Supplementary Information

Pressure-induced monotonic enhancement of *T*_c to over 30 K in the superconducting Pr_{0.82}Sr_{0.18}NiO₂ thin films

N. N. Wang^{1,2=}, M. W. Yang^{1,2=}, Z. Yang^{1,2=}, K. Y. Chen^{1,2}, H. Zhang^{1,2}, Q. H. Zhang^{1,2}, Z. H. Zhu^{1,2}, Y. Uwatoko³, L. Gu^{1,2}, X. L. Dong^{1,2}, J. P. Sun^{1,2*}, K. J. Jin^{1,2*} and J.-G. Cheng^{1,2*}

¹Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

²School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China ³Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan

= These authors contributed equally to this work.

Emails: jpsun@iphy.ac.cn; kjjin@iphy.ac.cn; jgcheng@iphy.ac.cn

As displayed below, we can see that the topotactic reduction time (Tr) and the amount of CaH₂ have strong influence on the superconducting transition of the infinite-layer $Pr_{0.82}Sr_{0.18}NiO_2$ thin films. In our study, we choose the best samples for high-pressure measurements, i.e. the samples obtained at T = 300°C, $m(CaH_2) = 0.21g$, and Tr = 60mins.

Supplementary Fig. 1 Temperature dependence of resistivity for the Pr_{0.82}Sr_{0.18}NiO₂ thin films obtained at different conditions. a $T = 300^{\circ}$ C, m(CaH₂) = 0.15g, and Tr = 45-70 mins; b $T = 300^{\circ}$ C, m(CaH₂) = 0.09-0.24 g, and Tr =60 mins.

Supplementary Fig. 2 High-pressure resistivity of $Pr_{0.82}Sr_{0.18}NiO_2$ thin films. The resistivity $\rho(T)$ curves below 100 K **a** for No. 3 with mineral oil, **b** for No. 4 with silicone oil and **c** for No. 5 with glycerol, illustrating the variation of the superconducting transition temperatures with pressure. Except for data at 0 GPa, all other curves in **a**, **b** and **c** have been vertically shifted for clarity.

Supplementary Fig. 3 Evolution of upper critical field of Pr_{0.82}Sr_{0.18}NiO₂ thin films. Temperature dependences of the resistivity with magnetic fields up to 8.5 T at various pressures up to 6.6 GPa for sample No. 1.

Supplementary Fig. 4 Evolution of upper critical field of Pr_{0.82}Sr_{0.18}NiO₂ thin films. Temperature dependences of the resistivity with magnetic fields up to 8.5 T at various pressures up to 12.1 GPa for sample No. 2.

Supplementary Fig. 5 Characterizations of $Pr_{0.82}Sr_{0.18}NiO_2$ thin films. a The atomicresolution STEM imaging of infinite-layer samples a before and b-d after the highpressure resistivity measurements. e Synchrotron X-ray diffraction θ -2 θ symmetric scans of infinite-layer $Pr_{0.82}Sr_{0.18}NiO_2$ thin film before and after high-pressure measurements with a wavelength of $\lambda = 0.6199$ Å.

Supplementary Fig. 6 High-pressure resistivity of $Pr_{0.82}Sr_{0.18}NiO_2$ thin films. Temperature dependences of the resistance at 0, 2 and 4 GPa by employing the h-BN solid PTM.