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Supplementary Note 1. 171YB GATE OPERATIONS

Here, we provide a sketch of a universal set of gate operations on qubits encoded in the metastable 3P0 level of
171Yb. These closely follow techniques for ground state qubits. Metastable qubit gate operations have also been
proposed [1] and demonstrated [2] with trapped atomic ions.

Starting with an atom in 1S0, initialization into |1⟩ can be performed by optically pumping into
∣∣1S0,mF = 1/2

〉
and transferring to the 3P0 (manifold Q) using the clock transition. Mid-circuit measurement can be performed
using the same clock pulse to selectively transfer population in |1⟩ to 1S0, and measuring the 1S0 population with
fluorescence. As an alternative to driving the clock transition, optical pumping via intermediate S and D states can
also be used.

Single qubit gate rotations can be performed using Raman transitions and light shifts on the 6s7s 3S1 transition
(649 nm), or via the Rydberg state. In both cases, errors can arise from photon scattering, but erasure conversion
can be performed at a similar or greater level than for the two-qubit gates discussed in the main text (see section
Supplementary Note 5).

Supplementary Note 2. YB BRANCHING RATIOS

In this section, we consider the decay pathways from the Rydberg state, which determine the probability that a
spontaneous decay is converted into an erasure. These calculations involve dipole matrix elements between ground
states and Rydberg states in Yb that have not been directly measured or computed with rigorous many-body
techniques. Therefore, we estimate them using a single active electron approximation [3], and wavefunctions computed
using the Numerov technique [4]. We focus on the 6s75s 3S1 F = 3/2 state for concreteness [5].

The decay pathways can be separated into BBR decays to nearby n and radiative decays to low-n states. For
n = 75, the BBR decay rate is 3480 1/s, and the radiative decay rate is 2200 1/s, which gives a branching ratio of
0.39 into radiative decay, and 0.61 into BBR decay (Fig. 1a).

The radiative decays favor the lowest energy states, because of the larger density of states at the relevant transition
energy [6]. However, angular momentum algebra favors higher J states within the same fine structure manifold.
Therefore, the fraction of decays that terminate directly in the J = 0 qubit manifold Q is only 0.025 (Fig. 1b).
Decay events to 6s6p 3P1 will quickly relax to the ground state 1S0 via a second spontaneous decay. Decays to

6s6p 3P2 can be repumped to 6s6p 3P1 via 6s5d 3D2, which cannot decay to the qubit subspace because of angular
momentum selection rules.

However, approximately 0.17 of all the decay events are to 6snp states with n > 6. These states will overwhelmingly
decay to the 6s7s 3S1 and 6s5d 3DJ states, which in turn can decay to 6s6p states (Fig. 1c). No data is available
to estimate the relative branching ratio between the S and D decay pathways, but we can estimate the fraction of
decays that return to Q within each pathway.

The state 6s7s 3S1 decays into the 6s6p 3PJ levels with a branching ratio that can be estimated as [7]:

ΓJ

Γtot
=

1

N
ω3
J(2J + 1)(2L′ + 1)

{
L L′ 1
J ′ J S

}2

(1)

Here, the primed quantities denote the angular momenta of the initial state (3S1), and the unprimed quantitites
for the final state (3PJ). ωJ is the transition frequency for the decay to the state J , and the normalization constant
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Supplementary Figure 1. Decay pathways from the Yb 3S1 Rydberg series. (a) Partial decay rates to all P states of a given
principal quantum number n, starting from n = 75. BBR transitions to nearby states are shown in red, and radiative decay
to lower n states are shown in blue. Final states with n = 10 − 35 are not included because of the absence of spectroscopic
data. (b) Branching ratio into low-energy 6sps 3PJ states. The branching ratio into the qubit manifold Q, 6s6p 3P0, is 2.5%.
(c) Partial energy diagram showing relevant transitions between low-lying states. Decays in red are to Q, while the orange
transition can be used to repump 3P2 without populating Q.

N ensures
∑

J ΓJ = Γtot. The branching ratios into J = {0, 1, 2} are {0.15, 0.40, 0.45}. Therefore, around 0.15 of all
decays via 3S1 will reach Q.

In the case of decays via the 6s5d 3DJ states, we can use Eq. (1) to estimate the branching ratio from 6snp 3P′
J

to the various 3DJ states. Since only 3D1 can decay to the Q, we only state this fraction, which is approximately
{1, 0.25, 0.01} when starting from 6snp 3PJ′ with J ′ = {0, 1, 2}. To estimate the branching ratio from 6s5d 3D1 to Q,
we do not use Eq. (1) because the states are rather close in energy, but instead use the theoretical matrix elements
in Ref. [8], which give a branching ratio of 0.65. Combining this with the distribution of population among the 6snp
3PJ′ levels in Fig. 1b, we arrive at an estimate that 0.16 of the decays via D states terminate in Q.

As the probability to end up in Q via the S or D decay pathways is similar, the (unknown) branching ratio between
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them becomes unimportant. Taking it to be 0.5, we conclude that 14% of decays from 6snp levels with n > 6 return
to Q. Adding this to the direct decays to Q, we arrive at a final estimate that 0.051 of all Rydberg decays return to
the qubit manifold Q.

Lastly, we note that this analysis does not include the effect of doubly-excited states that perturb the Rydberg
series, which can give rise to additional decay pathways [9]. In Yb, these are especially prominent because of
the number of core excited states [10]. There is not enough spectroscopic data about the Yb Rydberg series to
quantitatively evaluate the impact of series perturbers. However, we note that these doubly excited states will
require a minimum of three spontaneous decays to reach the 6s6p 3PJ states. Given the general propensity to decay
to higher J states at each step, it is likely that the branching ratio into 3P0 from doubly-excited perturbers will not
be worse than the values estimated above.

We also do not explicitly include hyperfine structure in these calculations, but rather calculate matrix elements
between J states in 174Yb. This is an excellent approximation for the transitions from low-n to Rydberg states, since
these matrix elements are mainly sensitive to the Rydberg state quantum defect, and the 3S1 F = 3/2 Rydberg state
that we consider has the same quantum defect as the 3S1 series in 174Yb [11] because its core electron configuration
is purely Yb+ F = 1. However, it is possible that the BBR transition rate varies slightly between isotopes, since
the hyperfine splitting changes the energy level spacing by a significant amount. We believe that the error from this
approximation is much less than the uncertainty arising from unknown series perturbers.

Supplementary Note 3. ERASURE DETECTION FIDELITY

A. Detection of atoms in 1S0

We first consider the localized detection fidelity for atoms 1S0, using the cycling transition in the R manifold.
Many protocols for imaging atoms in tweezers focus on non-destructive detection, and therefore image slowly while
simultaneously cooling, which is not optimal for minimizing computational cycle time [12]. Here we instead consider
rapid but destructive detection [13], with the aim of replacing atoms from a reservoir when erasures are detected
(which occurs with a low probability). To estimate the fidelity, we take the atoms to be initially at rest, ignore the
dipole trap, and assume illumination by counter-propagating fields above saturation, such that the photon scattering
rate is Γ/2. This results in no net force on the atom, but momentum diffusion from photon recoils leads to an
increasing mean squared atomic displacement of [13, 14]:

⟨x2(t)⟩ = v2rec
3

t3

3

Γ

2
=

ℏ2k2

18m2
t3Γ (2)

where Γ = 2π × 28 MHz is the 1S0 - 1P1 transition linewidth, the wavevector k = 2π/λ with λ = 399 nm, and m is
the atomic mass.

We envision a tweezer array with a spacing of a = 3 − 5µm, and therefore require that
√
⟨x2(t)⟩ < a/2 to

determine which site is fluorescing. In Ref. [13], free-space imaging of single 6Li atoms was demonstrated with a

detection fidelity of 99.4% after an imaging time of 20 µs, after which time
√
⟨x2(t)⟩

1/2
= 10.4 µm. During this

time, approximately 330 photons were scattered, and 25 detected, with an EMCCD and a modest numerical aperture
objective (NA=0.55). However, for the same number of detected photons, the position spread scales as 1/(mλΓ)
[13], and this quantity is a factor of 81 smaller for the heavy 171Yb compared to 6Li, so we anticipate a position
spread of only 120 nm for the same conditions. Therefore, achieving imaging fidelity greater than 99.9% should be
readily achievable for atoms in 1S0, in less than half the time, since the scattering rate for Yb is more than 3 times
larger.

B. Detection of ions

We now consider the detection fidelity of Yb+ ions using the cycling transition in manifold B following autoin-
iozation out of a Rydberg state. Ions created from Rydberg atoms have been imaged using fluorescence in ultracold
quantum gases of strontium [15], although we note that only ensembles with N ≈ 105 ions were studied in that
work, and not single ions. Compared to detecting neutral atoms, there are two additional factors that make ion
detection more challenging: an initial velocity v0 arising from recoil momentum from the ejected electron, and accel-
eration due to a background electric field or the presence of other ions. We begin by considering the initial velocity:
when a 6p1/2np Rydberg state decays to Yb+ (6s) + e− via autoionization, the electron carries away an energy

∆E ≈ I6p1/2
− I6s ≈ 27100 cm−1, where Ij is the ionization limit for Yb0 corresponding to the ion core in state j,
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Supplementary Figure 2. (a) Typical driving approach for hyperfine state readout on the 171Yb+ 6s1/2 → 6p1/2 transition
[17]. The F → F − 1 transition has two dark states (remixed by a magnetic field, not shown) that reduces the fluorescence by
a factor of 1/3, to a maximum of Γ/6. (b) Three-frequency driving scheme to avoid dark states, achieving a saturated photon
scattering rate of Γ/2.

and we have made the approximation that the electron mass is very small compared to the ion mass. In this case,
the ion acquires a recoil momentum pe =

√
2∆Eme, corresponding to a velocity v0 = pe/m ≈ 3.5 m/s.

With a finite initial velocity, the mean squared position is:

⟨x2(t)⟩ = v20t
2 +

ℏ2k2

18m2
t3Γ = v2rect

2

[(
v0
vrec

)2

+
tΓ

18

]
(3)

where vrec = ℏk/m is the recoil velocity for the imaging wavelength, now 369 nm, and Γ = 2π × 19 MHz. For the
parameters above, v0/vrec ≈ 550. Recognizing that the number of scattered photons is Nph = tΓ/2, it is clear that
the first term dominates for Nph < 106. Therefore, we can express the position as:

√
⟨x2(t)⟩ = 2v0Nph

Γ
≈ 54 nm/photon (4)

With a total detection efficiency of η = 0.1, an average of 5 photons can be detected while maintaining
√
⟨x2(t)⟩ <

2.5µm, corresponding to 99% detection fidelity in the absence of dark counts. The necessary imaging time is less
than 2 µs.

Achieving this collection and detection efficiency is challenging but achievable. A lens with NA=0.7 collects approx-
imately 14% of the light from an unpolarized emitter (double-sided NA=0.7 lenses have recently been demonstrated
in a tweezer setup [16], giving twice the efficiency), and EMCCD detectors with a quantum efficiency of 75% are also
commercially available (i.e., NuVu Cameras HNu512 with blue-enhanced sensor). We also note that fluorescence
detection of the hyperfine state in 171Yb+ typically results in a saturated fluorescence rate 3-4 times slower than Γ/2
[17]. This arises from coherent dark states on the F = 1 → F ′ = 0 transition used for state readout (Fig. 2a). How-
ever, we only wish to detect the presence of the ion and not its state. Driving both hyperfine levels simultaneously
with multiple frequency tones (Fig. 2b) can eliminate these dark states, resulting in a saturated fluorescence rate of
Γ/2.

We note that this is a conservative estimate for several reasons. First, Yb+ ions are only produced on atoms
undergoing a two-qubit gate, and these gates cannot be performed on every atom in the array in parallel because of
cross-blockade effects. Therefore, it is only necessary to resolve the atoms participating in gates in a particular cycle,
which may have a separation of 2a or 3a, allowing for longer imaging times and more particle spread. Second, we
have assumed that the recoil momentum is always in the plane of the array. However, out-of-plane motion does not
affect the in-plane imaging resolution, and the true momentum distribution may be isotropic or even preferentially
out-of-plane depending on the polarization of the autoionization light [18]. Lastly, we have treated all autoionization
events as transitions to Yb+ (6s), while in reality, a significant fraction of autoionization events will decay to a Yb+

(5d) state. These states can be quickly repumped to 6s, so imaging can proceed as normal. However, for this decay
process, ∆E is smaller by a factor of approximately 6, and v0 is smaller by a factor of 2.6, significantly relaxing the
requirements on the imaging parameters for these atoms. To the best of our knowledge, the branching ratio to the
5d states has not been measured for Yb 6p1/2ns states, though the analogous quantity has been studied in Ba [19]
and can be between 15-88%, depending on the initial state.

We can also consider the role of a background electric field, which will cause a position displacement:

∆x =
qE

2m
t2 =

qE

2m

(
2Nph

Γ

)2

(5)
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Here, E is the field strength and q is the electron charge. Using the Yb+ ion parameters and Nph = 200, this
results in a drift of approximately 316 nm/(mV/cm) during the imaging time. With intra-vacuum electrodes, it is
possible to null background electric fields at the level of approximately 1 mV/cm [5], so this is not a significant source
of imaging error.

Lastly, we consider electric fields resulting from the simultaneous creation of multiple Yb+ ions in a single gate
cycle. We are not concerned with ions created in previous gate cycles, because they can be cleared with a brief
electric field pulse. In the main text, and in section Supplementary Note 4, we predict that the probability of
generating two ions in a single two-qubit gate is extremely small due to the Rydberg blockade. Therefore, in this
section we are concerned with the probability to create ions in nearby gates. First, let us estimate the tolerable
separation between ions. The electric field produced by a single ion is 16 mV/cm at a distance d = 30µm. If two
ions are created at this separation, the resulting force will cause a displacement of approximately 5 µm during the
time it takes to scatter 200 photons, which is roughly comparable to the targeted spatial resolution. Therefore,
we conclude that di = 30µm is the minimum ion separation that can be tolerated without incurring additional
detection errors. If gates are performed across the array with a separation of dg, the probability of a multi-ion event
impairing the detection of a given ion is (Ng − 1)p, where Ng ≈ (di/dg)

2 is the number of parallel gates within di.
This should be compared to the intrinsic ion detection infidelity to estimate whether multi-ion events will degrade
the average detection fidelity. For example, given a detection fidelity of 99% for isolated ions, and a gate error of
p = 10−3 (see section Supplementary Note 4), any value of dg > 10µm will not significantly alter the overall ion
detection probability. This is compatible with performing parallel gates every three sites in a 2D array with a = 3µm.
The impact of multi-ion events on detection fidelity can be reduced further at the expense of gate parallelism and
operation time (see section Supplementary Note 7).

C. Alternate detection strategies for population in Rydberg states

Fluorescence detection of ions has the benefit of being fast and compatible with existing experimental techniques.
One alternate approach is to detect Yb+ ions and electrons using charged particle optics and detectors. A second
alternative is to simply wait for any Rydberg atoms to decay. To ensure more than 99.9% of the ions have decayed,
it would be necessary to wait approximately τ > 7/Γ ≈ 1 ms, and avoiding atom loss during this time will require
that all of the intermediate Rydberg states are trapped. However, this is straightforward in alkaline earth atoms
using the polarizability of the ion core [5]. Because of the large number of intermediate Rydberg states and their
complex radiative decay pathways, it is not possible to accurately calculate the ultimate branching ratio back into
3P0, but a crude estimate suggests it would result in less efficient erasure conversion, with Re ≈ 0.9.

Supplementary Note 4. GATE SIMULATIONS

In this section, we describe a detailed, microscopic simulation of a two-qubit gate using the level structure in Fig. 1,
to evaluate the quantitative performance of the erasure conversion approach. While we expect that this protocol
should work for any Rydberg gate, we focus specifically on the protocol introduced in Ref. [20], and applied to 171Yb
in Ref. [11], which we refer to hereafter as the LP gate.

The system is described by the following two-atom Hamiltonian:

H =
∑

i={1,2}

1

2
(Ω |r⟩ii ⟨1|+Ω∗ |1⟩ii ⟨r|) + ∆ |r⟩ii ⟨r|

+ Vrr |rr⟩ ⟨rr|+ Vpp |pp⟩ ⟨pp|+ Vrp(|rp⟩ ⟨pr|+ h.c.)

(6)

The qubit state |1⟩ in each atom is coupled to |r⟩ by a drive Ω with detuning ∆. The Rydberg blockade shifts
the state |rr⟩ by Vrr. We also incorporate a single additional state, |p⟩, that is populated by BBR transitions. This
state has a a self-blockade interaction with strength Vpp, and a cross-blockade interaction with |r⟩ with strength Vrp.
Only states with large matrix elements to |r⟩ are populated by BBR transitions, and therefore, Vrp is dominated by
the strong dipole-dipole interaction. Therefore, we expect that Vrp ≫ Vpp, Vrr.

The LP gate protocol is based on the fact that, when Vrr ≫ Ω, the initial state |11⟩ cannot be excited to |rr⟩,
but is instead excited to |W ⟩ = (|1r⟩+ |r1⟩)/

√
2 at a rate

√
2Ω. Therefore, the use of an appropriate detuned pulse

with a phase slip allows for excitation trajectories for all initial states that return to themselves, but with different
accumulated phases for |11⟩ and |01⟩ (or |10⟩), giving rise to a controlled-Z (CZ) gate (Fig. 3a,b) [20].

As discussed in the main text, the dominant, fundamental source of error is decay from |r⟩ during the gate.
This can result in a BBR transition to another Rydberg state, a radiative decay to the ground state 1S0 (|g⟩)
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Supplementary Figure 3. Gate simulations. (a) Pulse sequence used to implement the CZ gate from Ref. [20]. (b) Rydberg
state population during the gate, for various initial states. (c) Probability of individual erasure error channels (see Fig. 2a).
The solid lines are analytic estimates from section Supplementary Note 4.

or the computational level. During the erasure detection step, these correspond to three distinct outcomes: ion
fluorescence (which we abbreviate B), ground state fluorescence (R) or no signal, indicating that the qubit remains
in the computational space (Q). In a two-qubit gate, the outcome QQ signals no erasure, while any other outcome
is considered to be an erasure error on both qubits.

A. Analytic error model

In this section, we derive analytic expressions for the probabilities of various errors to occur during the two-qubit
gate. For atoms beginning in the state |00⟩, there is no excitation to the Rydberg state, and therefore no errors.
Below, we consider the other initial states.

1. Initial state |01⟩ (or |10⟩)

First, consider the case that the atoms start in |01⟩. The case |10⟩ is identical because the gate is symmetric in
the two atoms. During the gate, in the absence of errors, we can represent the state of the atoms as:

|ψ(t)⟩ = ψ1(t) |01⟩+ ψr(t) |0r⟩ (7)
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The Rydberg excitation probability |ψr(t)|2 is plotted in Fig. 3b.
The probability of a blackbody decay that leaves the qubits in the configuration QB (Fig. 4a) is given by the decay

rate ΓB and the average population in the Rydberg state during the gate, α:

ΓBαtg = ΓB

∫ tg

0

|ψr(t)|2 dt (8)

Similarly, the probability of a radiative decay to QR is ΓRαtg. For the LP gate, α ≈ 0.532.
The probability of the qubit decaying back to the computational space is ΓQαtg. We make two simplifying

assumptions about this process. First, we set the decay probability to |00⟩ and |01⟩ to be equal, though in reality
they are biased towards |01⟩, which is more favorable. Second, we assume that the time spent in intermediate states
is negligible compared to tg, which is well-justified if tg > 100 ns. After decaying to |00⟩, the qubits will remain there
for the rest of the gate. Decays to |01⟩, however, result in re-excitation, resulting in |0r⟩ population at the end of
the gate, which is detected as a QB configuration. We denote the fraction of decays to |01⟩ that are re-excited as
R01, which we compute as a weighted average over the possible decay times:

R01 =
1

tgα

∫ tg

0

|ψr(t)|2 |ψr(tg − t)|2 dt ≈ 0.700 (9)

Here, |ψr(tg − t)|2 is the probability for an atom that has decayed at a time t to be found in |r⟩ at the end of the

gate. To see why this is the case, consider the directly computed re-excitation probability: | ⟨r|U(t, tg)|1⟩|2, where
U(t, tg) is the propagator from time t to tg. Taking the complex conjugate inside the square modulus allows this to

be rewritten as | ⟨r|U(tg, t)|1⟩|2, describing the evolution of |1⟩ backwards in time, from tg to t. Because the square
modulus of the wavefunctions are clearly symmetric around the middle of the gate (Fig. 3b), this can be replaced by

| ⟨r|U(0, tg − t)|1⟩|2 = |ψr(tg − t)|2.
We can combine these results to arrive at the probability to end up in each subspace, having started in |01⟩:

P (QR|01) = ΓRαtg (10)

P (QB|01) = ΓBαtg + (ΓQ/2)αtgR01 (11)

P (QQ|01) = 1− P (QR|01)− P (QB|01) (12)

2. Initial state |11⟩

Now we consider the case that the qubits start in |11⟩ (Fig. 4b). During the gate, with no errors, the state can be
represented as:

|ψ(t)⟩ = ψ11(t) |11⟩+ ψW (t) |W ⟩+ ψrr(t) |rr⟩ (13)

where |W ⟩ = (|1r⟩+|r1⟩)/
√
2. We assume |ψrr(t)|2 ≪ 1 because of the Rydberg blockade, and neglect this component

unless otherwise stated. The Rydberg excitation probability |ψW (t)|2 is plotted in Fig. 3b.
Proceeding as before, the probability of a blackbody decay to the subspace QB ∪ BQ depends on the average

Rydberg population β:

ΓBβtg = ΓB

∫ tg

0

|ψW (t)|2 dt (14)

Similarly, the probability of a radiative decay to QR ∪RQ is ΓRβtg. For the LP gate, β ≈ 0.467.
The qubits can also decay to back to the computational space QQ, with a total probability ΓQβtg, and we assume

that decays to |01⟩ and |11⟩ happen instantly with equal probability, as discussed in the preceding section. If the
decay is to |11⟩, then re-excitation can result in the configuration QB ∪BQ at the end of the gate, with probability
R′

11:

R′
11 =

1

tgβ

∫ tg

0

|ψW (t)|2 |ψW (tg − t)|2 dt ≈ 0.700 (15)

If the decay is to |01⟩, then re-excitation is also possible but with a different probability R′
11, given by the single-

atom excitation trajectory ψr:

R11 =
1

tgβ

∫ tg

0

|ψW (t)|2 |ψr(tg − t)|2 dt ≈ 0.640 (16)
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Supplementary Figure 4. Diagram of transition probabilities during a two-qubit gate, for atoms beginning in (a) |10⟩ or (b)
|11⟩. See section Supplementary Note 4A for variable definitions, and Table I for numeric values.

It is also possible that both atoms leave Q, resulting in the configurations BR∪RB, RR or BB. The configuration
BR∪RB can be populated by an initial radiative decay to QR∪RQ, followed by re-excitation of the qubit remaining
in Q (which is always in |1⟩). The probability for this to occur is also R11.

The configuration RR can be populated by a second radiative decay after an initial decay to QR ∪ RQ. The
probability for this to occur, conditioned on the first radiative decay, is given by ΓRβ

′tg, where β
′ is the average

Rydberg population after the first decay:

β′ =
1

tgβ

∫ tg

0

dt |ψW (t)|2 1

tg

∫ tg

t

dt′ |ψr(tg − t)|2

≈ 0.266

(17)

Lastly, the configuration BB can be populated in two ways: by re-excitation after an initial blackbody decay to
QB ∪ BQ, or decay from the doubly excited state |rr⟩. The former is strongly suppressed by the blockade term
Vrp (in Eq. 6), while the latter is strongly suppressed by the blockade Vrr. The direct decay from |rr⟩ occurs with
probability:

2ΓBβ
′′tg = 2ΓB

∫ tg

0

|ψrr(t)|2 dt (18)

with the average |rr⟩ population β′′ ≈ βΩ2/(2V 2
rr). Note that only a single decay is required, as the state |rp⟩

results in the creation of two ions.

The probability for a pair of atoms that has already decayed to QB ∪BQ to be re-excited is:

S =
1

tgβ

∫ tg

0

|ψW (t)|2 |ψrp(tg − t)|2 dt (19)

Here, |ψrp(t)|2 ≈ Ω2/(2V 2
rp) is the probability for the state |1p⟩ to evolve into |rp⟩ after a time t.

From these expressions, we can compute the probability to end up in different final states, starting in |11⟩.
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Term Value
α 0.532
R01 0.700
β 0.467
R11 0.640
R′

11 0.700
β′ 0.266
β′′ βΩ2/(2V 2

rr)
S Ω2/(2V 2

rp)

TABLE I. Coefficients of the transition rates in Fig. 4, evaluated for the CZ gate from Ref. [20].

P (QR ∪RQ|11) = ΓRβtg(1−R11) (20)

P (QB ∪BQ|11) = ΓBβtg(1− S)

+ ΓQβtg(R11 +R′
11)/2

(21)

P (RB ∪BR|11) = ΓRβtgR11 (22)

P (RR|11) = (ΓRtg)
2ββ′ (23)

P (BB|11) = ΓBβtgS + 2ΓBβ
′′tg (24)

3. Summary

We can combine the analytic estimates above in Eqs. (10)-(12) and Eqs. (20)-(24) to obtain a total probability
of each error channel. Given an initial state with probability {P00, P01, P11} to be in {|00⟩ , |01⟩ or |10⟩ , |11⟩}, the
probability of each error channel is:

PQR = P01ΓRαtg + P11ΓRβtg(1−R11) (25)

PQB = P01ΓBαtg

+ P11 [ΓBβtg(1− S) + ΓQβtg(R11 +R′
11)/2]

(26)

PRB = P11ΓRβtgR11 (27)

PRR = P11(ΓRtg)
2ββ′ (28)

PBB = P11 [2ΓBβ
′′tg + ΓBβtgS] (29)

The total erasure probability pe is given by the sum of the first five terms. The probability of an undetectable
leakage error is pf = PBB .

The first three errors scale as tg; correspondingly, the probability of these events goes as Γtg, and are the dominant
error mechanism for the gate. The fourth expression, PRR, decreases as (Γtg)

2. The final error probability PBB , scales
as ΓtgΩ

2/(2V 2) ≈ Γ/(tgV
2) (here, V is the smaller of Vrr, Vrp, which is typically Vrr. While this error probability

decreases with Γ, it increases as tg decreases, as the larger Ω begins to overpower the blockade. As noted in the main
text, the error BB is special because it cannot be readily detected and results in atom loss. However, excitation of
|rr⟩ causes other, coherent errors in the gate as well. Therefore, maintaining high fidelity gate operation even in the
absence of spontaneous decay requires Ω/V > 20 [20]. Since PBB/PQB ≈ Ω2/(2V 2), it seems that the probability
of BB events will generally be smaller than the probability of undetected QB events, given the detection fidelity
discussed in section Supplementary Note 3.

A final source of error is the non-Hermitian no-jump evolution that arises under the monitoring realized by the
erasure detection [21]. Since erasure errors do not occur from the state |00⟩, and are approximately equally likely
from the remaining computational states, the absence of an erasure detection reveals that the atoms are more likely
to be in |00⟩, and therefore the renormalized wavefunction contains more amplitude in this state [22]. This can be
understood as a rotation of the two-qubit state towards |00⟩ by an angle proportional to pe, which contributes to the
average gate infidelity at the level of approximately (pe/4)

2. This is not a significant contribution to the total error
when pe ≪ 16(1−Re) ≈ 0.32.
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B. Comparison to numerical simulations

For comparison, we also perform a master equation simulation of the full two-atom model. We consider the error
probabilities as a function of the gate duration, tg, which depends on the Rabi frequency as tg ≈ 8.586/Ω. The
gate error depends primarily on the dimensionless quantity Γtg, but is also sensitive to the blockade strength (in the
high-fidelity regime), which we express in dimensionless units as Vrr/Γ. For simplicity, we set Vrp = Vrr, though in
reality, Vrp is larger because it is a first-order process.

For the n = 75 3S1 state in 171Yb, we assume a Rydberg lifetime τ = 1/Γ = 100 µs, and V = 2π× 1.3 GHz, based
on previous measurements in 174Yb [5, 23], giving V/Γ = 106. The achievable value of tg depends on the details of
the experimental setup and excitation laser. However, we note that Ω = 2π × 5.5 MHz has been demonstrated for
this state (starting from 3P1) with very modest laser power [23], which would yield tg ≈ 250 ns and Γtg ≈ 2× 10−3.

In Fig. 3c, the predictions of Eqs. (25)-(29) are shown along with a master equation simulation of the two-atom
model. The numerical simulation and the analytic model are in excellent agreement.

C. Other factors limiting gate fidelity

In additional simulations, we have also considered a more realistic six-level model including the other mF sublevels
of the 3S1 F = 3/2 state, imperfect laser polarization, and the role of finite blockade strength. A large magnetic
field serves to detune the transition from |0⟩ to the mF = 1/2 Rydberg state by ∆z = gfµBB ≫ Ω. However, a
small light shift remains that contributes both a single-qubit and a two-qubit phase, but which can be corrected by
adjusting the gate parameters ∆, ξ. Imperfect polarization also generates a small light shift that can be similarly
accommodated. The finite blockade modifies the qubit trajectories but can also be incorporated as a correction, as
discussed in Ref. [20].

After optimization of the gate parameters, we find that a fidelity with the target CZ gate of 1−10−5 can be realized
(in the absence of spontaneous emission) if ∆z/Ω > 30 and V/Ω > 100. Using the experimentally demonstrated
Ω = 2π × 5.5 MHz and Γ−1 = 100µs, the average gate fidelity (including spontaneous emission) is F ≈ 0.999 (Fig.
2b). Therefore, with B ≳ 90 G and Vrr ≳ 2π × 550 MHz (corresponding to a tweezer spacing a < 4.5µm), the
additional coherent errors can be suppressed below 10−5, which will not impact the conditional fidelity Fē in Fig.
2b. These parameter values are based on the measured g-factor and C6 coefficient for the 3S1 F = 3/2 Rydberg
states: gF = 1.9 MHz/G and measured C6 = 5(3) THzµm6, respectively [11]. This gate performance matches or
exceeds recent theoretically predicted gate fidelities in alkali atom qubits [24, 25].

Supplementary Note 5. ERASURE CONVERSION FOR OTHER ERRORS

While we have so far focused on two-qubit gate errors, as they are dominant and most problematic, the metastable
state qubit encoding in 171Yb should also allow erasure conversion for other errors. In this section, we briefly sketch
these ideas, leaving a detailed analysis for future work.

First, any spontaneous decay or photon scattering occurring on idle qubits in the 3P0 level is an erasure error
with very high probability. Spontaneous decay to 1S0 is always detectable. Raman and Rayleigh scattering from the
optical tweezer have a vanishing probability of creating errors in the qubit subspace as long as the tweezer detuning
is large compared to the hyperfine splitting in other excited states [26]. It can shorten the lifetime of the qubit level
by Raman scattering to other 3PJ states, but these decay or are repumped to 1S0, and detected as erasures.

The same logic can be applied to single-qubit gates performed using Raman transitions via the 6s7s 3S1 state, as
long as the detuning is large compared to the hyperfine splitting in that state [27]. If single-qubit gates are performed
through the Rydberg state, then the analysis is the same as that of the two-qubit gate.

Lastly, we note that a significant source of error in current neutral atom gates is technical noise, either from Doppler
shifts or frequency and intensity fluctuations of the driving laser. While this source of error is not fundamental, it
is a significant practical nuisance. Noise that is slow compared to the duration of a gate, which is often the case
for Doppler shifts and intensity noise, can be cancelled using composite pulse sequences [28] or other robust control
techniques [29]. Unfortunately, this typically results in a longer total gate duration, increasing the Rydberg decay
probability. However, this trade-off may be more advantageous with erasure conversion.
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Supplementary Figure 5. Logical error performance with errors on ancilla qubit initialization and measurement with probability
pm = 0 (solid lines, filled circles) and pm = 0.005 (dashed lines, open circles).

Supplementary Note 6. IMPACT OF ERRORS IN INITIALIZATION, MEASUREMENT AND
SINGLE-QUBIT GATES

In the simulations in Figs, 3 and 4, we assume native operations to initialize and measure the ancillas in the
Hadamard basis, and native CNOT and CZ gates, such that no single-qubit gates are required. The impact of
single-qubit gate errors can be estimated by considering an alternative stabilizer measurement circuit with ancilla
initialization and measurement in the Z basis, and only CZ gates. This requires the insertion of four H gates, which
can each be associated with one of the four two-qubit gates. Therefore, a pessimistic assumption is to treat an error

in the H as an error in the two-qubit gate, which would increase the two-qubit gate error probabilities to pp + p
(1)
p

and pe + p
(1)
e , where p

(1)
e /(p

(1)
p + p

(1)
e ) = R

(1)
e is the erasure fraction of the single qubit gate. If R

(1)
e = 0, then Re

is reduced by a factor 1/(1 + p(1)/p), which means that Re is not significantly affected if p(1)/p < 1 − Re. This is
not an unreasonable assumption for Re = 0.98. However, as discussed above, it is also possible to extend erasure
detection to single-qubit gates, which would further relax this requirement.

Additionally, we consider the role of imperfect ancilla initialization and measurement. In the simulation, this
is represented by inserting Pauli errors before or after perfect operations with probability pm. Note that pm = 0
in Figs. 3, 4. Here we attempt to quantify the impact of realistic initialization and measurement errors in two
ways. First, we consider a fixed value of pm. For pm = 0.001, the threshold two-qubit gate error for Re = 0.98
is indistinguishable from its value when pm = 0. If pm = 0.005, we find that the threshold is slightly reduced to
pth = 3.80(2)%, but the general behavior, even far below the threshold, is unchanged (Fig. 5). Second, we study the
case that the initialization and measurement errors have the same probability as two-qubit gate errors, pm = p. In
this case, we find the threshold decreases to 2.85(1)%.

Supplementary Note 7. IMPACT OF ERASURE CONVERSION ON OPERATION SPEED

In this section we consider how the operations required for erasure conversion may affect the overall computation
speed of a neutral atom quantum computer. A single round of stabilizer measurements for a surface code with
distance d requires of order N = 4d2 two-qubit gates, each of which takes a duration tg < 1us. Gates that are
sufficiently remote can be implemented in parallel [20, 30], and we estimate that in the limit of a large array, a
fraction fp = 1/10 of the gates can be applied in each cycle. Therefore, the total time required to apply the gates is
tg/fp ≈ 10µs.

The erasure detection step must occur after each set of parallel gates, and takes a time te ≈ 10µs (as discussed in
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section Supplementary Note 3). This increases the cycle time to (tg + te)/fp ≈ 100µs.
Atom replacement can be deferred until after the stabilizer measurement: once an erasure error has occurred,

subsequent gates involving the affected atoms can simply be skipped. The time to move tweezers is tr, which is
several hundred microseconds in recent experiments, [25]. All necessary replacements can be performed in parallel.

Lastly, the ancilla qubits need to be measured to extract the syndrome values, and we denote the time for this
operation as tm. To enable the atoms to be re-used, this measurement should not result in the loss of atoms, which
limits the scattering rate and results in tm ≳ 20 ms [11, 12].

Therefore, the total duration of a cycle is (tg + te)/fp + tr + tm. This is dominated by tm, and therefore, the
erasure conversion protocol will not significantly affect the total repetition time unless tm is reduced by about two
orders of magnitude [31].
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