al. Nanoconjugates to enhance PDT-mediated cancer immunotherapy by targeting

the indoleamine-2, 3-dioxygenase pathway. J. Nanobiotechnol. 19, 182 (2021).

- 82. Feng, B. et al. Self-amplified drug delivery with light-inducible nanocargoes to enhance cancer immunotherapy. *Adv. Mater.* **31**, 1902960 (2019).
- 83. Cheng, K. et al. Sequentially responsive therapeutic peptide assembling nanoparticles for dual-targeted cancer immunotherapy. *Nano Lett.* **18**, 3250-3258 (2018).
- 84. Han, X. et al. Modularly designed peptide nanoprodrug augments antitumor immunity of PD-L1 checkpoint blockade by targeting indoleamine 2,3-dioxygenase. *J. Am. Chem. Soc.* **142**, 2490-2496 (2020).
- 85. Qin, H. et al. PI3Kgamma inhibitor attenuates immunosuppressive effect of poly (I-glutamic acid)-combretastatin A4 conjugate in metastatic breast cancer. *Adv. Sci.* **6**, 1900327 (2019).
- 86. Ruan, S. et al. Aggregable nanoparticles-enabled chemotherapy and autophagy inhibition combined with anti-PD-L1 antibody for improved glioma treatment. *Nano Lett.* **19**, 8318-8332 (2019).
- 87. Yang, X. et al. Tumor microenvironment-responsive dual drug dimer-loaded pegylated bilirubin nanoparticles for improved drug delivery and enhanced immune-chemotherapy of breast cancer. *Adv. Funct. Mater.* **29**, 1901896 (2019).
- 88. Shao, D. et al. Biomimetic diselenide-bridged mesoporous organosilica nanoparticles as an X-ray-responsive biodegradable carrier for chemo-immunotherapy. *Adv. Mater.* **32**, 2004385 (2020).
- 89. Duan, X. et al. Photodynamic therapy mediated by nontoxic core-shell nanoparticles synergizes with immune checkpoint blockade to elicit antitumor immunity and antimetastatic effect on breast cancer. *J. Am. Chem. Soc.* **138**, 16686-16695 (2016).
- 90. Lan, G. et al. Nanoscale metal-organic framework overcomes hypoxia for photodynamic therapy primed cancer immunotherapy. *J. Am. Chem. Soc.* **140**, 5670-5673 (2018).
- 91. Wang, R. et al. Sustained antitumor immunity based on persistent luminescence nanoparticles for cancer immunotherapy. *Adv. Funct. Mater.* **31**, 2106884 (2021).
- 92. Wang, R. et al. Surface-functionalized modified copper sulfide nanoparticles enhance checkpoint blockade tumor immunotherapy by photothermal therapy and antigen capturing. *ACS Appl. Mater. Interfaces* **11**, 13964-13972 (2019).
- 93. Wen, Y. et al. Photothermal-chemotherapy integrated nanoparticles with tumor microenvironment response enhanced the induction of immunogenic cell death for colorectal cancer efficient treatment. *ACS Appl. Mater. Interfaces* **11**, 43393-43408 (2019).
- 94. Hu, L. et al. The potentiated checkpoint blockade immunotherapy by ROS-responsive nanocarrier-mediated cascade chemo-photodynamic therapy. *Biomaterials* **223**, 119469 (2019).
- 95. He, C. et al. Core-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy. *Nat. Commun.* 7, 12499 (2016).
- 96. Song, R. et al. Acidity-activatable dynamic nanoparticles boosting ferroptotic cell death for immunotherapy of cancer. *Adv. Mater.* **33**, 2101155 (2021).
- 97. Liang, H. et al. Renal clearable ultrasmall single-crystal Fe nanoparticles for highly selective and effective ferroptosis therapy and immunotherapy. *J. Am. Chem. Soc.* **143**, 15812-15823 (2021).
- 98. Xiong, H. et al. Inspired epigenetic modulation synergy with adenosine inhibition elicits pyroptosis and potentiates cancer immunotherapy. *Adv. Funct. Mater.* **31**, 2100007 (2021).
- 99. Ni, K. et al. A nanoscale metal-organic framework to mediate photodynamic therapy and deliver CpG oligodeoxynucleotides to enhance antigen presentation and cancer immunotherapy. *Angew. Chem. Int. Ed.* **59**, 1108-1112 (2020).
- 100. Ge, R. et al. Photothermal-activatable Fe₃O₄ superparticle nanodrug carriers with PD-L1

immune checkpoint blockade for anti-metastatic cancer immunotherapy. *ACS Appl. Mater. Interfaces* **10**, 20342-20355 (2018).

- 101. Choi, J. et al. Visible-light-triggered prodrug nanoparticles combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy. *ACS Nano* **15**, 12086-12098 (2021).
- 102. Liu, X. et al. Ferrimagnetic vortex nanoring-mediated mild magnetic hyperthermia imparts potent immunological effect for treating cancer metastasis. *ACS Nano* **13**, 8811-8825 (2019).
- 103. Ni, K. et al. Nanoscale metal-organic frameworks enhance radiotherapy to potentiate checkpoint blockade immunotherapy. *Nat. Commun.* **9**, 2351 (2018).
- 104. Dong, X. et al. A heterojunction structured WO_{2.9}-WSe₂ nanoradiosensitizer increases local tumor ablation and checkpoint blockade immunotherapy upon low radiation dose. *ACS Nano* **14**, 5400-5416 (2020).
- 105. Chiang, C.-S. et al. Combination of fucoidan-based magnetic nanoparticles and immunomodulators enhances tumour-localized immunotherapy. *Nat. Nanotechnol.* **13**, 746-754 (2018).