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Supplementary Notes 

I. Temporal coupled-mode theory for the extrinsic chiral q-BICs. 

We apply a two-mode temporal coupled-mode theory (TCMT) to the metasurface studied in 

the main text1,2. The two modes are the two Bloch resonances with opposite in-plane wave vectors. 

Based on the conservation of momentum, an incident wave, which has an in-plane wavevector k|| = 

(kx, ky) above the light line and below the diffraction limit, will only couple to the resonances and 

outgoing waves with same k||. We can write down the dynamic equations of TCMT: 
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where A = (A1, A2)T is the complex amplitudes of the resonances (at k|| and -k||, respectively), ω0 is 

the resonance frequency, γ is the decay rate due to radiation. Due to the reciprocity, the two 

resonances of opposite directions have the same frequency and decay rate3. � =

����,���,���,���,���,���,���,����
�
 and � = ����,���,���,���,���,���,���,����

�
 are the 

amplitudes of incoming and outgoing waves (Fig. S1). C is the scattering matrix for the direct 

(without the resonance) transmission and reflection through the slab (the Fabry-Perot background). 

Energy conservation and reciprocity constrain C to be unitary, symmetric, and identical for opposite 

wavevector directions. The subscript s(p) represents the radiation channel as s-polarization (p-

polarization). The coupling matrices D and K between the resonances and the in and out plane waves 

are3 
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where σx is the Pauli matrix. According to the energy conservation and time-reversal symmetry2,3, 

we obtain  

 ��� = 2��, (S5) 

 � = ���, (S6) 

 ��∗ = −���. (S7) 

Generally, the full scattering matrix including the direct pathway and resonance pathway is given 

by  
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For the incident plane wave propagating along +k||, the scattering process can be shown as  
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where 

 �� = �

���
���
���
���

�,�� =

⎝

⎛

���
���
���
���⎠

⎞ , (S10) 

 ��� = �

��� ���
��� ���

��� ���
��� ���

��� ���
��� ���

��� ���
��� ���

� (S11) 

 =

⎝

⎜
⎜
⎜
⎜
⎛

�� −
��|���|

����������
∗

�(����)��
�� −

��|���|
����������

∗

�(����)��

�� −
��|���|

����������
∗

�(����)��
�� −

��|���|
����������

∗

�(����)��

−
��������

∗ ���������
∗

�(����)��
−

��������
∗ ���������

∗

�(����)��

−
��������

∗ ���������
∗

�(����)��
−

��������
∗ ���������

∗

�(����)��

−
��������

∗ ���������
∗

�(����)��
−

��������
∗ ���������

∗

�(����)��

−
��������

∗ ���������
∗

�(����)��
−

��������
∗ ���������

∗

�(����)��

�� −
�������

�
���������

∗

�(����)��
�� −

�������
�
���������

∗

�(����)��

�� −
�������

�
���������

∗

�(����)��
�� −

�������
�
���������

∗

�(����)�� ⎠

⎟
⎟
⎟
⎟
⎞

. 

Now, in order to discuss the effects of the Fabry-Perot background and simplify the discussion, we 

ignore the substrate and assume that the structure has z-axis mirror symmetry and inversion 

symmetry. Then, we can get ��� = ����� = ��  and ��� = ����� = �� , where αz is a parity 

number to correlate the upside and downside coupling coefficients. Considering that the incidence 

is left-handed circularly polarized in x-y plane and from the 1 channel, we have  
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where θ is the angle between the incidence and the z-axis. The outgoing wave would be  
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So, the reflectance and transmittance are simply4 

 � =
�

�
����� − ����/ cos ��

�
+ ���� − ����/ cos ��

�
�, (S14) 

 � = 1 − �. (S15) 

When the eigenmode is right-handed circularly polarized in the x-y plane, we have �� = −��� cos �, 

thus the reflection on resonance would be4 
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which is the same as the reflection without resonance. Thus, CD occurs in this case, yet due to the 

presence of the Fabry-Perot background, the maximum of CD does not necessarily coincide with 

the C point. 

 

II. Temporal coupled-mode theory for the intrinsic chiral q-BICs. 

 

For the normal incidence case, we can assume that the background scattering matrix 

corresponds to a reflective birefringent effective medium.  
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where,  
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are the Jones matrices for background reflection and transmission, θ and Ψ are the orientation 

angle and phase difference of the birefringent effective medium, Θ is a free parameter modulating 

the overall transmission and reflection amplitude. In our present work, the orientation of the 

birefringence axis of the DSS structure is along θ = 45o, therefore the reflection and transmission 

Jones matrices reduce to, 
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Planar form means the q-BIC scatters up/down symmetrically or anti-symmetrically. Therefore, the 

coupling matrix satisfies,  
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Energy conservation requires that,  
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Therefore, we can write the coupling coefficients as follows: 
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There are three unknowns, one of these degrees of freedom is unconstrained by TCMT, and it will 

depend on the perturbation chosen. Conservation of energy constraint specifies 2 of the 3 unknowns 

as follows, 

 �1 + �������
∗ + �1 − �������

∗ = −2���, (S26) 
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If the effective background medium only has an isotropic response (Ψ = 0),  
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The coupled polarization is only linear polarization oriented at �, and no chirality could be supported. 

If the effective background medium has a full birefringence response (Φ� = Φ,Φ� = Φ + �), 
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The coupled polarizations are elliptical polarizations crossing a great circle through ±45° on the 

Poincare sphere.	  

At the resonance condition � = ��, and chose the reflection and transmission Jones matrix can be 

written as, 
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We can clearly get a chiral response when  



6 
 

 Φ =
�

�
, D=

�
��
�

��/�
�

1
�
1
�

�, (S32) 

 � =
�

�
�
� 1
1 −�

�, � =
�

�
�
� −1
−1 −�

�. (S33) 

For left-handed |+ ⟩ =
�

√�
�
1
�
� and right-handed |−⟩ =

�

√�
�
1
−�
� circularly polarized incidence, the 

outgoing wave would be  

 ��� = �|+ ⟩ = �|−⟩,��� = �|−⟩ = 0, (S34) 

 ��� = �|+ ⟩ = 0,��� = �|−⟩ = �|+ ⟩. (S35) 

There is perfect unitary circular conversion dichroism for both transmission and reflection sides. 

Therefore, it suggests that, the perfect planar chirality can be designed by tuning the local response 

to be birefringent using a geometry that has an inversion center, and then breaking inversion 

symmetry with a suitable perturbation to yield an intrinsic planar chiral q-BIC. 
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Supplementary Figures 

 

Figure S1. Schematic illustration of the planar structure and the corresponding input and 

output channels in s and p polarizations. 
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Figure S2. Experimentally measured optical parameters of α-Si. The refractive index (n) and 

extinction coefficient (k) are illustrated as black solid line and red dashed line, respectively.  
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Figure S3. Color maps of the eigen-polarization states of the planar chiral q-BIC metasurface 

in the k-space. Polarization parameter (a: ellipticity χ=S3/S0, b: azimuthal angle ψ=Arg(S1+iS2)/2, 

where, S0, S1, S2, S3 are Stokes parameters) maps in the k-space for the eigen-modes supported by 

the planar chiral q-BIC metasurface. 
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Figure S4. Planar chiral q-BIC metasurface with δ≠0 supporting circular eigen-polarization 

(C points). (a, b) Schematic of the metasurface (δ=40 nm) with the parameters: P=850 nm, H=350 

nm, R=280 nm, L1=220 nm, W1=191 nm, L2=230 nm, and W2=231 nm illuminated with incident 

angle θ and conical angle φ. (c) Jones matrix elements and the CD spectra under the incidence 

parameters of θ=3.7°, φ=0°, which correspond to the blue C point in (f). (d, e) Color maps of the 

eigen-polarization states in the k-space (d: ellipticity χ, e: azimuthal angle ψ). (f) Eigen-polarization 

ellipse distribution in the k-space. The blue and red represent the eigen left-handed states and right-

handed states.  
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Figure S5. Evolutions of transmission spectra of all Jones matrix elements and CD spectra at 

oblique incidences along the φ=90° direction. (a) Schematic of the q-BIC metasurface (δ=0) with 

parameters P=850 nm, R=280 nm, L1=L2=220 nm, W1=W2=191 nm, and H=350 nm for varying 

incident angles θ along the φ=90° direction. The transmission spectra (b, c, e, f) of all Jones matrix 

elements (Tlr, Trl, Trr, Tll) and CD spectra (d) of the planar chiral q-BIC metasurface. 
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Figure S6. Evolutions of transmission spectra of all Jones matrix elements and CD spectra at 

oblique incidences along the φ=0° direction. (a) Schematic of the q-BIC metasurface with the 

same parameters as Fig. S5 (δ=0) for varying incident angles θ along the φ=0° direction. The 

transmission spectra (b, c, e, f) of all Jones matrix elements (Tlr, Trl, Trr, Tll) and CD spectra (d) of 

the planar chiral q-BIC metasurface.  
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Figure S7. CD and transmission spectra evolution along the conical angle direction. (a) 

schematic of the q-BIC metasurface with δ=0 at incident angle θ=12° along the φ-direction. (b-d) 

The CD spectra and the transmission efficiency spectra of Tlr and Trl with respect to φ and 

wavelength. When the incidence light evolves a circle along conical directions (φ evolves from 0° 

to 360°), the opposite varying trend of the RCP and LCP transmission can be observed. With the 

increase of φ, the sign of CD flips at the positions near [(2n-1)×45°, (n=1,2,3,4)].  
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Figure S8. Multipole expansions and nearfield electromagnetic patterns of the planar chiral 

q-BIC metasurface. (a, d) Schematic of the symmetry-breaking processes that transfer the BIC to 

planar chiral q-BICs. (b, e) Scattering cross-section spectra by multipole expansions of the planar 

chiral q-BIC metasurface (b) with the same parameters as Fig. S5 (δ=0) for RCP incidences at θ=8°, 

φ = 90° and (e) with the same parameters as Fig. S4 (δ=40 nm) for RCP normal incidences. (c, f) 

The magnetic field Hz (color) and electric field Ex, Ey (vector) of the MD mode, corresponding to 

the planar chiral q-BIC mode at (c) λ=1456 nm, and (f) at λ=1392 nm, respectively.  
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Figure S9. Evolutions of transmission spectra of all Jones matrix elements and CD spectra 

with varying parameter δ. (a) Schematic of the q-BIC metasurface with varying parameter δ. The 

transmission spectra (b, c, e, f) of all Jones matrix elements (Tlr, Trl, Trr, Tll) and CD spectra (d) of 

the planar chiral q-BIC metasurface. 
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Figure S10. Eigen-polarization ellipse distribution in the k-space with different δ. The blue and 

red represent the eigen left-handed states and right-handed states. The red/blue dot represents the 

circular eigen-polarization state, and the black dot represents the V point (BIC). 
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Figure S11. Intrinsic planar chirality with asymmetry transmission. Transmission efficiency 

spectra of (a) Trl, Tlr and (b) CD in the propagation direction from -z to +z (represented by subscript 

+z in the figure) and in the propagation direction from +z to -z (represented by subscript -z in the 

figure) for the in-plane symmetry-breaking metasurface (δ=40 nm). The spectral lines of Tlr, and Trl 

are opposite with the reversed CD when the incident direction is reversed. This is due to the mirror 

symmetry in the out-of-plane direction. The planar optical chirality is represented by the circular 

polarization conversion between the output light and the incident light. When the propagation 

direction is reversed, the chirality is reversed, which is the asymmetric transmission phenomenon 

accompanied by the planar chirality. 
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Figure S12. Comparison of CD and CCD spectra at the q-BIC peak. Here, CCD is defined as 

the difference between polarization conversion components:	��� =
�������

�������
. (a, c) Schematic of the 

symmetry-breaking processes that transfer the BIC to planar chiral q-BICs. (b, d) The evolution of 

CD and CCD spectra by (b) continuous varying incident angle θ along the φ=90° direction with δ=0 

and by (d) the in-plane geometry asymmetry parameter δ. 
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Figure S13. Perfect unitary circular conversion transmittance Tlr and CD can be achieved by 

strictly symmetric background. (a, d) Schematic of the symmetry-breaking processes that transfer 

the BIC to planar chiral q-BICs when the metasurface is placed in a completely symmetric 

background (nair=1). All Jones matrix elements of the simulated (b, e) transmission and (c, f) 

reflection as well as the CD spectra with (b, c) parameters: P=850 nm, R=300 nm, L1=L2=119 nm, 

W1=W2=175 nm, and H=450 nm (δ=0) under both LCP and RCP incidences at θ=8°, φ=90°, and (e, 

f) with parameters P=850 nm, R=300 nm, L1=310 nm, W1=209 nm, L2=319 nm, W2=249 nm, and 

H=575 nm (δ=40 nm). The CDT can ideally reach 1 with Tll=0, Trr=0, Trl=0 and Tlr=1 at the working 

wavelength. The reflection spectra Rlr are ideally equal to Rrl, while Rll has a q-BIC peak and Rrr has 

a dip, which is opposite to the case for transmission spectra. The CDR ideally reaches -1 with Rll=1, 

Rrr=0, Rrl=0 and Rlr=0 at the working wavelength. 

 

 



20 
 

 

Figure S14. Structure tolerance for fabrication. (a) Schematic of the planar q-BIC chiral 

metasurfaces with different manufacturing tolerance parameter △s. Five representative unit cells 

with different △s are shown on the top panel, where △s=0 nm, 30 nm, 60 nm, 90 nm, and 120 

nm. (b, c, e, f) Jones matrix spectra (Tlr, Trl, Trr and Tll) of the metasurfaces for different △s. (d, g) 

CCD and CD of the metasurfaces for different △s. As we can see, the structure always maintains 

superb planar chiral q-BIC properties when the structure chamfer radius increases in a large range 

(from 0 to 120 nm), implying that our design has a relaxed fabrication precision requirement. The 

results of Fig. 3 (illumination symmetry breaking) show similar resonance widths, while for Fig. 4 

(broken meta-atom in-plane inversion symmetry) the experiment is broader than simulation. This 

discrepancy is related to the structure tolerance of the fabricated structure. The structure in Fig. 3 

(δ=0) is the easiest one for experimental fabrication, because this structure is completely 

symmetrical and the radian of each side is relatively large. Under other parameters, especially for 

δ=80 nm, the radian at the long edge is very small and the corner angle is very sharp. The fabrication 

precision demand for those parameters is more stringent, leading to the discrepancy of the 

bandwidth between the simulation and experimental results. Generally speaking, the larger the δ, 

the more difficult for precise fabrication and the less consistency between the simulation and 

experimental results. 
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Figure S15. Experimental verification of the extrinsic planar chiral q-BIC with illumination 

symmetry breaking. (a) Schematic of the δ=0 metasurface supporting chiral q-BICs at different 

incident angles along the φ=0°direction. (b) Simulated and measured transmission Jones matrix 

spectra (Tlr, Trl, Trr and Tll) for different incident angles (θ=0°, ±4°, ±8°, ±12°) along the φ=0° 

direction. (c) Simulated and measured CD spectra for different incident angles extracted from the 

Jones matrix spectra in (b). 
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Figure S16. Simulated transmission Jones matrix spectra of Tll, Trr, Trl and Tlr as well as the 

CD spectrum of the metasurface with extremely small asymmetry parameter δ=2 nm, 5 nm, 

and 10 nm for normal incidences. The simulated Q-factor and corresponding CD reach 

800416/0.88, 66527/0.95, 12768/0.98, respectively. 
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Figure S17. Nearfield electromagnetic patterns and multipole expansions of the planar chiral 

q-BIC metasurface with circular eigen-polarization (parameters are the same as that of Fig. 5 

in the maintext). (a, b) The electric field |E|2 (color) and magnetic field Hx, Hy (vector) for (a) RCP 

and (b) LCP normal incidences at λ=1396 nm. (c, d) Scattering cross-section spectra by multipole 

expansions of the planar chiral q-BIC metasurface with δ=40 nm for (c) RCP and (d) LCP normal 

incidences.  
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Figure S18. ultrahigh TH conversion efficiency with the planar chiral q-BIC metasurface with 

circular eigen-polarization (parameters are the same as that of Fig. 5 in the maintext). 

Simulated TH conversion efficiency of the metasurface with δ =5 nm, 10 nm, 20 nm, 40 nm for 

RCP incidences. 
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