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Supplementary Discussion 

We used different methods and datasets to test the robustness of 𝜃!"#$ estimated from DLM. The 

spatial patterns of 𝜃!"#$ trend calculated from multivariate linear regression (see Supplementary 

Methods 2) at both monthly and annual scales is consistent with DLM estimates (Supplementary 

Figure 3, 4). Both DLM and MLR methods show very good model performance, suggesting the 

sensitivity estimates are robust (Supplementary Figure 5). Using long-term leaf area index (LAI) 

dataset or other satellite NDVI products (see Methods), we also find a very similar pattern, which 

further supports our findings (Supplementary Figure 6, 7). The contrasting trends of 𝜃!"#$ between 

drylands and non-drylands are robust regardless of the methods used, the precipitation datasets or 

vegetation indicators used (Supplementary Figure 8). The contrasting trends are mostly 

contributed by the sensitivity during the wet season when precipitation variability is large and 

more robust estimates are possible (Supplementary Figure 9). Our analysis of the 𝜃!"#$ time-series 

also confirmed these results, with 7 out of 8 continents exhibiting greater trend values of 𝜃!"#$ for 

drylands than non-drylands (Supplementary Figure 10). 

 

Africa exhibits a significant increase in precipitation during the past decades. Precipitation trend 

directly affects the ecosystem water availability and consequently changes the vegetation 

sensitivity to precipitation. We further tested whether the observed contrasting trends of 𝜃!"#$ is 

caused by precipitation trend in Africa. Using results from both DLM and MLR, we found that 

whether or not Africa is included does not affect our conclusion. Furthermore, much of the 

decreases in 𝜎𝑁𝐷𝑉𝐼!"#$  shown in Fig. 2 are contributed by drylands in Africa. If we exclude 

Africa from the analysis, the precipitation variability in drylands still decreases, while 𝜎𝑁𝐷𝑉𝐼!"#$ 

increases, suggesting a strong positive trend of 𝜃!"#$ for the dryland (Supplementary Figure 11). 

In contrast, 𝜎𝑁𝐷𝑉𝐼!"#$ shows a greater reduction (-0.58% yr-1) than the precipitation variability (-

0.31% yr-1) in non-drylands, suggesting that 𝜃!"#$ decreased in non-drylands during this period 

(Fig. 2c).  

 

 

 



Supplementary Method 1. Dynamic linear model 

A DLM can be expressed as a combination of an observation equation (Eq. 1a) and a state 

evolution equation (Eq. 1b): 

𝑦% = 𝐅%&𝛉% + 𝜐%																																																																		(1𝑎)	

𝛉% = 𝐺𝛉%'( +𝐰%																																																															(1𝑏)	

where 𝑦%  is the observed NDVI at each month 𝑡  after removing the mean. The first equation 

describes a linear model to predict 𝑦% through observations (𝐅%) and corresponding coefficients 

(𝛉%). 𝐅% is a vector consisting of three components, corresponding to the trend (𝐅%"#)* = [1,0]), 

seasonal ( 𝐅+#,+ = [1,0,1,0,1,0] ), and a regression component ( 𝐅"#-,% =

[𝛿𝑇𝑒𝑚𝑝% , 𝛿𝐶𝑙𝑜𝑢𝑑%,, 𝛿𝑃𝑟𝑒𝑐%,%'(, 𝛿𝑁𝐷𝑉𝐼%'(, ] ). 𝛿𝑇𝑒𝑚𝑝 , 𝛿𝐶𝑙𝑜𝑢𝑑 , 𝛿𝑃𝑟𝑒𝑐  represent the de-

seasonalized detrended anomalies for temperature, cloud cover (a proxy of radiation), and 

precipitation, respectively. The subscript indicates the period when these anomalies were 

calculated. 𝛉% is the state vector at time 𝑡, which also consists of three components: coefficients 

representing local mean and trend, coefficients representing seasonal dynamics, and regression 

coefficients for the environmental factors and lag-1 autocorrelation. 𝜐% is the state evolution noise 

at time 𝑡 assuming it has Gaussian noise with a zero mean. The second equation describes the 

evolution of the regression coefficients, where 𝐺 is the state evolution matrix, which is diagonal 

connected by three small matrices also corresponding to the trend, seasonal and regression 

components. 𝐰% is the state evolution noise at time 𝑡, following a zero mean multivariate Gaussian 

distribution. 

 

Starting with non-informative 𝛉 values at the first timestep, together with an 𝐅 vector consisting 

of climate and lag-1 autocorrelation factors, the NDVI prior at timestep 1 can be predicted by Eq. 

(1a). We then used a Kalman filtering method to obtain a posterior estimate of 𝑦(. The difference 

between the prior and posterior estimates of 𝑦( is backpropagated using Eq. (1a) so that posterior 

estimates of 𝛉( can be obtained. The posterior of 𝛉( is then used to predict a priori of 𝛉/ through 

Eq. (1b). This process is repeated for each timestep until a posterior time series of 𝛉 is obtained. 

In this study, we specifically focused on the time series of the coefficient for precipitation, 𝜃!"#$, 

from which its mean and trend can be calculated for each pixel. 

 



Supplementary Method 2. Multivariate linear regression 

In addition to the DLM, we also used a multivariate regression to calculate the precipitation 

sensitivity and its trend. The entire study period was split into two halves, i.e., from 1981 to 1998 

and from 1999 to 2015, and we compared the sensitivity changes between the two periods. We use 

multivariate linear regressions to estimate the sensitivity for precipitation for both periods. To 

understand the effect of different lengths of previous precipitation calculation, we tested different 

combinations and the model with best performance were used. The regression coefficient for 

precipitation is considered as the precipitation sensitivity (𝜃!"#$). We also tested the selection of 

different breakpoints for the two periods (e.g., 1998,1999,2000), but this had a limited effect on 

the pattern we found (Supplementary Figure 3). The mean 𝜃!"#$ is calculated as the average of 

𝜃!"#$ for both periods, and the trend is calculated as the difference between the two and adjusted 

to the annual value. In addition to this sensitivity calculation at the monthly scale, we also 

calculated the sensitivity at the annual scale, i.e., annual averages of NDVI and climate variables 

are used for the multivariate regression. To avoid splitting the growing season, each year starts 

from July and ends in June for the Southern hemisphere.  

 

Supplementary Method 3. Minimalistic hydrological model 

At the daily timescale, changes in the total soil water are a balance of input (precipitation, P) minus 

the losses to runoff (including leakage, Q), interception (𝐸0 ), transpiration (𝐸& ), and soil 

evaporation (𝐸1): 

𝑛𝑍"
𝑑𝑠
𝑑𝑡 = 𝑃[𝑡] − 𝐸+[𝑠(𝑡)] − 𝐸&[𝑠(𝑡)] − 𝐸0[𝑡] − 𝑄[𝑠(𝑡), 𝑡]																											(2)	

where 𝑠, 𝑍" and 𝑛 are moisture content, vegetation rooting depth, and porosity of soil, respectively. 

The variables on the right-hand side are functions of time (𝑡), soil moisture (𝑠(𝑡)) or both. This 

model is evaluated at annual scale to understand the hydrological partitioning under steady-state 

conditions, through which 23!
24

 can be further calculated. The trend in precipitation sensitivity at 

annual scale is very similar to the one we show at monthly scale (Supplementary Figure 3, 4), and 

therefore, is helpful for understanding responses to CO2. It should be noted that this model assumes 

a steady state for the equation derivation. Although strong seasonality in rainfall and temperature 

can alter the contribution of each factor, these effects are small and not considered here. 



 

The model first assumes 15% of precipitation is intercepted by the vegetation canopy, following 

predictions from a series of Earth system models1. We also tested other values and found this 

assumption does not directly affect our results afterwards (Supplementary Figure 18). Interception 

contributes directly to the total latent heat, with remaining latent heat fluxes fulfilled by 

evapotranspiration from soil and vegetation (𝐸& + 𝐸1), which decrease linearly from the maximum 

potential evapotranspiration (𝐸4) when soil is at field capacity (𝑠5$) to 0 when at the hygroscopic 

value (𝑠6). Below the wilting point of soil (𝑠7), all evapotranspiration losses are through surface 

evaporation, because vegetation cannot extract water during this period. Above this point, 

transpiration is proportional to the available soil water. This suggests that the soil moisture 

dynamics are key to the water partitioning to transpiration and evaporation. We defined a “relative” 

soil moisture (𝑥) by linearly scaling the soil moisture between the hygroscopic value and field 

capacity, 𝑥 = (𝑠 − 𝑠6)/(𝑠5$ − 𝑠6), and similarly, a relative wilting point 𝜔 = (𝑠7 − 𝑠6)/(𝑠5$ −

𝑠6). The soil moisture dynamics are affected by precipitation (characterized by frequency, 𝜆, and 

depth, 𝛼), root zone soil water storage (𝑤8 = T𝑠5$ − 𝑠6U𝑛𝑍"), as well as the dryness index (𝜙 =

𝐸4/𝑃, inverse of aridity index). For calculation, we also defined a ratio of soil water storage to 

average rainfall depth (𝛾 = 𝑤8/𝛼). Since interception will alter the rainfall frequency and depth 

arriving at the soil surface, and consequently the dryness index calculation, we followed a previous 

study2 and recalculate the abovementioned factors after interception, denoted with a prime symbol 

( ′ ): 𝜆9 = 𝜆𝑒': , 𝛼9 = (1 − 𝛿)𝛼 , 𝑃9 = (1 − 𝛿)𝑒':𝑃 , 𝐸49 = 𝐸4 − 𝐸0 , 𝜙9 = (𝜙 − 1 + (1 −

𝛿)𝑒':)/((1 − 𝛿)𝑒':), and 𝛾9 = 𝛾/(1 − 𝛿). where 𝛿 represents the ratio of canopy water storage 

(∆) to average rainfall intensity: 𝛿 = ∆/𝛼. The probability distribution for the relative soil moisture 

is: 

𝑝(𝑥) =
𝑥
;"
<"'(𝑒';"=𝛾9

;"
<"

𝛤 [𝛾
9

𝜙9\ − 𝛤 [
𝛾9
𝜙9 , 𝛾

9\
																																																				(3)	

Because 𝐸1 is a constant above the wilting point, the fraction of transpiration to evapotranspiration 

from soil, 𝑓 = 𝐸&/(𝐸& + 𝐸1), equals (𝑥 − 𝜔)/𝑥 when soil moisture is above the wilting point. 

The expectation of 𝑓 can be calculated as: 

𝑓 = _ 𝑝(𝑥) [
𝑥 − 𝜔
𝑥 \ 𝑑𝑥

(

>
 



=
`𝛤 a𝛾

9

𝜙9 , 𝜔𝛾
9b − 𝛤 a𝛾

9

𝜙9 , 𝛾
9bc − 𝜔𝛾9 `𝛤 a𝛾

9

𝜙9 − 1,𝜔𝛾
9b − 𝛤 a𝛾

9

𝜙9 − 1, 𝛾
9bc

𝛤 [𝛾
9

𝜙9\ − 𝛤 [
𝛾9
𝜙9 , 𝛾

9\
																							(4)	

 

where 𝛤(∙) and 𝛤(∙,∙) represents complete and upper incomplete gamma functions, respectively. 

𝛾9 and 𝜙9 are modified for soil surface conditions after considering canopy interception.  

 

The surface evapotranspiration from soil is scaled by average effective soil moisture (�̅�) from 

potential evapotranspiration 𝐸49, similarly, the prime superscript indicates this is 𝐸4  adjust for 

canopy interception 

𝐸& + 𝐸1
𝑃 =

�̅�𝐸49

𝑃9
𝑃9

𝑃 = �̅�𝜙9𝜌																																																										(5)	

where 𝜌 indicate the average throughfall fraction (85%). And the average effective soil moisture 

(�̅�) can be calculated as: 

�̅� =
1
𝜙9 −

𝛾9
;"
<"'(𝑒';"

𝛤 [𝛾
9

𝜙9\ − 𝛤 [
𝛾9
𝜙9 , 𝛾

9\
																																																						(6)	

CO2 affects 𝐸& through both direct effect of reducing stomatal conductance (𝑔+) and indirect effect 

of increasing LAI. To consider these two effects in the minimalistic model, we used a scaling 

factor 𝜅  to represent the proportional stomatal closure due to CO2 and a scaling factor 𝜁  to 

represent the proportional LAI increase due to CO2. We used a widely used stomatal conductance 

model3 to calculate this 𝜅 value: 

𝜅 =
𝑔8 + (1 +

𝑔(
√𝐷

) 𝐴 + ∆𝐴𝐶, + ∆𝐶,

𝑔8 + (1 +
𝑔(
√𝐷

) 𝐴𝐶,

≈
𝐴 + ∆𝐴
𝐴

𝐶, + ∆𝐶,
𝐶,

=
1 + 𝛽?@#

∆𝐶,
𝐶,

1 + ∆𝐶,𝐶,

																							(7) 

where 𝑔8,	𝑔( are empirical parameters representing the minimum stomatal conductance and the 

sensitivity of stomatal conductance to the vapor pressure deficit (VPD or 𝐷). 𝐶, and 𝐴 represent 

the ambient CO2 concentration and photosynthesis, respectively. ∆𝐶, and ∆𝐴 indicate the change 

in ambient CO2 and resultant increase in photosynthesis. 𝛽?@# is the CO2 sensitivity calculated as 
2A/A
2?$/?$

. Using 𝐶,=354ppm (average for 1981-1998), ∆𝐶,=30ppm, we estimated 𝜅?C as 0.969 for 

C3 plants with 𝛽?@#=60% (ref. 4), while for C4 plants, we estimated this 𝜅?D  as 0.922 with 



𝛽?@#=0%. This indicates the average 𝑔+ in the second half of the study period (1999-2015) will 

decrease to 96.9% (for C3 plants) or 92.2% (for C4 plants) of its average value in the first half 

(1981-1998), and so will transpiration if changes of climatic factors are not considered.  

 

To estimate 𝜁 , we used an hypothetical model from a previous study5. 𝜁  shows a strong 

dependency along the resource availability index, with higher values in the low resource regions 

and lower values (close to zero) in the high resource regions. This hypothetical model is well 

supported by the free air CO2 enrichment (FACE) experiments throughout the globe. For our study 

region, water is the primary limiting resource, we therefore used the dryness index instead of the 

resource availability index in our study. 𝜁 is assumed to have a nonlinear relationship with the 

dryness index (𝜙): 

𝜁 = 1 + 𝑏(
1

1 + 𝑒,/<
)																																																					(8) 

where 𝑏 is the coefficient that determines the maximum LAI increase at the dry end. 𝜁 is suggested 

to increase by ~19% for the second half (1999-2015) as compared to the first half (1981-1998), 

based on the estimates from arid ecosystems in Australia6. We therefore set 𝑏 as 0.38 so that 𝜁 is 

in the range of (1, 1.19]. It should be noted that this value is much greater than the stomatal 

reduction at the dry end, likely due to an increase in the fraction of precipitation being partitioned 

into transpiration. 𝑎 is the coefficient determining the slope of the effect along 𝜙. We set it to 4 in 

this study so that the shape of the response is similar to a previous studies7. Using other 𝑎 and 𝑏 

values does not qualitatively affect our results (Supplementary Figure 21). 

 

Combining Eq. (4-8), we can get 
𝐸&
𝑃 = 𝑓�̅�𝜙9𝜌𝜅𝜁 = 𝑔(𝜙)																																																								(9)	

Although this minimalistic model is simplified, it can very well capture the evapotranspiration 

fraction ( 3!E3%E3&
4

) predicted by the Budyko framework8. The fraction of transpiration to 

precipitation also matches the observations and model simulations at the global scale. By adding 

the effect of stomatal conductance (𝜅) and LAI (𝜁), this model is also capable of responding to 

CO2 both directly and indirectly.  

From Eq. (9), we can calculate the partial derivative of 𝐸& to 𝑃: 



𝜕𝐸&
𝜕𝑃 = 𝑔(𝜙) −

𝜕𝑔(𝜙)
𝜕𝜙 𝜙																																																										(10)	

The partial derivative of 𝑔(𝜙) to 𝜙 is difficult to calculate analytically, we therefore calculated it 

numerically. To do this, we used sandy loam soil and global average rooting depth of 67.8 cm, 

with global average rainfall depth of 7.4mm. These parameter settings have been used by previous 

studies and shown rather good performance. We showed that different values used here does not 

directly affect our results.  

 

  



Supplementary Table 1. MsTMIP simulation scenarios used in this study. 
Scenarios Climate Forcing Land-Use 

History 
Atmospheric 
CO2 

Nitrogen 
Deposition 

SG1 CRU+NCEP v6 Constant Constant Constant 
SG2 CRU+NCEP v6 Time-varying Constant Constant 
SG3 CRU+NCEP v6 Time-varying Time-varying Constant 
BG1 CRU+NCEP v6 Time-varying Time-varying Time-varying 

The CRU-NCEP V6 is at 0.5° spatial and 6-hourly temporal resolution, factors including incoming 
longwave/shortwave radiation, air temperature and humidity, pressure, wind speed, precipitation 
are considered. Land use history is from Hurtt’s+SYNMAP. CO2 data is from Enhanced 
GlobalView. Nitrogen deposition data is from Enhanced Dentener. For detailed information, see 
Wei et al., 2014 (ref. 9) 
  



Supplementary Table 2. MsTMIP models and simulations used in this study. 
Model Simulation scenarios  Nitrogen cycle Reference 
BIOME-BGC SG1, BG1 Yes 10 
CLASS-CTEM-N SG1, SG2, SG3, BG1 Yes 11 
CLM4 SG1, SG2, SG3, BG1 Yes 12 
CLM4VIC SG1, SG2, SG3, BG1 Yes 13 
GTEC SG1, SG2, SG3 No 14,15 
LPJ-wsl SG1, SG2, SG3 No 16 
ORCHIDEE-LSCE SG1, SG2, SG3 No 17 
SiBCASA SG1, SG2, SG3 No 18 
VEGAS2.1 SG1, SG2, SG3 No 19 
VISIT SG1, SG2, SG3 No 20 

 
  



Supplementary Table 3. Parameters used in the minimalistic model 
 Possible values Note 
Soil types sand, sandy loam, loam, clay Soil type determines the porosity (n), field 

capacity ( 𝑠5$ ), wilting point ( 𝑠7 ), 
hygroscopic value (𝑠6) 

Rooting depth 
(𝑍", in mm) 

672, 370, 3140 These values represent the global mean, 
lower (shrubland) and upper (evergreen 
broadleaf forest) bound from Yang et al. 
2016 (ref. 21) 

Rainfall depth 
(𝛼, in mm) 

7.4, 4, 16 These values represent the global land mean, 
lower and upper bound estimates from 
Goods et al. (ref. 2) 

Canopy storage 
(∆, in mm) 

0.588, 0.385, 0.799 These values correspond to three levels of 
interceptions when they take 15%, 10%, and 
20% of total precipitation (assuming 𝛼=7.4). 

 
 
  



 

 
Supplementary Figure 1. The map of the aridity index (P/PET) for the study region. Colors 
from red to green correspond to hyper-arid, arid, semi-arid, dry sub-humid, and humid, 
respectively. Dryland corresponds to areas with an aridity index smaller than 0.65 (i.e., red, orange 
and yellow color). White area represents barren land with no vegetation. 
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Supplementary Figure 2. Trend in precipitation during 1981-2015. a,b spatial patterns of 
precipitation trend from CRU and GPCC dataset. c Precipitation variabilities for the 6 continents 
within our study area (50 °N-50 °S). Dashed lines indicate the average precipitation for the 
vegetated area for each continent, and the solid lines indicates the linear regression. Only Africa 
shows a significant trend (Sen’s slope=1.16 mm yr-2, P=0.01 for CRU and Sen’s slope=1.10 mm 
yr-2, P=0.05 for GPCC).  
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Supplementary Figure 3. Precipitation sensitivity using the multivariate linear regression. a 
and b are from models that only include lag-1 autocorrelation and precipitation. We use different 
periods to calculate the precipitation anomalies, and the one with best model performance is used 
for each pixel. c and d are from models that include additional current month temperature and 
cloud fraction. e and f indicate the mean and trend of precipitation sensitivity along the aridity 
index. The red and blue lines indicate the sensitivity calculated from the model that includes lag-
1 autocorrelation and precipitation, or uses additional temperature, cloud fraction. Dash and dotted 
lines indicate mean and trend of 𝜃!"#$ with a breakpoint of year 1997 and 1999, respectively. The 
lines indicate the median value and the shades indicate the 95% confidence interval calculated in 
each aridity bin through bootstrapping (n=5000). 
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Supplementary Figure 4. Precipitation sensitivity obtained at annual scale. a and b are from 
models that only include lag-1 autocorrelation and precipitation. c and d are from models that 
include additional current month temperature and cloud fraction. Anomalies of annual averages of 
NDVI and climate variables are used in the regression. e and f show the mean precipitation 
sensitivity and trend of precipitation sensitivity, respectively. Shades indicate the 95% confidence 
interval calculated in each aridity bin through bootstrapping (n=5000). 
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Supplementary Figure 5. performance of the models. Multivariate DLM including precipitation, 
temperature, cloud fraction and previous month VI (a, b). Univariate DLM only includes 
precipitation and previous month VI (c, d). Left column indicates the correlation coefficient (R) 
for model predicted value and observed NDVI. Right column indicates the R between de-
seasonalized detrended anomalies observed and predicted by DLM. 
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Supplementary Figure 6. Precipitation sensitivity calculated using GIMMS LAI 3g dataset. 
a and b are from multivariate DLM that includes lag-1 autocorrelation and three climate variables. 
c and d e and f show the mean precipitation sensitivity and trend of precipitation sensitivity, 
respectively. Shades indicate the 95% confidence interval calculated in each aridity bin through 
bootstrapping (n=5000). 
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Supplementary Figure 7. Precipitation sensitivity calculated using MODIS NDVI dataset 
during 2001-2015. a and c are for the mean and trend of 𝜃!"#$, respectively. b and d show the 
comparison of the spatial patterns between mean 𝜃!"#$ and trend in 𝜃!"#$ from either MODIS (x-
axis) or GIMMS 3g (y-axis) based on the one-sided t-test during the same period (2001-2015). 
Warmer color indicates higher density. 
 
  



 

 
Supplementary Figure 8. Trend in precipitation sensitivity (𝜃!"#$) over dryland and non-
dryland. Trend in 𝜃!"#$ estimated from dynamic linear models (DLM, a,e), multivariate linear 
regression (MLR, b,f), MLR at annual time step (c,g) and monthly MLR with GPCC precipitation 
(d,h). Upper panel considers additional climate variables in the regression (Eq. (2)) while lower 
panel considers precipitation anomalies as the only climate variable (Eq. (3)). Solid lines indicate 
the density for the entire low latitude regions, while dashed lines indicate the density with Africa 
removed. Vertical lines indicate the average value of the trend in 𝜃!"#$ for either dryland or non-
dryland. Dryland and non-dryland area separated by the aridity index of 0.65. 
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Supplementary Figure 9. Comparison of precipitation sensitivity for dry and wet season. The 
dry and wet seasons are defined as three consecutive months with smallest and greatest 
climatological precipitation. Maps in the left column shows the dry season and right column shows 
the wet season. a-d results from multivariate DLM; e-h results from MLR. a, b, e, f are for the 
mean sensitivity and c, d, g, h are for the trend in sensitivity. Both DLM and MLR use precipitation, 
cloudiness, and temperature as environmental drivers. mean (i) and trend (j) of sensitivity along 
the aridity index. For DLM, sensitivity is for either dry or wet season is calculated for each year 
and then used to get the mean and trend. For MLR, de-seasonalized NDVI and climate variables 
for dry and wet seasons are selected first and the precipitation sensitivity is then calculated for first 
and second half and for dry and wet season separately. Precipitation sensitivities show large 
variations during the dry season using MLR method, mostly due to limited precipitation variations 
and poor model performance. 
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Supplementary Figure 10. Times series of vegetation sensitivity to precipitation for dry and 
wet regions for each continent. a-g median value of 𝜃!"#$ for each continent. i median value 
for the entire globe. Red and blue lines indicate 𝜃!"#$ for dryland and non-dryland, respectively. 
Slope values in the upper left corner of each subplot show the trend estimated from the Sen’s 
slope estimator, with “***” indicate the trend is significant at P<0.001 based on the two-sided 
Mann Kendall test.  
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Supplementary Figure 11. Trend in variability of vegetation related to the precipitation. a 
Same as Fig. 2b, but for statistics without Africa. b Probability density of 𝜎𝑁𝐷𝑉𝐼!"#$ for dryland 
and non-dryland (with Africa excluded), the P value is obtained based on a one-sided t-test. c same 
as Fig. 2c, but for statistics without Africa. 
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Supplementary Figure 12. Trend in precipitation variability (𝜎!"#$) and its relationship with 
trend in NDVI variability (𝜎𝑁𝐷𝑉𝐼!"#$ ). Trend in de-seasonalized detrended precipitation 
variability (𝜎!"#$) during 1982-2015 from CRU TS 4.04 (a). The variability is calculated within a 
5-year moving window and the trend is calculated using the non-parametric Sen’s slope estimator. 
b comparison between the trend in NDVI variability associated with precipitation (𝜎𝑁𝐷𝑉𝐼!"#$) 
with trend in 𝜃!"#$ . c comparison between the trend in NDVI variability associated with 
precipitation (𝜎𝑁𝐷𝑉𝐼!"#$) with trend in 𝜎!"#$. The correlations for (b) and (c) are evaluated using 
a one-sided t-test. Warmer color indicates higher density. 
  



 
Supplementary Figure 13. Trend of precipitation sensitivity (𝜃!"#$) along vegetation and 
climate trends. a trend of 𝜃!"#$ along aridity index and precipitation trend, b trend of 𝜃!"#$ along 
aridity index and potential evapotranspiration trend from CRU TS 4.05, c trend of 𝜃!"#$ along 
aridity index and GLEAM root zone soil moisture trend, d trend of 𝜃!"#$ along aridity index and 
mean annual GIMMS NDVI trend. Median value is shown for each grid and dots indicate trend of 
𝜃!"#$ is significant at P<0.05 based on the two-sided t-test. 
  



 
Supplementary Figure 14. Relationship between trend of precipitation sensitivity and trend 
in climate variables (precipitation, temperature, cloud cover, potential evapotranspiration, 
and vapor pressure deficit). The first column shows the correlation for all pixels (a-f), second 
column for the dryland pixels (g-l), third column for the non-dryland pixels (m-r). PET from both 
Princeton22 and CRU TS 4.05 are used. Warmer color indicates higher density. 
  



 
Supplementary Figure 15. Vegetation sensitivity to precipitation along aridity index for each 
biome types. a the Olson’s biome map for our study region. b the distribution of biome along the 
aridity index. c relationship between 𝜃!"#$ and aridity index within each biome type. 
  

a

Tropical and subtropical moist broadleaf forests
Tropical and subtropical dry broadleaf forests
Temperate broadleaf and mixed forests
Temperate coniferous forests
Topical and subtropical grasslands, savannas, and shrublands

Temperate grasslands, savannas, and shrublands
Montane grasslands and shrublands
Mediterranean forests, woodlands, and scrub
Desert and xeric shrublands

0.05 0.1 0.5 1 2 4
0.0
0.2
0.4
0.6
0.8
1.0

b

D
en

si
ty

Aridity index

0.05 0.1 0.5 1 2 4
−1e−05
−5e−06

0e+00
5e−06
1e−05

Aridity index

Tr
en

d 
θ p

re
c.

c



 

 
Supplementary Figure 16. Attribution of changes in precipitation sensitivity using MsTMIP 
model experiments. similar as Fig. 3, but only using three models (CLASS-CTEM-N, CLM4 and 
CLM4VIC) which have all simulation scenarios. The bars and error bars indicate the mean and 
standard error of the mean (SEM) of median trend across models, respectively. The sample sizes 
for each factor are: Observation 17601 and 14095 (for dryland and non-dryland, respectively); 
MMEM 3 and 3; Climate 3 and 3; Land use 3 and 3; CO2 3 and 3; N Deposition 3 and 3. 
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Supplementary Figure 17. Attribution of CO2 effect on changes in precipitation sensitivity 
using MsTMIP model. The three groups from left to right (lighter to darker color) indicates the 
response of LAI to transpiration (𝐸&), 𝐸& to evapotranspiration (𝐸), and 𝐸 to precipitation (𝑃). 
Results were calculated as a multi-model ensemble mean. Due to the availability of the variables 
available, VEGAS is not used. The bars and error bars indicate the mean and standard error of the 
mean (SEM) of median trend across models, respectively. The sample sizes for each factor are: 
∂LAI/ ∂EF 7 and 7 (for dryland and non-dryland, respectively); ∂LAI/ ∂EF 7 and 7; ∂LAI/ ∂EF 8 
and 8. 
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Supplementary Figure 18. Predicted responses of vegetation sensitivity to precipitation with 
different levels of interception and for C3 and C4. a vegetation sensitivity to precipitation 
predicted by the minimalistic model, with different line colors indicate soil types, and different 
line types for three levels of interception fraction (interception/precipitation). b changes in 
vegetation sensitivity to precipitation under different levels of interception fraction. c comparison 
between C3 and C4 plants in response to CO2. d the effect of CO2 on each individual factor for C3 
plants. Solid lines and shades represent the mean and mean±std responses with different parameter 
combinations. 
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Supplementary Figure 19. Attribution of changes in precipitation sensitivity using MsTMIP 
model experiments. similar as Fig. 3, but only using GPP instead of LAI for the precipitation 
sensitivity calculation. The models are hatched since they are not comparable with observations 
from NDVI. The bars and error bars indicate the mean and standard error of the mean (SEM) of 
median trend across models, respectively. The sample sizes for each factor are: Observation 17601 
and 14095 (for dryland and non-dryland, respectively); MMEM 5 and 5; Climate 11 and 11; Land 
use 10 and 10; CO2 10 and 10; N Deposition 4 and 4. 
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Supplementary Figure 20. The best model based on R2 from multi linear regression. 
Comparison of model performance between different period to calculate precipitation for (a) 
univariate model and (c) multi-variate model. Numbers after P in the left legend indicate the 
months before current used for the multi linear regression. e.g., P0 indicate current month and P12 
indicates average of precipitation from previous month and the month before. Difference in R2 
between the best model and the model using previous month precipitation (P1) for (b) univariate 
model and (d) multi-variate model.   
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Supplementary Figure 21. Predicted responses of the changes in LAI to precipitation 
sensitivity along the aridity index. Different line types and colors correspond to different 𝑎 and 
𝑏 combinations. 
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