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Reviewer comments, first round -  

 

Reviewer #1 (Remarks to the Author): 

 

The authors of the submitted study conducted a series of statistical and theory driven analyses of 

vegetation patterns (1981-2015) and their response to vegetation. Dynamic and static, linear and 

non-linear empirical models are used to show that over the study period vegetation (as measured 

by satellite NDVI) is more sensitive to precipitation in drylands, with this sensitivity increasing 

more in drylands. These are complemented with analyses of a suite of terrestrial biosphere models 

as well as an update to a minimalistic model. These three approaches are all fairly consistent with 

each other. The authors then evaluated the drivers to the increased trend in sensitivity in drylands 

in the biosphere and minimalistic models and concluded that these changes are due to the role of 

CO2 on vegetation. 

 

It is very clear the authors have done a huge amount of work investigating the stated problem. 

The paper is fairly well written, however the overabundance of methods and approaches employed 

somewhat obscures the findings. For instance, the univariate and multivariate methods produce 

similar results (L102) as do the MLR and DLR produce similar results (L88). This suggests that 

similar conclusions can be drawn with simple methods. Additionally, the comparison between the 

different models in F3 mixes and matches and their presentation and isn’t consistent (F13 is much 

more-clear in this regard). The section on the minimalistic modeling is interesting (and could be its 

own theoretical paper for instance) and should be made more descriptive by removing the partial 

derivative terms from the text where possible and instead reframing these processes by 

descriptive names. I suggest the authors clean up and simplify the methods presented (perhaps 

moving more to the supplementary) in order to create more space for improve descriptions and 

discussions. In fact much of the first part of the results (the finding that water limited ecosystems 

are more sensitive to water limitations) could be compressed to focus on the drivers of this. 

 

In particular, the finding that when water isn’t a limiting factor then ecosystems are not sensitive 

to water is not particularly new or novel. This is expected based on a simple Budyko analysis from 

which the authors incorrectly draw their definition of drylands (aridity is PET/P not P/PET). Water 

limited regions are sensitive to water and light limited regions are sensitive to light, so as they 

move from light limited to water limited under climate change their sensitives go up, with stronger 

increases for more aird drylands (as shown in S12). In the results (and in F2) it is claimed that the 

increased trend in sensitivity of drylands is not due to increased variability. This analysis, while 

interesting, skipped over the more basic potential cause, that a decrease in precipitation amounts 

is driving these systems to be more sensitivity. How do we know that points aren’t just shifting left 

(in their figure F1c) due to drier climates and the shift of drylands to become drier (and similarly 

the wet locations to get wetter) means they will be more sensitive. The authors address this in 

part later with the multi-model study (but these results are confused by comparing different model 

configuration/tests) and no justification is given that adding time-varying CO2 actually improved 

the models ability to predict LAI. The same applies to the minimalistic model, does the addition of 

the stomatal closure and LAI increase scaling factors lead to any improvement in how this model 

represent reality? These additions are really quite interesting, but completely unvalidated (e.g. 

why is 'a' set to 4 L556, or why is the value for 'b' taken from Australia applicable worldwide 

L553?) 

 

Overall, the noteworthy result of this paper is that increasing trends in vegetation sensitives to 

precipitation are due to CO2 effects and not climate, land use, or nitrogen deposition and is 

significant to the field. This conclusion is based on the multi-model intercomparisons, though no 

justification that varying CO2 and the other forcing factors actually improves their ability to 

recreate the observed LAI dataset is given. Again a similar point could be made about the 

modifications to the minimalistic model. Maybe this has been done by the creators of these 

models, if not the authors have the LAI datasets on hand to validate this (at least for the 3 models 

that have all four scenarios in S13). Simplifying the presentation and associated presented 

mythology for the first part of the manuscript should open space later to better describe and 

discuss the result that CO2 concentration variations drive the increasing trend in sensitivity. 



 

L86 You use Aridity as E_p/P in the methods but switch here why. P/E_p is a measure of wetness 

not aridity, it becomes larger under more moist conditions. 

L94 Shouldn’t this be Aridity Index >0.65 since aridity is defined as E_p/P later? 

L101 So water limited regions are more sensitive to water. This is broadly consistent with many 

earlier finding dating back to Budyko and the early concepts of light and water limited ecosystems. 

L114 The units on this figure are very small and thus difficult to tell how meaningful they are. Can 

these be recast into something more digestible like % change or something similar. 

L122 Feel like you’re missing a ref to Fig 2a somewhere here. 

L125-128 Consider moving this to the methods 

L159 Again this matches with a Wet-Gets-Wetter, Dry-Gets-Drier shift (which is much studied) and 

as systems get drier they become more sensitive (as in your F1c). 

L165 I would think the timescale of response of GRACE is too slow to be meaningful here. 

L167 I’m not sure I’m convinced of that this much aggregation is useful. At continental scales 

there are too many different regions to expect any significant trends. Similarly lumping the world 

into dryland and not likely smooths out many trends. 

L177 Provide justification that the addition of these physical processes to these models improves 

the representation of the processes that are examined in this study. Does the addition of CO2 

improve the models ability to estimate LAI. As shown in F3 (and better in S13) adding time 

varying CO2 influences the models but how do we know this is better? 

L194 Great figure, nice and clean. However, shouldn’t the four bars in the ‘non-dryland’ section 

total to the blue bar in the ‘MMEM; section. A quick set of boxes drawn on my PDF tells me these 

are not consistent. The comparison between these is really not consistent and S13 is a much more 

clear presentation of this. Note this is a better unit for F1. 

L213-216 I suggest rewriting this section to remove the fractions with partials and instead 

describe things more descriptively. 

L215 Again, this shows that a shift in P is a main driver of what’s happening. 

L235 As you set things up in the equation above (no number, but I think its 1), I was expecting 

three effects to be: partial_LAI/partial_T, patial_T/partial_ET, and partial_ET/partial_P 

L265 What about CO2s effect on climate change driving shifts in P (as shown in S14) 

L362 Are you missing the coefs in the autocorrelation model? 

L503 Aridity is defined as P/E_p in the results (L86) 

L528 There are many other indirect effects (e.g. shifts in soil moisture due to stomatal open less) 

why focus on this particular direct effect. 

L550 Is this eq. missing a negative sign? 

L553. I don’t follow the jump from 19% to 0.38 

 

 

Reviewer #2 (Remarks to the Author): 

 

 

Dear Authors, 

You address how vegetation greenness sensitivity to precipitation changes during the last decades, 

what might be driving those changes and what may be the potential physiological mechanisms. I 

find the overall ideas interesting, but I think many areas of the manuscript need improvement. 

1) It does not feel logical to me to evaluate the drivers of precipitation sensibility directly through 

outputs of land surface models. I see the value in this, but I would rather see, before this analysis, 

a simpler one trying to partition the trends to real climate data. 

2) The overreliance on modelled data to explain drivers and mechanisms are troubling. How do 

you separate whether the trends found are true mechanisms/drivers or reflect model assumptions? 

I do find the analysis valuable, particularly the one for drivers (if paired with a simpler climate data 

exploration), but I would rather see a better discussion of what the literature has on mechanisms 

than the ecohydrological model. 

3) The aridity index is central to your work, but this index is not discussed in a more clear manner. 

I find to simplistic putting together all the world`s vegetation in a single relative axis. If the 

relative aridity index is calculated as Ep/P (#503), then that means the same aridity index can be 

obtained for an area where the actual, non-relative, water deficit is huge as well as for another 

one where both the water deficit and precipitation are not. I would rather see a non-relative aridity 

index or, if a relative aridity index is used, that the analysis has precipitation or biomes as a 



cofactor. I also miss a map showing which areas have which aridity index. 

4) I find the discussion on precipitation sensitivity simplistic. For plants, what matters most is not 

precipitation, is water availability. Water availability is of course hard to measure, and a non-linear 

function of precipitation, which is why using sensitivity to precipitation, as a proxy for water 

availability, has value. But the introduction and discussion have to come back to the actual water 

availability. Also, please note the trends tested situate into a larger theory which proposes a 

climatic safety margin to climate change, where wetter places have excess water margin to not be 

so much affected by precipitation anomaly. 

Plant water availability is strongly influenced by soil traits. Using precipitation as a proxy for plant 

water availability, at global scale, should be ok as long as soil traits are randomly distributed 

across vegetation types and climate types – thus any local bias becomes random error. I suppose 

this is acceptable (although a good portion of the Amazon occurs near the water table, thus 

decoupled from precipitation), but some discussion on this might be interesting. 

5) I am not sure how much I trust cloud cover as a proxy for radiation. Also, I would expect cloud 

cover and precipitation to not be independent. I am not sure how variable dependence is treated in 

your analysis. 

6) Throughout the work, there is an implicit assumption that plants operate by maximizing water 

use efficiency. This assumption is also behind the models used. This is not true for all 

environments, particularly for environments where competition for water might be important- in 

those environments if plants save water for later use, another plant might simply use this water 

before. The works in the long-term rainfall exclusion experiments have been insightful on this (see 

Caxiuana`s experiment in the Amazon). The results of those experiments should be better 

explored in the introduction and discussion. 

7) The results are hard to follow. I needed to go through the methods 2 times slowly to then be 

able to understand what you did. 

 

Best regards, 

 

Specific comments 

#48-49: why even? Do you mean “even within”, as for diversity and function turnover within the 

same forest? 

#54-58: and soil traits; the most important precipitation effect is through soil water availability 

and not precipitation per se. I think it is better if you explicitly construct the theory linking to 

vegetation responses coupling to water availability, which is mostly driven, in a non-linear fashion, 

by precipitation. 

#58-59 – and acclimation 

#61: temporally as in the time domain or momentarily? 

#68: of uncertainty for… 

#70-80: to much focus on DLM, I could not understand what you did before readying the methods 

and results once. The DLM is just for getting your main index, which, as far as I understood, you 

1) evaluate against an aridity index (no introduction to this anywhere); 2) try to explain drivers 

using LSMs and 3) try to explain mechanisms using ecohydrological model. 

#72-75: the importance here is not the prediction itself, but the model`s capability to separate the 

slope of NDVI ~ precipitation from autocorrelation and other drivers and to estimate this slope 

over time 

#84: “vegetation sensitivity”, here and throughout the text – too generic, specify which aspect of 

vegetation function you are capturing with your data 

As you results focus on dry vs wet, I miss a better introduction of the aridity index used. Is the 

aridity index calculated as Ep/P (line 502?). I would expect an aridity index in the form of actual 

evapotranspiration divided by potential evapotranspiration. 

#89: Fig. S1: what are the lines in e and f? 

#129: with a rho of 0.49 only I would hardly the trends similar 

#262: plant and vegetation – physiological mechanisms are likely to be different from community 

level mechanisms and ecosystem level mechanisms. The way the effects are discussed in the 

following lines are too simplistic. 

#281: increased assimilation may also i) be routed to reproductive organs; ii) be stored; iii) be 

used to change tissue allocation. 

#282: eCO2 only leads to water saving if plants optimize for water use efficiency. This is not true 

in many ecosystems in which competition for water (and nutrients in the water) are important – in 



those systems if one plant does not transpire this water is consumed by other plant. 

#332-334: how does the model behave after removing datapoints if it is temporally dependent (t 

and t-1in equation 2)? 

#362: as the coefficients are not in the equation, maybe mark it as “function of” (f(dNDVI) + 

f(dPREC)) to be correct. I miss a note on the format of the error term. 

#361: what does the delta stands for? Is it just to represent the deseasonalized+detrended? If so, 

note it in the text. 

#364: anomaly is for cloud fraction only, not for precipitation (anomaly)? Anomaly is the 

difference from the whole time series mean? 

#384: was the pixel (grid cell) size noted somewhere? 

#384: should you not use the cloud fraction of the preceding month? For sure the NDVI state in 

any given time is a function of the previous, and not immediate, light availability. 

#384: the DLM model is rather complex. I wonder how predictor independency may affect the 

results. Do precipitation anomaly and cloud fraction anomaly (I suppose they should)? If yes, how 

do you separate the effects. 

#384-387: so you fitted equation 2 using a DLM? 

#417-419: it is not immediate clear why you divide in two. You can be more clear you are 

comparing the sensitivity from period 1 with sensitivity from period 2. I like this analysis, it is 

simple and conservative, thus robust; the average reader will understand what was done without 

problem, while the DLM is not trivial but probably much more sensible. 

#443 MLR – this only appear two time in the text, no need for acronyms. 

#443 – why here you calculate by decade and above you divide the period in two? Maybe keep the 

same approach in both of them? 

#445 – what do you mean by normalized? I imagine it was a scaling or centralization and not a 

normalization process. Did you used a z-score approach?Would it not be better to say you 

compared the variances after scaling centralizing? 

 

 

 

 

Reviewer #3 (Remarks to the Author): 

 

Comments to NCOMMS-21-49872 

 

 

 

Zhang et al ‘s work tried to present changes in dryland ecosystems sensitivity to precipitation and 

explore the potential mechanism behind. While many similar studies have been done in this field, 

Zhang’s work further advanced our understanding of the underlying mechanism of the rising 

differences of ecosystem response to climate change. The work was done nicely, insightfully and 

written quite well. However, this manuscript is very long and is easy to get me lost, I would 

suggest to shorten or discard some general descriptions, such as L206-216 and L416-429. Below 

is a subset of my concerns and note that the authors may flexibly modify some comments just in 

case I'm wrong at some place. 

 

Title 

The analysis actually have included both wet regions and drylands, and further, I am not sure if it 

is so correct to use dryland ecosystem in the title as only vegetation greenness are studied and 

maybe this could be more specific, like drylands vegetation greenness. 

 

Abstract 

L26-28 I think the research gap introduced here is not so correct since many similar studies have 

been done (e.g., referring to relevant references). My question is that could we say the sensitivity 

of precipitation determine global /regional vegetation dynamic, as precipitation is not always the 

necessary driver of vegetation growth, like tropical regions. This also raise another issue, the 

sensitivity analysis in wet regions, does the change in sensitivity make sense? It could be also 

related to the equation (2), how much precipitation contribute to vegetation variations when 

considering NDVI at time of lag-1. 

L33 Specify the models used, statistically or physically 



L34-38, I like this explanations, they sound very convincing, maybe switch the description of wet 

and dry regions since the drylands was introduced firstly above. 

 

L58 I think reference 18 doesn’t make sense. 

L73 Specify the data set and period studied. 

74-75 I think you do not remove dry season, actually GIMMS data in dry season have large 

uncertainty. 

L78 I don’t think coefficient are calculated at each time step is an appealing strength. 

L94 and Fig 1 should be better to add a histogram as inset to indicate how many pixels showing a 

decrease or increase in sensitivity. It’s not so prone to catch some obvious pattern due to 

scattered pixels. 

L118-119 the sensitivity trends were binned by aridity, right? If so, how big is each bin? 

L122-123 I think this sentence should be rephrased; increased variability of vegetation greenness 

is caused by increased precipitation variability if an increase in sensitivity is demonstrated. I 

actually get lost when reading this part about variability, I just feel it doesn’t contribute much to 

the results. 

L206-216 better to move this paragraph to method 

L218 A convincing explanation and this analysis is insightful. 

L262 relationship? 

L317 How do authors think about that the sensitivity is expected to decrease due to more frequent 

and more server climate extremes, it should be right? 

 

Method 

GIMMS data during dry season has poor quality and the temporal coverage should be updated to 

present. 

 

I just feel that NDVI at previous month could contribute a very large proportion to present NDVI? 

Do you test it? 

 

Do we need to introduce Section 3-4 in such detailed? I think few readers are interested in reading 

them. 

 

I like this analysis in L453, but I am not sure what’s basis for the separations of LAI/T, T/ET, ET/P 

I cannot follow from L458 onward, maybe the other reviewers could make suggestions. 

 



Increasing sensitivity of dryland ecosystems to precipitation due to rising atmospheric 
CO2 

# NCOMMS-21-49872 
Response to Reviewers 

 
We appreciate the constructive comments from the reviewers and the invitation from the editor to 
submit a revised version. We carefully followed the reviewers’ suggestions to carry out additional 
analyses and improve our manuscript. Please see below our point-to-point responses in blue text 
following reviewer comments. All line numbers and figures numbers in this response letter refer 
to the clean version of the revised manuscript.  
 
Reviewer #1 (Remarks to the Author): 
 
The authors of the submitted study conducted a series of statistical and theory driven analyses of 
vegetation patterns (1981-2015) and their response to vegetation. Dynamic and static, linear and 
non-linear empirical models are used to show that over the study period vegetation (as measured 
by satellite NDVI) is more sensitive to precipitation in drylands, with this sensitivity increasing 
more in drylands. These are complemented with analyses of a suite of terrestrial biosphere 
models as well as an update to a minimalistic model. These three approaches are all fairly 
consistent with each other. The authors then evaluated the drivers to the increased trend in 
sensitivity in drylands in the biosphere and minimalistic models and concluded that these changes 
are due to the role of CO2 on vegetation. 
 
Response: We appreciate the reviewer’s positive comments. 
 
It is very clear the authors have done a huge amount of work investigating the stated problem. 
The paper is fairly well written, however the overabundance of methods and approaches 
employed somewhat obscures the findings. For instance, the univariate and multivariate methods 
produce similar results (L102) as do the MLR and DLR produce similar results (L88). This 
suggests that similar conclusions can be drawn with simple methods. Additionally, the comparison 
between the different models in F3 mixes and matches and their presentation and isn’t consistent 
(F13 is much more-clear in this regard). The section on the minimalistic modeling is interesting 
(and could be its own theoretical paper for instance) and should be made more descriptive by 
removing the partial derivative terms from the text where possible and instead reframing these 
processes by descriptive names. I suggest the authors clean up and simplify the methods 
presented (perhaps moving more to the supplementary) in order to create more space for improve 
descriptions and discussions. In fact much of the first part of the results (the finding that water 
limited ecosystems are more sensitive to water limitations) could be compressed to focus on the 
drivers of this. 
 
Response: We agree with the reviewer that a lot of methods are involved in our study and we 
have made a lot of improvements to the structure of the presentation in this revision. First, we 
curtailed the first section of the results, i.e., the finding of the precipitation sensitivity trend. We 
decided to keep the DLM results only and moved the robustness tests and corresponding 
discussion to the supplementary discussion section. The reason we did not use the MLR is that 
DLM can provide a time-varying precipitation sensitivity, which is important for characterizing the 
sensitivity changes over time for different regions (Fig. S10) and estimating the trend of NDVI 
variations due to precipitation (Fig. 2). Second, we appreciate the reviewer’s suggestion on using 
Figure S13 (now Figure S15 in the revised manuscript) as the figure in the main text, but 
considering Figure S13 only uses three models and the results are qualitatively similar for both 



figures, we feel it might be better to keep Figure 3 as is. Nevertheless, we agree this mismatch 
may be confusing to readers and we added explanations in the figure caption (L185). Third, we 
revised the text and avoided the partial derivative terms in the results section. Fourth, we moved 
detailed description of the DLM and MLR method into the supplementary information. These 
changes have allowed us to focus more on the drivers of the precipitation sensitivity trend. Please 
also refer to our responses to your comments below for the detailed description of further changes. 
 
In particular, the finding that when water isn’t a limiting factor then ecosystems are not sensitive 
to water is not particularly new or novel. This is expected based on a simple Budyko analysis from 
which the authors incorrectly draw their definition of drylands (aridity is PET/P not P/PET). Water 
limited regions are sensitive to water and light limited regions are sensitive to light, so as they 
move from light limited to water limited under climate change their sensitives go up, with stronger 
increases for more aird drylands (as shown in S12). In the results (and in F2) it is claimed that the 
increased trend in sensitivity of drylands is not due to increased variability. This analysis, while 
interesting, skipped over the more basic potential cause, that a decrease in precipitation amounts 
is driving these systems to be more sensitivity. How do we know that points aren’t just shifting left 
(in their figure F1c) due to drier climates and the shift of drylands to become drier (and similarly 
the wet locations to get wetter) means they will be more sensitive. The authors address this in 
part later with the multi-model study (but these results are confused by comparing different model 
configuration/tests) and no justification is given that adding time-varying CO2 actually improved 
the models ability to predict LAI. The same applies to the minimalistic model, does the addition of 
the stomatal closure and LAI increase scaling factors lead to any improvement in how this model 
represent reality? These additions are really quite interesting, but completely unvalidated (e.g. 
why is 'a' set to 4 L556, or why is the value for 'b' taken from Australia applicable worldwide L553?) 
 
Response: We appreciate the reviewer’s summary for the results and would like to clarify several 
key issues.  
 
1) The definition of the aridity index is corrected based on conventional use. In the literature both 
of those definitions have been used but for readability we use P/PET as aridity index throughout 
(dryland is also based on this definition). Please refer to our response to your comment to L86 
below. 
 
2) In Figure S13 (Figure S15 in the revised SI) and other parts in the results (e.g., Fig. S2), we 
postulate that the contrasting trend in sensitivity is not primarily caused by precipitation changes. 
This is because, a) there is no significant trend in precipitation for most continents except for 
Africa. b) although as the reviewer suggests, the sensitivity is expected to change when an 
ecosystem is getting drier or wetter, we find that in Figure S13 when there is no precipitation trend 
(y-axis=0), the contrasting trend in precipitation sensitivity between dry and wet still exist. This 
implies that changes in precipitation may not explain the contrasting trend in precipitation 
sensitivity between dry and wet. This is further validated by our factorial modeling analysis (Fig. 
3). We clarified these issues in the revised manuscript (L140-147) 
 
3) We used the Terrestrial Biosphere Models from MsTMIP to explore the cause for the 
contrasting trends of precipitation sensitivity between dry and wet. We did not validate the models’ 
capability in representing LAI against observations, nor whether or not the model prediction of LAI 
is improved when CO2 is included. This is because the LAI variations are mostly contributed by 
the variations in the spatial and seasonal domain. The CO2 is known to have limited influence at 
these domains. Adding CO2 effect into the model is not likely to significantly improve the model 



performance. However, we did compare the LAI sensitivity to precipitation, which is the focus of 
our study. The results show that when CO2 is included, models predict a contrasting trend of the 
sensitivity, while with other factors (varying climate, land use change, nitrogen deposition), models 
cannot reproduce such trends or the magnitudes do not match (Fig. 3). Admittedly, there could 
still be some discrepancies between model simulations and observations. The argument is that if 
the major processes are included in the model (for example, CO2 fertilization effect on 
photosynthesis, water limitation on stomatal conductance and carboxylation, carbon allocation, 
ecosystem water balance, etc.), the models can predict the correct response to different 
environmental driving factors, allowing us to separate the respective contribution of each factor. 
This is a commonly used approach in the modeling community (for example, Zhu et al., 2016), 
and while subject to uncertainty it has proven powerful for inference. 
 
4) We agree that we did not validate the minimalistic model against LAI observations, but in the 
paper when the model is first proposed, Good et al. validated the models’ capability in 
representing the spatial patterns of T/P against multiple observation & modeling datasets (Good 
et al., 2017). In our study, it can be seen that the general pattern of precipitation sensitivity 
matches with what we get from the satellite observations (Figure S6). In fact, we do not expect 
this simple model to fully reproduce the LAI trend or variability, rather, it is a simple way to validate 
and explore the mechanisms based on our current knowledge. We agree that the model 
parameterization may not perfectly represent the real world because of the embedded 
uncertainties. In this revision, we also tested several different parameter combinations, and the 
results show that the using different 𝑎 values (3,4,5) and 𝑏 values (0.38, 0.2, 0.5) do not change 
our conclusion (Fig. R1). We have added this figure in the supplementary information and 
discussed the effect of using other parameters. 
 

 
Fig. R1. Predicted responses of the changes in LAI to precipitation sensitivity along the aridity 
index. Different line types and colors correspond to different 𝑎 and 𝑏 combinations. 
 
Zhu, Z., Piao, S., Myneni, R.B., Huang, M., Zeng, Z., Canadell, J.G., Ciais, P., Sitch, S., 

Friedlingstein, P., Arneth, A., Cao, C., Cheng, L., Kato, E., Koven, C., Li, Y., Lian, X., Liu, Y., 
Liu, R., Mao, J., Pan, Y., Peng, S., Peñuelas, J., Poulter, B., Pugh, T.A.M., Stocker, B.D., 
Viovy, N., Wang, X., Wang, Y., Xiao, Z., Yang, H., Zaehle, S., Zeng, N., 2016. Greening of 
the Earth and its drivers. Nature Climate Change 6, 791–795. 
https://doi.org/10.1038/nclimate3004 

0.05 0.1 0.5 1 22
−0.10

−0.05

0.00

0.05

0.10

Aridity index

D(
¶L

AI
/¶

P)

a=4
a=3
a=5
b=0.38
b=0.2
b=0.5



Good, S.P., Moore, G.W., Miralles, D.G., 2017. A mesic maximum in biological water use 
demarcates biome sensitivity to aridity shifts. Nature Ecology & Evolution 1, 1883. 
https://doi.org/10.1038/s41559-017-0371-8 

 
Overall, the noteworthy result of this paper is that increasing trends in vegetation sensitives to 
precipitation are due to CO2 effects and not climate, land use, or nitrogen deposition and is 
significant to the field. This conclusion is based on the multi-model intercomparisons, though no 
justification that varying CO2 and the other forcing factors actually improves their ability to 
recreate the observed LAI dataset is given. Again a similar point could be made about the 
modifications to the minimalistic model. Maybe this has been done by the creators of these models, 
if not the authors have the LAI datasets on hand to validate this (at least for the 3 models that 
have all four scenarios in S13). Simplifying the presentation and associated presented mythology 
for the first part of the manuscript should open space later to better describe and discuss the 
result that CO2 concentration variations drive the increasing trend in sensitivity. 
 
Response: We appreciate the reviewer’s suggestions. There is a consensus that model predicted 
LAI still has large uncertainty compared with satellite observed LAI. The effect of CO2 on LAI is 
gradual and is more evident at longer timescale. For example, Zhu et al. (2016) show that models 
can reproduce the satellite observed greening Earth and CO2 increases contributed largely to this 
increase. We used 10 state-of-the-art models which differ in terms of model structures, processes 
included, and parameterization, etc. These models should represent our current knowledge on 
ecosystem responses to the environment. Again, we would like to highlight that our study does 
not focus on the LAI spatial or seasonal dynamics, which are the first order variations of LAI; 
rather, we are interested in the contrasting trend in vegetation sensitivity to precipitation between 
the dry and wet. This is validated in Fig. 3, where satellite observations and model predictions 
under that “all-varying” scenario (BG1) show similar trends and magnitudes for the dry and wet 
regions, respectively. If the CO2 effect is not considered in the model, the sensitivity trend does 
not match with the satellite observations. As for the minimalistic model, the model prediction of 
precipitation sensitivity pattern along aridity index is also similar to the satellite observations (Fig. 
4 and Fig. S6). 
 
We have followed the reviewer’s suggestions and shortened the first section of the results. We 
moved most of the robustness tests into the supplementary discussion and associated methods 
into the supplementary methods. We also added results and discussions related to the modeling 
analysis (L242-247, L273-275).  
 
L86 You use Aridity as E_p/P in the methods but switch here why. P/E_p is a measure of wetness 
not aridity, it becomes larger under more moist conditions. 
 
Response: We thank the reviewer for pointing this out. There was a conflict between these two 
definitions in the previous version of the manuscript. In the revised main text, we followed the 
conventional definition of aridity index by World Atlas of Desertification and many other studies, 
and from which dryland is defined by United Nations Environment Programme (UNEP). They 
define aridity index as precipitation over potential evapotranspiration. In the description of the 
minimalistic model, we define the inverse of aridity index as the dryness index, which is often 
used in hydrological studies (e.g., Creed et al. 2014). We did not use an aridity index in the 
minimalistic model derivation since it would complicate the equations.  
 



Creed, I.F., Spargo, A.T., Jones, J.A., Buttle, J.M., Adams, M.B., Beall, F.D., Booth, E.G., 
Campbell, J.L., Clow, D., Elder, K., Green, M.B., Grimm, N.B., Miniat, C., Ramlal, P., Saha, 
A., Sebestyen, S., Spittlehouse, D., Sterling, S., Williams, M.W., Winkler, R., Yao, H., 2014. 
Changing forest water yields in response to climate warming: results from long‐term 
experimental watershed sites across North America. Glob Change Biol 20, 3191–3208. 
https://doi.org/10.1111/gcb.12615 

 
L94 Shouldn’t this be Aridity Index >0.65 since aridity is defined as E_p/P later? 
 
Response: We are sorry for this oversight. Please see our response above. 
 
L101 So water limited regions are more sensitive to water. This is broadly consistent with many 
earlier finding dating back to Budyko and the early concepts of light and water limited ecosystems. 
 
Response: Yes, the spatial pattern of vegetation canopy sensitivity to precipitation is consistent 
with previous studies. Here we highlight the trend is increasing for the drylands and decreasing 
for the non-drylands. 
 
L114 The units on this figure are very small and thus difficult to tell how meaningful they are. Can 
these be recast into something more digestible like % change or something similar. 
 
Response: The unit is small since NDVI is unitless and is between 0-1, the de-seasonalized 
detrended NDVI anomalies which is used for the sensitivity calculation is often 1-2 orders of 
magnitude smaller (0.01). The range of precipitation anomaly is mostly between 10-200 mm, 
these large differences lead to this small number in absolute value. We agree that the extreme 
small numbers are difficult to interpret its physical meaning, we therefore changed the unit (NDVI 
m-1 H2O) and they are now in a more interpretable range. We also changed other figures 
throughout the manuscript. 
 
L122 Feel like you’re missing a ref to Fig 2a somewhere here. 
 
Response: Thank you for pointing this out, we added the citation for Fig. 2a in Line 116. 
 
L125-128 Consider moving this to the methods 
 
Response: We followed the reviewer’s suggestion and moved this part to the method section, 
considering the importance of 𝜎𝑁𝐷𝑉𝐼!"#$  in understanding Fig. 2, we also briefly explained 
𝜎𝑁𝐷𝑉𝐼!"#$ in the figure legends. 
 
L159 Again this matches with a Wet-Gets-Wetter, Dry-Gets-Drier shift (which is much studied) 
and as systems get drier they become more sensitive (as in your F1c). 
 
Response: We agree, this is another possible explanation why we would see a contrasting trend 
in precipitation sensitivity between dry and wet. However, the WWDD paradigm is originally 
proposed for oceans and previous studies do not support this hypothesis over land (Held and 
Soden 2006; Greve et al., 2014; Xiong et al., 2022). Considering we did not find obvious 
precipitation trend for the dry and wet (Figure S2), this hypothesis is not supported in terms of 
precipitation. We did another independent test in the Figure S13. Along precipitation trend (y-axis) 
and aridity index (x-axis), when there is no obvious trend for precipitation (y=0), precipitation 



sensitivity increases for the dry and decreases for the wet. This suggests water availability may 
not be driven by precipitation change, but other factors. 
 
Greve, P., Orlowsky, B., Mueller, B., Sheffield, J., Reichstein, M., Seneviratne, S.I., 2014. Global 

assessment of trends in wetting and drying over land. Nature Geoscience 7, 716–721. 
https://doi.org/10.1038/ngeo2247 

Held, I.M., Soden, B.J., 2006. Robust Responses of the Hydrological Cycle to Global Warming. 
Journal of Climate 19, 5686–5699. https://doi.org/10.1175/JCLI3990.1 

Xiong, J., Guo, S., Chen, J., Yin, J., 2022. A reexamination of the dry gets drier and wet gets 
wetter paradigm over global land: insight from terrestrial water storage changes. Hydrol. 
Earth Syst. Sci. Discuss. https://doi.org/10.5194/hess-2021-645 

 
L165 I would think the timescale of response of GRACE is too slow to be meaningful here. 
 
Response: GRACE TWS has shown to be strongly coupled to land carbon sink at monthly time 
scale (Humphrey et al., 2018), there could be a potential linkage between the trend in TWS and 
the trend in precipitation sensitivity. We agree with the reviewer that the signal from GRACE has 
some limitations, we have removed this analysis in the revised manuscript. The new subplot 
shows 𝜃!"#$ in the AI-PET trend 2D space (Fig. S13), but with no obvious pattern along the PET 
trend axis.  
 
Humphrey, V., Zscheischler, J., Ciais, P., Gudmundsson, L., Sitch, S., Seneviratne, S.I., 2018. 

Sensitivity of atmospheric CO 2 growth rate to observed changes in terrestrial water 
storage. Nature 560, 628–631. https://doi.org/10.1038/s41586-018-0424-4 

 
L167 I’m not sure I’m convinced of that this much aggregation is useful. At continental scales 
there are too many different regions to expect any significant trends. Similarly lumping the world 
into dryland and not likely smooths out many trends. 
 
Response: We agree this aggregated trend cannot be treated as direct evidence. We therefore 
revised the sentence and it now reads: 
 

“However, because precipitation trends are not significant in both drylands and non-
drylands, precipitation change alone cannot explain the contrasting trends in 𝜃!"#$ 
(Supplementary Fig. S2c).” 

 
L177 Provide justification that the addition of these physical processes to these models improves 
the representation of the processes that are examined in this study. Does the addition of CO2 
improve the models ability to estimate LAI. As shown in F3 (and better in S13) adding time varying 
CO2 influences the models but how do we know this is better? 
 
Response: Please refer to our response to your major comments #2 and #3. 
 
L194 Great figure, nice and clean. However, shouldn’t the four bars in the ‘non-dryland’ section 
total to the blue bar in the ‘MMEM; section. A quick set of boxes drawn on my PDF tells me these 
are not consistent. The comparison between these is really not consistent and S13 is a much 
more clear presentation of this. Note this is a better unit for F1. 
 



Response: The reviewer is correct, in Figure 3, the total effects for each factor (CO2, climate, etc.) 
do not add up to the MMEM. This is due to the fact that in Figure 3, the effect for each factor is 
calculated from the average of all available pairs of model simulations. For example, if model 
A,B,C provide simulations for SG1,SG2 scenarios (from which the CO2 effect can be calculated), 
but only model A,C provide simulations for SG1 and BG1 (from which the MMEM can be 
calculated), then model B only contributes to the calculation of the CO2 not the MMEM. For Figure 
S13, the MMEM and contributions from all factors are calculated from the same set of models. As 
expected, limited (only three) models are used for Fig. S13. The may lead to relatively larger 
uncertainties. We therefore decide to keep Fig. 3 as is. But we also added explanations of the 
mismatch in the figure caption. 
 
L213-216 I suggest rewriting this section to remove the fractions with partials and instead describe 
things more descriptively. 
 
Response: Thank you for the suggestions, we rewrite the section with more descriptive words 
and minimize the partial derivative notions being used. (L192-196) 
 
L215 Again, this shows that a shift in P is a main driver of what’s happening. 
 
Response: We cannot get solid evidence from this equation, since we are focusing on the partial 
derivative, not the ratio between ET and P. The shift in P can drive the change in ET/P, but it is 
not very clear how that would change the partial derivative. We agree that precipitation plays an 
important role and directly affect the sensitivity changes, but here we are focusing on the 
contrasting trend between dry and wet, which cannot be explained by the precipitation changes.  
 
L235 As you set things up in the equation above (no number, but I think its 1), I was expecting 
three effects to be: partial_LAI/partial_T, patial_T/partial_ET, and partial_ET/partial_P 
 
Response: We have examined the CO2 effect on these three components in the factorial model 
simulations (Fig. S16). However, through those analyses, it is still unknow what mechanism drives 
the changes of these three components, and why do they respond differently to the dry and wet. 
By using this minimalistic model, we can identify two major CO2 effects, i.e., the stomatal closure, 
and enhanced LAI in drylands, and how they affect the components above. This is a further step 
after the factorial analysis. We explained this in the revised manuscript. 
 

“Using this simple model, we can decompose the sensitivity changes into three different 
CO2 effects, and understand what mechanism drives the contrasting trends between 
dryland and non-dryland.” 

 
L265 What about CO2s effect on climate change driving shifts in P (as shown in S14) 
 
Response: It is not very clear that how CO2 can change the precipitation, especially over land. In 
our study, since observed precipitation is direct used in the DLM, we do not consider the CO2 
effect on precipitation to be an indirect effect. 
 
L362 Are you missing the coefs in the autocorrelation model? 
 
Response: We have rewritten the Eq (2) and (3) as an equation form with coefficients. 
 



L503 Aridity is defined as P/E_p in the results (L86) 
 
Response: Thank you for pointing this out. Here we define E_p/P as a “dryness index”, which is 
often used by hydrological studies. The aridity index is still defined as P/E_p in the main text. 
 
L528 There are many other indirect effects (e.g. shifts in soil moisture due to stomatal open less) 
why focus on this particular direct effect. 
 
Response: Since the original minimalistic model is capable to reproduce the multiple key 
hydrological process (e.g., interception, soil moisture dynamics, evaporation and transpiration), 
here we only focus on the CO2 effect on plants. The change in stomatal conductance and change 
in LAI is the most important CO2 effect on plants. Other effects, like the reviewer suggest, can be 
facilitated through the combination of the original model and the modified effects on plants.   
 
L550 Is this eq. missing a negative sign? 
 
Response: Here we use the positive side of the monotonical decreasing sigmoid function (from 
dry to wet) (Figure Rxa). 
 

 
Fig R2. (a) Two types of sigmoid function, (b) the function used in our study. 
 
L553. I don’t follow the jump from 19% to 0.38 
 
Response: Since we only use half of the sigmoid function, the range is between 0 and 0.5. We 
therefore need to double 𝑏 so that 𝜁 equals 19% at the dry end. See Figure R2b. We added 
explanations about this in the revised manuscript: 
 

“We therefore set b as 0.38 so that ζ is in the range of (1, 1.19].” 
 
Reviewer #2 (Remarks to the Author): 
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Dear Authors, 
 
You address how vegetation greenness sensitivity to precipitation changes during the last 
decades, what might be driving those changes and what may be the potential physiological 
mechanisms. I find the overall ideas interesting, but I think many areas of the manuscript need 
improvement. 
 
Response: Thank you for the positive comments, we have carefully revised the manuscript based 
on your suggestions. 
 
1) It does not feel logical to me to evaluate the drivers of precipitation sensibility directly through 
outputs of land surface models. I see the value in this, but I would rather see, before this analysis, 
a simpler one trying to partition the trends to real climate data. 
 
Response: We fully agree with the reviewer—we did this analysis but perhaps we were not clear 
in the presentation of our results. Considering that there is a strong change along the aridity index 
gradient (Fig. 1C), one possible assumption may be due to the climate induced change of aridity. 
For example, as the sensitivity almost monotonically decrease with the aridity index, a drying 
trend in the dryland together with a wetting trend in the non-dryland would also lead to such 
contrasting trends. We tested such hypothesis by analyzing the precipitation trend for each 
continent (Fig. S2) and analyzed the 𝜃!"#$  trend for those pixels with no obvious changes of 
precipitation (Figure S13). Both analyses do not support this hypothesis. Here we followed the 
reviewer’s suggestion and tested the relationship between 𝜃!"#$  trend and the trends of 
precipitation, temperature and cloud cover. We found very weak relationship between the 
sensitivity trend and trend of all climate variables (Figure R3). And there is no significant difference 
between dryland and non-dryland. This suggests that the contrasting trend between dry and wet 
is not likely to be attributed to the changes in climate variables. We added this analysis into the 
supporting information (Figure S14) and discussed this in the main text (L146-147). 
 



 
Fig. R3. Relationship between trend of precipitation sensitivity and trend in climate variables 
(precipitation, temperature, cloud cover). The first row shows the correlation for all pixels (a-c), 
second row for the dryland pixels (d-f), third row for the non-dryland pixels (g-i). 
 
2) The overreliance on modelled data to explain drivers and mechanisms are troubling. How do 
you separate whether the trends found are true mechanisms/drivers or reflect model assumptions? 
I do find the analysis valuable, particularly the one for drivers (if paired with a simpler climate data 
exploration), but I would rather see a better discussion of what the literature has on mechanisms 
than the ecohydrological model. 
 
Response: We did several tests in the manuscript to explore the possible mechanism and 
disentangle model assumptions from underlying mechanisms. Based on figure 1c, it is expected 
that a drying trend or wetting trend (change in precipitation) can induce changes of precipitation 



sensitivity. However, our analysis shows no obvious precipitation trend for dryland and non-
dryland (Figure S2). Further analysis shows that for regions with no trend in precipitation, the 
contrasting trends in precipitation sensitivity still exist (Figure S13). These suggest that 
precipitation or climate changes is not likely to be the cause. This is also confirmed by the MsTMIP 
models. 
 
In the factorial modeling analysis (MsTMIP), we used 10 state-of-the-art models which differ in 
the model structure, processes included, and parameterization, etc. These models are a 
representation of a suite of different assumptions and current knowledge on ecosystem responses 
to the environment. The minimalist model analysis is consistent with the factorial modeling 
analysis. Both of which can reproduce the contrasting trend we observed from remote sensing 
dataset. These two lines of evidence suggest that the mechanism we obtained is robust. 
 
As suggested, we also discussed the mechanism based on previous literature in the first two 
paragraphs of the discussion section. The direct effect of CO2 on plants’ stomatal conductance 
and the indirect effect of CO2 that LAI increase is larger in drylands are both supported by previous 
literature, either from FACE experiment or through modelling analysis. The combination of these 
two effects help explain our findings. 
 
3) The aridity index is central to your work, but this index is not discussed in a more clear manner. 
I find to simplistic putting together all the world`s vegetation in a single relative axis. If the relative 
aridity index is calculated as Ep/P (#503), then that means the same aridity index can be obtained 
for an area where the actual, non-relative, water deficit is huge as well as for another one where 
both the water deficit and precipitation are not. I would rather see a non-relative aridity index or, 
if a relative aridity index is used, that the analysis has precipitation or biomes as a cofactor. I also 
miss a map showing which areas have which aridity index. 
 
Response: The aridity index is defined as precipitation over potential evapotranspiration, it is an 
important metric in the ecohydrology studies which directly related to the vegetation functioning 
(Lian et al., 2021; Berdugo et al., 2020; Fatichi et al., 2016), and ecosystem water partitioning into 
evaporation, transpiration, and runoff through the Budyko framework (Budyko, 1974; Good et al., 
2017). The reviewer is correct that a same aridity index can be achieved with different 
combinations of PET and P values. However, as shown in Figure R4, the spatial variation of PET 
(coefficient of variation, cv=0.29) in our study area is much smaller than that of P (cv=0.67), 
suggesting that much of the spatial variation of aridity index is attributed to P. 
 
One unique advantage of this metric is that it describes the relative relationship between the water 
supply and demand, and is a good indicator to show how strong water is limiting for the ecosystem. 
Considering that our study focuses on the precipitation sensitivity, it is straightforward to link the 
sensitivity to how strong the ecosystem is limited by water (i.e., the aridity index). Since 
precipitation is directly used for the aridity index calculation, and there is a strong relationship 
between the aridity index and ecosystem canopy coverage, it is a more appropriate index for our 
study on dryland and non-dryland. 
 
We added a map of aridity index in the supplementary information (Figure R5 or Figure S1), and 
add additional description of aridity index in the methods (L339-342). 
 



 
Fig. R4. Spatial patterns of the mean annal potential evapotranspiration (a) and mean annual 
precipitation (b). Insets show the histogram of the PET and P. The units are mm/year. 
 

 
Fig. R5. The map of the aridity index (P/PET) for the study region. Colors from red to green 
correspond to hyper-arid, arid, semi-arid, dry sub-humid, and humid, respectively. Dryland 
corresponds to areas with an aridity index smaller than 0.65 (i.e., red and yellow color). White 
area represents barren land with no vegetation. 
 
Berdugo, M., Delgado-Baquerizo, M., Soliveres, S., Hernández-Clemente, R., Zhao, Y., Gaitán, 

J.J., Gross, N., Saiz, H., Maire, V., Lehman, A., Rillig, M.C., Solé, R.V., Maestre, F.T., 2020. 
Global ecosystem thresholds driven by aridity. Science 367, 787–790. 
https://doi.org/10.1126/science.aay5958  

Budyko, M.I., 1974. Climate and life. Academic press. 
Good, S.P., Moore, G.W., Miralles, D.G., 2017. A mesic maximum in biological water use 

demarcates biome sensitivity to aridity shifts. Nature Ecology & Evolution 1, 1883. 
https://doi.org/10.1038/s41559-017-0371-8 

Fatichi, S., Leuzinger, S., Paschalis, A., Langley, J.A., Donnellan Barraclough, A., Hovenden, 
M.J., 2016. Partitioning direct and indirect effects reveals the response of water-limited 
ecosystems to elevated CO2. Proceedings of the National Academy of Sciences 113, 
12757–12762. https://doi.org/10.1073/pnas.1605036113 

Lian, X., Piao, S., Chen, A., Huntingford, C., Fu, B., Li, L.Z.X., Huang, J., Sheffield, J., Berg, A.M., 
Keenan, T.F., McVicar, T.R., Wada, Y., Wang, X., Wang, T., Yang, Y., Roderick, M.L., 2021. 
Multifaceted characteristics of dryland aridity changes in a warming world. Nat Rev Earth 
Environ 2, 232–250. https://doi.org/10.1038/s43017-021-00144-0 

 
4) I find the discussion on precipitation sensitivity simplistic. For plants, what matters most is not 
precipitation, is water availability. Water availability is of course hard to measure, and a non-linear 
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function of precipitation, which is why using sensitivity to precipitation, as a proxy for water 
availability, has value. But the introduction and discussion have to come back to the actual water 
availability. Also, please note the trends tested situate into a larger theory which proposes a 
climatic safety margin to climate change, where wetter places have excess water margin to not 
be so much affected by precipitation anomaly. 
 
Plant water availability is strongly influenced by soil traits. Using precipitation as a proxy for plant 
water availability, at global scale, should be ok as long as soil traits are randomly distributed 
across vegetation types and climate types – thus any local bias becomes random error. I suppose 
this is acceptable (although a good portion of the Amazon occurs near the water table, thus 
decoupled from precipitation), but some discussion on this might be interesting. 
 
Response: We appreciate the reviewer’s insights. We agree that plants are directly affected by 
the soil water availability, and the soil water is not only affected by the precipitation water supply 
and runoff, but also affected by the dynamic water consumption by plants. The water saving effect 
in the wet regions also indicates a greater excess water margin, this is consistent with the 
decreasing precipitation sensitivity in the non-dryland area. Actually, the minimalistic model is 
capable of predicting such decoupling relationship (Fig. 4a), since soil water-precipitation 
relationship is well represented in the model. We followed the reviewer’s suggestions and 
discussed the importance of soil water availability in regulating the vegetation in both the 
introduction and discussion (L58-61, L244-249). 
 
The spatial heterogeneity is an important issue for our study, especially when considering the soil 
traits that directly affect the soil water dynamics and plant traits that regulates the plant water use. 
These variations are not considered in our study because 1) as the reviewer suggested, their 
distribution may be random, 2) we assume these traits to be static and cannot explain the temporal 
changes of precipitation sensitivity. We also discussed these in the revised manuscript (L275-
277). 
 
5) I am not sure how much I trust cloud cover as a proxy for radiation. Also, I would expect cloud 
cover and precipitation to not be independent. I am not sure how variable dependence is treated 
in your analysis. 
 
Response: We tested the correlation between cloud cover and radiation, cloud cover and 
precipitation (Figure R6). There is a strong negative correlation (-0.81±0.13) between cloud and 
radiation, and a weak positive correlation between cloud cover and precipitation (0.28±0.17). We 
removed the mean seasonal cycle for all three variables before we calculate the correlation.  
 
Input variables should be independent from each other for the multivariate regression and the 
dynamic linear models. The collinearity between the input variables may induce changes to the 
sensitivity factor. We therefore tested both the univariate model which only include the lag-1 
autocorrelation term and precipitation, and the multivariate model which consider other climate 
variables (i.e., cloud cover and temperature). Both models show very similar results. We are 
therefore confident that our finding has statistical foundation. 
 



 
Figure. R6. (a) the correlation between the de-seasonalized anomalies of cloud cover and 
shortwave radiation. (b) the correlation between the de-seasonalized anomalies of cloud cover 
and concurrent precipitation. The radiation is from CRU-NCEP. 
 
6) Throughout the work, there is an implicit assumption that plants operate by maximizing water 
use efficiency. This assumption is also behind the models used. This is not true for all 
environments, particularly for environments where competition for water might be important- in 
those environments if plants save water for later use, another plant might simply use this water 
before. The works in the long-term rainfall exclusion experiments have been insightful on this (see 
Caxiuana`s experiment in the Amazon). The results of those experiments should be better 
explored in the introduction and discussion. 
 
Response: We appreciate the reviewer’s insights. The optimization for plant water use have been 
long studied and multiple stomatal conductance models have been proposed. However, as the 
reviewer suggests, these models do not consider the competition between individuals, which is 
very important for most dryland ecosystems. Recent advances try to incorporate plant hydraulic 
theory into these stomatal conductance models so that the effect of competition can be better 
represented. Wolf et al. (2016) proposed a new optimization target considering the competition of 
water resource between individuals. The effect of competition on individual plant growth also 
depends on the types of competition (intraspecific or interspecific), species characteristics and 
local environment. For example, interspecific competition may increase growth for certain species 
at non-drought-prone environment, while intraspecific competition decrease growth for most 
cases (González de Andrés et al., 2018). Hydraulic diversity also influences the ecosystem 
responses to precipitation anomalies (Anderegg et al., 2018), with higher diversity showing 
stronger resistance to environmental anomalies. We added these to the discussion (L242-249). 
 
Wolf, A., Anderegg, W.R.L., Pacala, S.W., 2016. Optimal stomatal behavior with competition for 

water and risk of hydraulic impairment. Proceedings of the National Academy of Sciences 
113, E7222–E7230. https://doi.org/10.1073/pnas.1615144113 

Anderegg, W.R.L., Konings, A.G., Trugman, A.T., Yu, K., Bowling, D.R., Gabbitas, R., Karp, D.S., 
Pacala, S., Sperry, J.S., Sulman, B.N., Zenes, N., 2018. Hydraulic diversity of forests 
regulates ecosystem resilience during drought. Nature 561, 538–541. 
https://doi.org/10.1038/s41586-018-0539-7 

González de Andrés, E., Camarero, J.J., Blanco, J.A., Imbert, J.B., Lo, Y.-H., Sangüesa-Barreda, 
G., Castillo, F.J., 2018. Tree-to-tree competition in mixed European beech-Scots pine 
forests has different impacts on growth and water-use efficiency depending on site 
conditions. J Ecol 106, 59–75. https://doi.org/10.1111/1365-2745.12813 
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7) The results are hard to follow. I needed to go through the methods 2 times slowly to then be 
able to understand what you did. 
 
Response: We have revised and simplified the manuscript and reorganized the results section. 
For example, most of the description regarding to the robustness of the contrasting trend between 
dry and wet is moved to the supplementary discussion. The description of Figure 2 is also 
simplified, it now only provides the most important information on NDVI variability induced by 
precipitation. We also modified section where the factorial modeling analysis is used to 
understand the CO2 effect on precipitation sensitivity.  
 
We also realized that the methods may provide too many details and dilutes the key ideas behind 
the methods. We now briefly introduced the concept of the DLM and multi-variate regression 
method. The detailed information is moved to the supplementary method section.  
 
With these changes made, we hope the manuscript is now easier for the readers to follow.  
 
Best regards, 
 
 
Specific comments 
 
#48-49: why even? Do you mean “even within”, as for diversity and function turnover within the 
same forest? 
 
Response: This sentence is revised to: 
 

“even in tropical forests which is often not considered water-limited.” 
 
#54-58: and soil traits; the most important precipitation effect is through soil water availability and 
not precipitation per se. I think it is better if you explicitly construct the theory linking to vegetation 
responses coupling to water availability, which is mostly driven, in a non-linear fashion, by 
precipitation. 
 
Response: We appreciate the reviewer’s suggestions. We have added soil texture here. We agree 
with the reviewer that the soil water availability is the actual driver of the ecosystem functioning. 
That is also why we incorporate the minimalistic model in the last section of the study. The 
minimalistic model simulates soil moisture dynamics based on the precipitation frequency, 
intensity, evaporative demand, and soil characteristics. The soil moisture dynamics further drives 
the partition of the precipitation to interception, evaporation, transpiration and runoff. This allows 
us to better understand how CO2 affect these processes differently.  
 
#58-59 – and acclimation 
 
Response: We agree that plants can acclimate to the environment (e.g., precipitation changes in 
Schuldt et al., 2011), and this also leads to changes of the plants’ sensitivity to precipitation. We 
therefore revised the sentence and it now reads: 
 



“Temporally, in addition to the changes in hydroclimate and consequent plants 
acclimation20, shifts in species composition21, factors that lead to changes …” 

 
Schuldt, B., Leuschner, C., Horna, V., Moser, G., Köhler, M., van Straaten, O., Barus, H., 2011. 

Change in hydraulic properties and leaf traits in a tall rainforest tree species subjected to 
long-term throughfall exclusion in the perhumid tropics. Biogeosciences 8, 2179–2194. 
https://doi.org/10.5194/bg-8-2179-2011 

 
#61: temporally as in the time domain or momentarily? 
 
Response: Here we mean in the time domain, we realized that we are discussing this under the 
temporal domain (Line 58), we felt this is not necessary and removed this word. 
 
#68: of uncertainty for… 
 
Response: We have revised this to  
 

“this knowledge gap constitutes a large source of uncertainty in projection of future climate 
change.” 

 
#70-80: to much focus on DLM, I could not understand what you did before readying the methods 
and results once. The DLM is just for getting your main index, which, as far as I understood, you 
1) evaluate against an aridity index (no introduction to this anywhere); 2) try to explain drivers 
using LSMs and 3) try to explain mechanisms using ecohydrological model. 
 
Response: The reviewer is correct. We realized that the readers may get confused with such 
detailed information on the DLM in the introduction. We modified this paragraph by only explaining 
what can the DLM do and what its strengths are. We also added descriptions on other methods 
being used in the study (L74-81). This helps the readers to better understand the logic flow of this 
study. 
 
#72-75: the importance here is not the prediction itself, but the model`s capability to separate the 
slope of NDVI ~ precipitation from autocorrelation and other drivers and to estimate this slope 
over time 
 
Response: We thank the reviewer for this clarification. The strength of DLM is indeed to get a 
robust time-varying precipitation sensitivity. We rephrase this sentence into: 
 

“The approach is based on a dynamic linear model (DLM), which can estimate the time-
varying relationship between environmental factors and NDVI from GIMMS (Methods), 
allowing us to derive a robust estimate of precipitation sensitivity with autocorrelation and 
other climate factors properly considered.” 

 
#84: “vegetation sensitivity”, here and throughout the text – too generic, specify which aspect of 
vegetation function you are capturing with your data 
 
Response: Thank you for the suggestion, we have specified that we are focusing on the 
“sensitivity of vegetation canopy greenness to precipitation (𝜃!"#$)” in the revised manuscript.  
 



As you results focus on dry vs wet, I miss a better introduction of the aridity index used. Is the 
aridity index calculated as Ep/P (line 502?). I would expect an aridity index in the form of actual 
evapotranspiration divided by potential evapotranspiration. 
 
Response: We define aridity index as precipitation over potential evapotranspiration in Line 86. 
Aridity index is a well-established idea which is widely used for hydroclimate studies. Here we 
follow its conventional definition which is also used by United Nations Environment Programme 
(UNEP) to define dryland. We have revised the definition of Ep/P as dryness index and added a 
more detailed description of aridity index in the method section. 
 
#89: Fig. S1: what are the lines in e and f? 
 
Response: We are sorry for this oversight, the lines in e and f indicate the mean and trend of the 
precipitation sensitivity along the aridity index. We added figure legends for these two subplots. 
 
#129: with a rho of 0.49 only I would hardly the trends similar 
 
Response: We have revised this sentence to: 
 

“The spatial pattern of 𝜎𝑁𝐷𝑉𝐼!"#$  trends are more similar to the 𝜃!"#$  trend than the 
precipitation variability trend (Spearman’s 𝜌=0.49 vs 0.11, P<0.001, Supplementary Fig. 
S9)” 

 
#262: plant and vegetation – physiological mechanisms are likely to be different from community 
level mechanisms and ecosystem level mechanisms. The way the effects are discussed in the 
following lines are too simplistic. 
 
Response: We agree that the plant physiological mechanism may be different at individual level 
and at ecosystem level. A good example is that, as the reviewer mentioned later, when different 
individuals compete for water. At individual level, stomatal optimization through a constant 
marginal water use efficiency may save water for future use. At ecosystem level, the saved water 
may be used by other more aggressive plants. Two strategies may be adopted, one is that the 
stomatal use different optimizing strategy, for example, stomata may also respond to the leaf 
water potential so that a balance can be reached between maximizing water transport and 
minimizing xylem damage repair (Wolf et al., 2016); the other is that plants may growth may be 
altered depending on the species characteristics, ecosystem diversity and local environment. We 
added these aspects in the discussion. 
 
Wolf, A., Anderegg, W.R.L., Pacala, S.W., 2016. Optimal stomatal behavior with competition for 

water and risk of hydraulic impairment. Proceedings of the National Academy of Sciences 
113, E7222–E7230. https://doi.org/10.1073/pnas.1615144113 

 
 
#281: increased assimilation may also i) be routed to reproductive organs; ii) be stored; iii) be 
used to change tissue allocation. 
 
Response: Thank you for the suggestions, we have revised this sentence as: 
 



“as leaf biomass increase is limited by light and nutrient availability, sink strength (i.e., the 
capacity of enzymes to assimilate carbon), as well as the capability of plants to use and 
allocate excess carbon into other organs39,44” 

 
#282: eCO2 only leads to water saving if plants optimize for water use efficiency. This is not true 
in many ecosystems in which competition for water (and nutrients in the water) are important – in 
those systems if one plant does not transpire this water is consumed by other plant. 
 
Response: Thank you for this suggestion. We agree that when plants compete for water, their 
optimization goal may be different than maximizing carbon gain over water loss as predicted by 
individuals. We have added discussion on this issue. See our response to your comments on line 
262. Here in this second paragraph of the discussion, we are discussing this topic under the 
context of non-dryland, where water competition is not severe. Multiple evidence has shown that 
eCO2 will save water and lead to increased runoff in these regions (Gedney et al., 2006; Ainsworth 
& Long 2005). 
 
Ainsworth, E.A., Long, S.P., 2005. What have we learned from 15 years of free-air CO2 

enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy 
properties and plant production to rising CO2. New Phytologist 165, 351–372. 
https://doi.org/10.1111/j.1469-8137.2004.01224.x 

Gedney, N., Cox, P.M., Betts, R.A., Boucher, O., Huntingford, C., Stott, P.A., 2006. Detection of 
a direct carbon dioxide effect in continental river runoff records. Nature 439, 835–838. 
https://doi.org/10.1038/nature04504 

 
#332-334: how does the model behave after removing datapoints if it is temporally dependent (t 
and t-1in equation 2)? 
 
Response: Part of our study area may be temporally covered by snow. It is important to remove 
these snow-covered pixels so that the NDVI can reflect valid information on plant canopy changes. 
Removing these pixels (mostly three or four consecutive months in the non-growing season) does 
not affect the model calculation since these snow-covered periods will be replaced with NA and 
the length of the time-series remain the same. 
 
#362: as the coefficients are not in the equation, maybe mark it as “function of” (f(dNDVI) + 
f(dPREC)) to be correct. I miss a note on the format of the error term. 
 
Response: Thank you for the suggestion, we have revised the equation and add the error term. 

𝛿𝑁𝐷𝑉𝐼% = 𝜃&'()𝛿𝑁𝐷𝑉𝐼%*+ + 𝜃!"#$𝛿𝑃𝑟𝑒𝑐%*+ + 𝜃%#,!𝛿𝑇𝑒𝑚𝑝% + 𝜃$-./0𝛿𝐶𝑙𝑜𝑢𝑑% + 𝜀 
We made similar adjustment to the Eq. (3) as well. 
 
#361: what does the delta stands for? Is it just to represent the deseasonalized+detrended? If so, 
note it in the text. 
 
Response: Yes, it means de-seasonalized and detrended anomaly. We explained this notation in 
the revised manuscript (L352). 
 
#364: anomaly is for cloud fraction only, not for precipitation (anomaly)? Anomaly is the difference 
from the whole time series mean? 
 



Response: All variables used in the model area de-seasonalized detrended anomaly. The trend 
and mean seasonal cycle are calculated from the whole time series. We have rephrased this 
sentence to: 
 

“where 𝛿𝑁𝐷𝑉𝐼% , 𝛿𝑃𝑟𝑒𝑐%*+ , 𝛿𝑇𝑒𝑚𝑝%  and 𝛿𝐶𝑙𝑜𝑢𝑑%  represent anomalies for NDVI, 
precipitation, temperature, and cloud fraction, respectively.” 

 
#384: was the pixel (grid cell) size noted somewhere? 
 
Response: All datasets are in 0.5° ×0.5° spatial resolution. We added description of this in the 
dataset section.  
 
#384: should you not use the cloud fraction of the preceding month? For sure the NDVI state in 
any given time is a function of the previous, and not immediate, light availability. 
 
Response: NDVI is strongly related to the fraction of light absorption by the green vegetation. Its 
value, together with concurrent climate (especially radiation), directly determines the gross 
primary production (GPP). The photosynthetic carbon fixation from current month is directly used 
for canopy leaf growth and many other physiological processes. Considering satellite NDVI for a 
given month is an average for multiple observations within the month, it should represent both the 
photosynthetic capacity (related to the amount of green leaves) and the growth of the leaf 
(allocation of newly fixed carbon). Therefore, we consider cloud cover for the current month, which 
directly affects the current month GPP, and resultant carbon accumulation in leaves as the factor 
in our model. 
 
To test this, we build two models that uses either use current month temperature and cloud cover, 
or previous month temperature and cloud cover, with the same autocorrelation term and 
precipitation term. The model that uses current month climate data show better performance for 
more than 78.8% of the surface area (Fig. R7). In addition, considering cloud cover decrease 
solar radiation, and should have a negative effect on GPP and vegetation canopy growth, only 
the model that uses current month climate variables exhibit this negative relationship for most 
study area. 



 
Figure R7. Comparison between the performance of the model that uses previous month 
climate variables and model that uses current month climate variables. (a) difference between 
the model performance (previous-current). (b) coefficient for the cloud fraction for the current 
month model. (c) coefficient for the cloud fraction for the previous month fraction. 
 
#384: the DLM model is rather complex. I wonder how predictor independency may affect the 
results. Do precipitation anomaly and cloud fraction anomaly (I suppose they should)? If yes, how 
do you separate the effects. 
 
Response: Thank you for raising this issue. We agree that, like multivariate linear regression, the 
independency of the input variable directly affects the DLM performance and effectiveness in 
separating the respective contribution. However, considering that all input and target variables 
are de-seasonalized and detrended, the correlation between each two of them is relatively weak. 
Since the precipitation is from the previous month and the cloud fraction is for the current month, 
the correlation between them is even weaker (Fig. R8).  
 
We also tested a univariate DLM which only consider lag-1 auto correlation and pre-month 
precipitation, the results are very similar to the one we show in the main text. This suggests the 
effect of collinearity does not affect our conclusion. 

a
Difference in R2

−0.2 −0.1 0.0 0.1 0.2

b
Coef for current cloud cover

−0.004 −0.002 0.000 0.002 0.004

c
Coef for previous cloud cover

−0.004 −0.002 0.000 0.002 0.004



 
Figure R8. Correlation between de-seasonalized detrended anomalies of cloud cover and 
previous month precipitation. 
 
#384-387: so you fitted equation 2 using a DLM? 
 
Response: Yes and no, the DLM essentially predicts current timestep NDVI anomaly using 
previous month NDVI anomaly, and previous month precipitation anomaly, current month 
temperature anomaly and current month cloud cover anomaly. All anomalies mentioned above 
are de-seasonalized and detrended. However, we do not consider estimating the coefficient for 
each variable as a “fit”, instead, we use a Kalman Filtering process to get the posterior estimate 
of the coefficient, which is based on prior information from the previous steps and the observation 
for the current step. 
 
#417-419: it is not immediate clear why you divide in two. You can be more clear you are 
comparing the sensitivity from period 1 with sensitivity from period 2. I like this analysis, it is simple 
and conservative, thus robust; the average reader will understand what was done without problem, 
while the DLM is not trivial but probably much more sensible. 
 
Response: Thank you for the suggestion, we have modified the text as below. 
 

“The entire study period was split into two halves, i.e., from 1981 to 1998 and from 1999 
to 2015, and we compared the sensitivity changes between the two periods. We use 
multivariate linear regressions to estimate the sensitivity for precipitation for both periods.” 

 
We agree that the multivariate linear regression is simpler and easier to understand. But DLM 
allows us to better understand the dynamic changes of the sensitivity, whether the trend is robust 
or not, etc. We therefore keep the DLM as the main results. 
 
#443 MLR – this only appear two time in the text, no need for acronyms. 
 
Response: We have removed this acronym. 
 
#443 – why here you calculate by decade and above you divide the period in two? Maybe keep 
the same approach in both of them? 
 
Response: Thank you for your suggestion, here we use this regression for each decade because 
models provide much longer period of observations. By analyzing the precipitation sensitivity for 
each decade, it allows us to flexibly calculate the trend for longer or shorter periods. The results 

R between cloud and previous month precipitation

−1.0 −0.5 0.0 0.5 1.0



are very consistent if we use a longer period to calculate the 𝜃!"#$ trend. Additionally, although 
both methods show very consistent estimate of the trend, the regression method actually provides 
more robust estimate of the trend than using the difference between the two periods (Fig. R9).  
 

 
Figure R9. A comparison between the trend in 𝜃!"#$ estimated from the difference between two 
periods (x-axis) and regression from multiple decades (y-axis). Each point indicates the median 
value of relative 𝜃!"#$ trend (trend of 𝜃!"#$ divided by mean of 𝜃!"#$) for either dryland or non-
dryland for each model-scenario combination. 
 
#445 – what do you mean by normalized? I imagine it was a scaling or centralization and not a 
normalization process. Did you used a z-score approach? Would it not be better to say you 
compared the variances after scaling centralizing? 
 
Response: We divided the trend by the mean value so that it can be regarded as percentage 
change per year. After this normalization, the results from LAI and NDVI can be directly compared. 
We had revised the statement to clarify this. 
 

“the trend of 𝜃!"#$ calculated from LAI is normalized by the mean 𝜃!"#$ to get a relative 
trend for each pixel.” 

 
Reviewer #3 (Remarks to the Author): 
 
Comments to NCOMMS-21-49872 
 
Zhang et al ‘s work tried to present changes in dryland ecosystems sensitivity to precipitation and 
explore the potential mechanism behind. While many similar studies have been done in this field, 
Zhang’s work further advanced our understanding of the underlying mechanism of the rising 
differences of ecosystem response to climate change. The work was done nicely, insightfully and 
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written quite well. However, this manuscript is very long and is easy to get me lost, I would suggest 
to shorten or discard some general descriptions, such as L206-216 and L416-429. Below is a 
subset of my concerns and note that the authors may flexibly modify some comments just in case 
I'm wrong at some place. 
 
Response: We appreciate the reviewer’s positive comments on our research. We agree that the 
current manuscript has very dense material, and some presentations are not very necessary and 
may distract the readers’ attention. We have made substantial changes following the reviewer’s 
suggestions. Please refer to our detailed responses below. 
 
Title 
The analysis actually have included both wet regions and drylands, and further, I am not sure if it 
is so correct to use dryland ecosystem in the title as only vegetation greenness are studied and 
maybe this could be more specific, like drylands vegetation greenness. 
 
Response: We appreciate the reviewer’s suggestion. In the title we focused on the aspect of 
analysis which we believe is more interesting to most readers. We like the title you suggested, 
and we have followed your suggestion and revised the title. It now reads: “Increasing sensitivity 
of dryland vegetation greenness to precipitation due to rising atmospheric CO2” 
 
 
Abstract 
L26-28 I think the research gap introduced here is not so correct since many similar studies have 
been done (e.g., referring to relevant references). My question is that could we say the sensitivity 
of precipitation determine global /regional vegetation dynamic, as precipitation is not always the 
necessary driver of vegetation growth, like tropical regions. This also raise another issue, the 
sensitivity analysis in wet regions, does the change in sensitivity make sense? It could be also 
related to the equation (2), how much precipitation contribute to vegetation variations when 
considering NDVI at time of lag-1. 
 
Response: We agree that a number of studies have investigated the variation of vegetation 
productivity or greenness to precipitation. However, as far as we know, very few focus on the 
response of this sensitivity to global climate change. Here, we highlighted this knowledge gap.  
 
We understand the reviewer’s concern on the relationship between precipitation sensitivity and 
the vegetation dynamics. The precipitation sensitivity may be a calculated “apparent metric” rather 
than an intrinsic property of the ecosystem. We agree that tropical ecosystems are mostly not 
water limiting, but precipitation still play an important role in regulating the seasonal and 
interannual variations of the canopy (Hilker et al. 2014, Guan et al. 2015, Jiang et al. 2019) and 
the intrinsic water use efficiency (Adams et al., 2019). This suggest that even in the tropical forest, 
a vegetation sensitivity to precipitation is still meaningful. We motioned this in the introduction.  
 
In our analysis, the lag-1 autocorrelation is always considered. If not, the calculated precipitation 
sensitivity would be greater. The trend in autocorrelation is not likely to explain the trend of 
precipitation sensitivity. Here we show the correlation between the two is rather weak (Fig. R10). 
 
Nevertheless, we agree with the reviewer that the sentence is not accurate, we revised it as: 
 



“The sensitivity of vegetation growth to precipitation strongly regulates global and regional 
vegetation dynamics and their responses to drought” 

 

 
Figure R10. Correlation between the trend of autocorrelation coefficient and the trend of 
precipitation sensitivity. 
 
Adams, M.A., Buckley, T.N., Turnbull, T.L., 2019. Rainfall drives variation in rates of change in 

intrinsic water use efficiency of tropical forests. Nature Communications 10. 
https://doi.org/10.1038/s41467-019-11679-8 

Guan, K., Pan, M., Li, H., Wolf, A., Wu, J., Medvigy, D., Caylor, K.K., Sheffield, J., Wood, E.F., 
Malhi, Y., Liang, M., Kimball, J.S., Saleska, S.R., Berry, J., Joiner, J., Lyapustin, A.I., 2015. 
Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nature 
Geoscience 8, 284–289. https://doi.org/10.1038/ngeo2382 

Hilker, T., Lyapustin, A.I., Tucker, C.J., Hall, F.G., Myneni, R.B., Wang, Y., Bi, J., Mendes de 
Moura, Y., Sellers, P.J., 2014. Vegetation dynamics and rainfall sensitivity of the Amazon. 
Proceedings of the National Academy of Sciences 111, 16041–16046. 
https://doi.org/10.1073/pnas.1404870111 

Jiang, Y., Zhou, L., Tucker, C.J., Raghavendra, A., Hua, W., Liu, Y.Y., Joiner, J., 2019. 
Widespread increase of boreal summer dry season length over the Congo rainforest. Nature 
Climate Change 1. https://doi.org/10.1038/s41558-019-0512-y 

 
L33 Specify the models used, statistically or physically 
 
Response: We have specified that these are terrestrial biosphere models in the revised 
manuscript. 
 
L34-38, I like this explanations, they sound very convincing, maybe switch the description of wet 
and dry regions since the drylands was introduced firstly above. 
 
Response: We appreciate the reviewer’s suggestion, but after careful consideration, we decide 
to keep it as is, since this is a more intuitive way for readers to understand the mechanism. 
 



L58 I think reference 18 doesn’t make sense. 
 
Response: We have removed this reference and tree height, instead, we add rooting depth as 
another ecosystem characteristic that affects the precipitation sensitivity. 
 
L73 Specify the data set and period studied. 
 
Response: We specified the remote sensing dataset being used and the study period in the 
revised manuscript. 
 
74-75 I think you do not remove dry season, actually GIMMS data in dry season have large 
uncertainty. 
 
Response: We did not remove the dry season observations from the analysis. Satellite NDVI is 
known to be affected by cloud and aerosols. We use quality filtering layers and spatial aggregation 
to reduce such effect. In the dry season, there should be less cloud and aerosol, and the data 
quality is expected to be better. Will the reviewer provide any reference for this claim? 
 
We actually separated the dry season and wet season and calculated the sensitivity trend for both 
seasons separately (Fig. S9). The results show the sensitivity estimated during dry season has 
large variation and this may be due to the small variation of the precipitation. However, the 
dynamic linear model is very robust in handling these noises and predict very consistent results.   
 
L78 I don’t think coefficient are calculated at each time step is an appealing strength. 
 
Response: Since this study focuses on the trend of the vegetation sensitivity to precipitation, 
obtaining a robust time-varying estimate of this sensitivity is quite important. DLM allows us to 
calculate this sensitivity at each time-step with other factors and autocorrelation properly 
considered. We revised this sentence to better explain this. 
 

“The approach is based on a dynamic linear model (DLM), which can estimate the time-
varying relationship between environmental factors and NDVI from GIMMS (Methods), 
allowing us to derive a robust estimate of precipitation sensitivity with autocorrelation and 
other climate factors properly considered.” 

 
L94 and Fig 1 should be better to add a histogram as inset to indicate how many pixels showing 
a decrease or increase in sensitivity. It’s not so prone to catch some obvious pattern due to 
scattered pixels. 
 
Response: We appreciate the reviewer’s suggestion. We have added a probability density plot of 
the trend of precipitation sensitivity for the dryland and non-dryland (new Fig. 1 or Fig R11). 
 



 
Figure R11. Same as Figure 1, but with subplot showing the probability density plot. 
 
L118-119 the sensitivity trends were binned by aridity, right? If so, how big is each bin? 
 
Response: The bin is based on aridity, we used 10 bins in here, with each equally-sized bin 
containing 3172 samples. 
 
L122-123 I think this sentence should be rephrased; increased variability of vegetation greenness 
is caused by increased precipitation variability if an increase in sensitivity is demonstrated. I 
actually get lost when reading this part about variability, I just feel it doesn’t contribute much to 
the results. 
 
Response: Thank you for the suggestion. Here we mean that since we find an increase in 
sensitivity, this may lead to an increased variability in vegetation greenness, especially for 
drylands. This can be interpreted as a consequence of the change of precipitation sensitivity. This 
sentence now reads: 
 

“The increase of 𝜃!"#$ in drylands suggests a potentially increase of vegetation greenness 
variability.” 

 
L206-216 better to move this paragraph to method 
 
Response: We appreciate the reviewer’s suggestion. But we respectfully disagree since this 
equation together with the results in Supplementary Fig. S16 help us understand how CO2 affects 
these major components that contribute to the precipitation sensitivity changes.  
 
We nevertheless followed the reviewer’s suggestion and moved part of the description to the 
method section so that the readers can focus on the key results.  
 
L218 A convincing explanation and this analysis is insightful. 
 
Response: Thank you! 

a

(NDVI m-1 H2O)

b

(NDVI m-1 H2O decade-1)
−0.2 0.0 0.2 0.4 0.6 0.8 1.0 −0.2 −0.1 0.0 0.1 0.2

0

4

8

D
en

si
ty

−0.2 0 0.2

dryland
non−dryland

M
ea

n 
q p

re
c.

(N
DV

I m
-1

 H
2O

)

0.05 0.1 0.5 1 22
0

0.1
0.2
0.3
0.4
0.5

Aridity index

Univariate DLM
Multivariate DLM

c

Tr
en

d 
q p

re
c.

(N
DV

I m
-1

 H
2O

 d
ec

ad
e-

1 )

Aridity index
0.05 0.1 0.5 1 22

−0.15
−0.1
−0.05

0
0.05
0.1

0.15
d

y=−0.088*log10(AI)−0.025, R2=0.79, P<0.001
y=−0.088*log10(AI)−0.028, R2=0.81, P<0.001



 
L262 relationship? 
 
Response: Here we mean the relationship between plant and water, since our study focus on the 
plants’ sensitivity to precipitation. We have revised this to “plant-water relationship”. 
 
L317 How do authors think about that the sensitivity is expected to decrease due to more frequent 
and more server climate extremes, it should be right? 
 
Response: In this study we demonstrate that CO2 leads to higher sensitivity vegetation greenness 
to precipitation. Here we mean that considering the precipitation variability is expected to increase 
as predicted by climate models, the impact on vegetation greenness is expected to be larger in 
dryland.  
 
We tested whether there is any linkage between the trend in precipitation sensitivity and the trend 
in precipitation variability (Fig. R12). The results suggest very weak correlation between them for 
both drylands and non-drylands. We therefore don’t expect that the sensitivity would decrease 
with more climate extremes. 
 

 
Figure R12. A comparison between trend in precipitation sensitivity (x-axis) and trend in 
precipitation variability (y-axis) for dryland (a) and non-dryland (b). 
 
Method 
GIMMS data during dry season has poor quality and the temporal coverage should be updated 
to present. 
 
Response: Please refer our response to your comments on Line 74-75 regarding to the data 
quality issue. We used the most recent version of GIMMS 3g v1 in our analysis, which only covers 
1981-2015. We cannot update the temporal coverage to current due to this data limitation, but 
considering this dataset provide 35 years of observation, we believe the signal we observed is 
robust.  



 
I just feel that NDVI at previous month could contribute a very large proportion to present NDVI? 
Do you test it? 
 
Response: The previous month NDVI anomaly (de-seasonalized detrended, and hereafter) is 
used to predict the contribution of autocorrelation to the current month NDVI anomaly. The idea 
is that the anomaly from previous month will propagate to current month if no external forcing 
(environmental factors) is applied to the system. The sensitivity to external forcing will be better 
characterized with this autocorrelation being considered (Seddon et al., 2016). We calculated the 
average contribution of previous month NDVI anomaly (Fig. R13), the results suggest it contribute 
10.3% of current month NDVI anomaly variation. 

 
Figure R13. The spatial pattern of variance of NDVI anomaly explained by the previous month 
NDVI anomaly.  
 
Seddon, A.W.R., Macias-Fauria, M., Long, P.R., Benz, D., Willis, K.J., 2016. Sensitivity of global 

terrestrial ecosystems to climate variability. Nature 531, 229–232. 
https://doi.org/10.1038/nature16986 

 
Do we need to introduce Section 3-4 in such detailed? I think few readers are interested in reading 
them. 
 
Response: Thank you for your suggestions. The methods section is indeed very long and difficult 
to follow. We agree the detailed information of DLM and multivariate regression are not appealing 
to most readers. We therefore moved them to the supplementary information, and briefly 
introduce the two methods in the “Precipitation sensitivity of vegetation” section. 
 
I like this analysis in L453, but I am not sure what’s basis for the separations of LAI/T, T/ET, ET/P 
 
Response: Here we are trying to understand the what factors drive the LAI sensitivity to 
precipitation changes. Considering water is the used by plants through transpiration (there is a 
tight relationship between LAI and T), and T is part of ET, the ratio between two is an important 
ecohydrological metric, and the ET to precipitation fraction is also well studied in hydrology for 
decades. These three factors provide a complete chain how water is used by plants, with each 
factor has its own meaning. This is also important for us to understand how CO2 affects the 
precipitation sensitivity through different ecohydrological processes. We added additional 
explanation for this in the revised manuscript. 
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% of variance
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b
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“θprec can be approximated by LAI sensitivity to precipitation and further decomposed to 
three components with well-defined ecohydrological meaning:” 

 
I cannot follow from L458 onward, maybe the other reviewers could make suggestions. 
 
Response: We have thoroughly revised the manuscript and improved the clarity and logical flow. 
Specifically, we added a paragraph at the beginning of the section and briefly summarized the 
goal of this section, including what is the minimalistic model, why do we use it, and how does it 
work. We hope through these revisions, this section is easier to follow and can provide new 
insights into the CO2 effect on plant water relationship. 
 
 



Reviewer comments, second round -  

 

Reviewer #1 (Remarks to the Author): 

 

This is my second time reviewing this manuscript. Unfortunately, I feel I have to report that in my 

opinion, this paper just isn’t written clearly and convincingly. I applaud the authors for a lot of 

hard work addressing an important issue (drivers of vegetation sensitivity to precipitation), but the 

way in which their results and methods are presented are still quite difficult to follow, and thus the 

submitted study is not as convincing as I feel it needs to be. I found myself having to re-read 

many sections multiple times to follow (I think) what the authors have done, and then at times I 

feel like I had to guess at what was implied. This manuscript reads like a mis-mash between three 

different papers, each of which has its own quite involved methods and results. Furthermore, it is 

not a synthesis of these methods, instead they are described in series. Often, the way in which the 

‘sensitivities’ and ‘variabilities’ of one variable in response to another as driven/conditioned by 

other variables (e.g. variability in NDVI in time as driven by precipitation variation) is just 

presented in a way I find really challenging to interpret. The amount of supplementary figures 

(20!), tables, and text, is a quite large. That the authors feel that so much supplementary material 

is needed suggests that the points are not being made clearly (or that too many are being made 

and diluting your message). For all these reasons maybe a more technical journal with more space 

is needed to convey this story. 

 

 

 

Reviewer #3 (Remarks to the Author): 

 

The authors have carefully reviewed my comments and provided appropriate responses to them. 

The new information and changes added to the manuscript has greatly improved it. I believe the 

manuscript is appropriate for publication now. 

 

 

 

Reviewer #4 (Remarks to the Author): 

 

The authors investigated the precipitation sensitivity of vegetation greenness (as sensed remotely 

with NDVI). Aggregating Earth’s vegetated surface into two categories—dryland, and not-dryland, 

using an aridity index, the authors analysis revealed that while dryland greening is becoming more 

sensitive to precipitation, the opposite is true for not-drylands. This is a significant and important 

finding. This revised manuscript reads well, and was not as difficult to follow as prior iterations 

seem to have been. I was not an initial reviewer for the manuscript, but have read the prior 

reviews and the authors’ response. 

Regarding the response to prior reviewers’ comments, the authors have replied to each comment 

carefully, almost always including revision of the manuscript and/or additional analyses and 

supplementary material as a result. Thus, the revision does seem thorough and for the most part 

addresses the concerns of prior reviewers. I share the concern about interpreting the aridity index 

primarily through the lens of precipitation, and the authors should at the very least discuss the 

influence of precipitation, compared to potential evapotranspiration (PET), on the range of 

observed AI values. In their own response to prior review, the authors state regarding their 

observed increased dryland precip. sensitivity, decreased non-dryland precip. Sensitivity, …”this 

suggest water availability may not be driven by precipitation change, but other factors.” Given the 

delineation of the two major contrasts throughout this paper (drylands, non-drylands) was an 

aridity index with two terms—P and PET, the lack of exploration of the components of PET (most 

importantly, air temperature, but also insolation/wind) represents a missed opportunity for this 

study. 

The authors have not yet fully caveated the oversimplification of placing Earth’s diverse vegetated 

systems into two bins—dryland or not. Response to prior reviewers resulted in acknowledging that 

precipitation change alone cannot explain the contrasting precip. sensitivity trends, but the 

authors have not yet added in (as suggested by prior reviewer, and I concur it still needs to be 



done) to the discussion some text to caveat the findings. I suggest this can be done at the end of 

the second paragraph of the discussion, which already calls attention to further factors which may 

be influencing the results. There, the authors could also mention the components of PET, 

especially air temperature, which likely influenced the aggregation of Earth’s various systems into 

dryland or not, according to the AI method. For example, in Figure R3, the authors show other 

climate variables (including temperature trend, and cloud cover trend besides precipitation trend), 

but here it would be most appropriate to include PET trend. 

To further agree with prior reviewers’ concerns regarding the simplicity of the Aridity Index 

method, while I agree that the balance of ‘supply and demand’ is a good starting place, the 

distribution of rainfall annually may leave many periods where plants are under severe drought 

stress (e.g., Mediterranean climates), sometimes going more than half the year without rain, while 

the ‘mean annual precipitation’ is concentrated in a narrow portion of the year. In this way, for a 

single location the AI would classify it at the monthly timescale as a dryland for some months, and 

not for others. I think this is at the heart of the concern with only including Aridity Index. Prior 

reviewers suggested also including a version of the analysis that partitioned the finding by 

biomes—even if a course framework (e.g., Whittaker biomes) was used, this could be a helpful 

form of analysis and reveal where the divergent precipitation sensitivity holds based on biome-

binned AI categories of dryland/not-dryland, and where it does not. While this may result in some 

biomes not having significant data for one or the other AI-based bins, many of them would, and 

any difference in sensitivity of greenness to precipitation would be interesting, and likely provide a 

needed roadmap for future work. 

 

Line-specific comments: (line #’s from the version with tracked changes expanded) 

Line 79: Add a parenthetical with some examples after ‘environmental factors’ (e.g., example 1, 

example 2). A few specific examples will help guide the reader to what you mean. 

Line 80: add “remotely sensed” before “from GIMMS” 

Lines 94-95: Here you introduce AI, but do so briefly. The CGIAR dataset from which it was taken, 

shown in figure S1—was this calculated over some long-term period (30 years)? Is AI considered 

fixed for the entire study? Are areas once a dryland always a dryland, and once a non-dryland 

always a non-dryland? These were things that had me confused from early on while reading the 

present version of the manuscript, so some additional text here to explain will be helpful. I do 

think that in removing many technical details previously the manuscript now seems quite readable, 

but some detail on this very central decision—to aggregate Earth’s vegetated systems into one of 

two categories—deserve some careful detail when introduced. Understanding how this was done 

and why, will prevent later confusion. 

Line 109: add “greening” in two places: after drylands, and after non-drylands. We cannot say if 

overall the drylands are becoming more sensitive to precipitation—but their greening (as sensed 

via NDVI) is. 

Line 179: rooting moisture is definitely important, and this will also lead to longer periods of 

maximum stomatal closure—when the concentration of CO2 could be 200 or 1000, without much 

influence on plant water use. Some acknowledgement that stomata are not always open, 

especially in drylands, is important here. Stomatal operation may be limited for weeks to months 

in some dryland systems, especially with uneven seasonal distributions of precipitation and soil 

moisture. 

Line 194: Specifically, you’ve tested mean annual temperature and cloud cover—what about PET? 

As the other component of the AI used to bin ecosystems, it would be an important one to test and 

add to this new supplemental figure. 

Line 201: “climate change” is too broad a statement as an example of a factor—can you be more 

specific here? Warming? Increased PET? Changing distributions of P? Are a few of a long list of 

potential examples that could be read into “climate change”. 

Line 219: (Fig. 3) – this figure shows that CO2 effects are small in drylands relative to non-

drylands, as one would expect in places that stomata are less often open. 

Line 233: add “in non-drylands” after CO2, see comment on Fig. 3 above. 

Line 266-267: I’m unsure how ‘partial’ the stomatal closure is. Does this mean part of the year, or 

that stomata apertures are not fully open, or what? It’s a complex phenomena at the scale of a 

single leaf, let alone at the global scale. I could not follow if the model accounted for some 

continuum of potential stomatal operation, or what. If stomatal closure is to be invoked, please 

see my general comments (and line-specific ones above) that plants with closed stomata under 

drought conditions don’t realize a WUE benefit. 



Line 278-280: C3 vs C4 is an important distinction, I agree. Also, plants have a wide range of 

stomatal behaviors. Sometimes these are aggregated at two scales (as with the present paper’s 

ecosystem binning), but practice, plants have a wide continuum of stomatal responses—close early 

during water deficit, close late—and these are often tied to other important points raised by other 

reviewers (competition for water, in water-limited systems). This would be a good place to add 1-2 

sentences acknowledging this complexity that is not (and cannot yet be) accounted for given the 

present state of models. 

Line 272: The third effect is the same as the first? I do not see the distinction. 

Line 311-313: When stomata close, leaves still lose water. A higher LAI in a dryland would still 

lead to amplified water loss, mechanistically, since there is more surface area across which the 

plant’s minimum conductance will shunt water to the atmosphere. 

Line 333: Another good place to add “stomatal sensitivity to water deficit/drought” as another 

factor to consider in further/future study. 

 

 

 

Reviewer #5 (Remarks to the Author): 

 

Summary: Zhang et al. use a combination of remotely sensed observations (NDVI and LAI 

estimates), global climate data, and semi-factorial model simulations of LAI (from MsTMIP) to 

examine the sensitivity of vegetation to precipitation, and more specifically how the sensitivity to 

precipitation has changed globally in both dryland and non-dryland systems. They find that the 

sensitivity of vegetation greenness/LAI to precipitation has increased in drylands and decreased 

elsewhere. They also find that these changes in vegetation sensitivity to precipitation are mostly 

driven by CO2 fertilization, with increased LAI in drylands driving their enhanced sensitivity and 

decreased stomatal conductance in non-drylands driving their reduced sensitivity. Overall, the 

study seems well designed and well executed, and the authors have performed a number of 

sensitivity tests to ensure that their results are robust to methodological choices and assumptions. 

While much previous research has shown that vegetation in dry regions is more sensitive to 

precipitation than in wet regions, this work makes a significant and novel contribution by showing 

that these sensitivities have changed across much of the world (and vary by aridity) and that this 

is largely driven by CO2 effects. I think the authors have mostly done a good job of responding to 

previous reviewer comments, and I do not have any major concerns about the work, mostly just 

some clarifying questions and suggestions on presentation. 

 

General comments: 

1) I think there’s way more detail about the ecohydrological model in section 4 of the methods 

than is actually needed in the main text, and I would suggest moving much of it to the 

supplement. (Note: I don’t have the relevant technical expertise to comment much on the 

quality/appropriateness of the ecohydrology model itself, so I’ll leave that to other reviewers.) Eqn 

6 seems useful to have in the main Methods section, but to me, Eqns. 7-14 seem like a little more 

detail than necessary for the main text. It might be easier for readers to follow and understand to 

have descriptions of the main logic of the model (and the sensitivities being derived from it) and 

save the detailed description/equations for the supplementary text, similar to what the authors did 

in response to the first round of reviewer comments on the DLM and MLR methods. 

 

2) I agree with reviewer #1 (their comment on L167) that the aggregation into dryland and non-

dryland at a global scale is washing out a lot of important regional variability. I understand that it’s 

not possible in this kind of paper to delve too much into specifics of every region, but to me, it 

seems like a little more attention could be paid to whether and to what extent some regions 

deviate from the global aggregations. 

 

Specific comments: 

Lines 122-127: this seems to conflict with both theory (O’Gorman & Schneider 2009, Pendergrass 

et al. 2017) and observations (Georgi et al. 2011) of how precipitation variability changes in a 

warming climate. Why might this be? 

 

Lines 179-182: Just to clarify, are these confidence intervals accounting for both inter-model 

differences *and* spatial variability within the regions? 



 

Lines 186-194: Eqn. 1 is clearly mathematically valid, but the “well-defined ecohydrological 

meaning” of each term isn’t necessarily clear to me. Maybe a brief, clear explanation of those 

ecohydrological meanings would be helpful here? 

 

Lines 221-222: What’s the mechanism by which CO2 could change PET? 

 

Lines 234-235: The meaning of the lines in 4b is not necessarily clear from the legend in the 

figure. I’d suggest writing clearer descriptions of their meaning in the caption. 

 

Lines 274-275: By “low (dry) and high (wet)”, do you mean that the CO2 effect in low vegetation 

regions leads to drying of streamflow (enhanced LAI outweighs reduced conductance) and vice 

versa? If so, I would suggest just being a little clearer because it wasn’t immediately clear to me 

what “low (dry) and high (wet)” meant. 

 

Lines 292-305: I like this last paragraph a lot. Great point about “greening but drying,” and a nice 

way to finish the paper! 

 

Lines 328-329: The performance of LAI3g would depend not just on NDVI3g, but also on the 

performance of the MODIS LAI product, correct? And in some regions the LAI estimates from 

MODIS can be a little suspect, I think? 

 

Lines 408-409: Is this supposed to say “Since *not* all models participate…”? This sentence could 

also generally be better worded I think. 

 

Line 448: I’m not a hydrologist by any means, but it seems like interception should vary by both 

the amount of LAI (more LAI = more interception?) and by the intensity of precipitation (light 

precipitation events should have a greater percentage intercepted than heavy precipitation events, 

since once canopy has reached a maximum interception capacity, any additional precipitation 

would not be intercepted?) Is this 15% interception a common practice? 

 

Figure S14: Would it be worth analyzing the relationship of theta-prec to VPD and/or PET trends? 

 

Figure S16: I really like this figure and would suggest possibly adding it as a panel in Fig. 4. Maybe 

instead of the soil texture analysis? To me, it seems like the soil texture analysis is more of a 

supplemental thing and not nearly as crucial to the main argument as Figure S16 is. 
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Increasing sensitivity of dryland vegetation greenness to precipitation due to rising 
atmospheric CO2 

# NCOMMS-21-49872A 
Response to Reviewers 

 
We appreciate the constructive comments from the reviewers and the invitation from the editor to 
submit a revised version. We have carefully followed the reviewers’ suggestions to carry out 
additional analyses and improve our manuscript. Please see below our point-to-point responses 
in blue text following reviewer comments. All line numbers and figures numbers in this response 
letter refer to the clean version of the revised manuscript.  
 
Reviewer #1 (Remarks to the Author): 
 
This is my second time reviewing this manuscript. Unfortunately, I feel I have to report that in my 
opinion, this paper just isn’t written clearly and convincingly. I applaud the authors for a lot of 
hard work addressing an important issue (drivers of vegetation sensitivity to precipitation), but 
the way in which their results and methods are presented are still quite difficult to follow, and 
thus the submitted study is not as convincing as I feel it needs to be. I found myself having to re-
read many sections multiple times to follow (I think) what the authors have done, and then at 
times I feel like I had to guess at what was implied. This manuscript reads like a mis-mash 
between three different papers, each of which has its own quite involved methods and results. 
Furthermore, it is not a synthesis of these methods, instead they are described in series. Often, 
the way in which the ‘sensitivities’ and ‘variabilities’ of one variable in response to another as 
driven/conditioned by other variables (e.g. variability in NDVI in time as driven by precipitation 
variation) is just presented in a way I find really challenging to interpret. The amount of 
supplementary figures (20!), tables, and text, is a quite large. That the authors feel that so much 
supplementary material is needed suggests that the points are not being made clearly (or that 
too many are being made and diluting your message). For all these reasons maybe a more 
technical journal with more space is needed to convey this story. 
 
Response: We appreciate the reviewer’s time and efforts in reviewing this manuscript. As the 
reviewer suggests, the manuscript focus on an important issue, i.e., the drivers of the vegetation 
sensitivity to precipitation. We appreciate that the reviewer found the logic flow of the 
manuscript to be clear and straightforward. In our analysis, we first found contrasting trends of 
the vegetation sensitivity to precipitation in global dryland and non-dryland regions using 
satellite observations; to understand what caused these contrasting trends, we used both 
terrestrial biosphere models and a simple minimalistic model and revealed that the different 
responses of vegetation to CO2 in dryland and non-dryland is the major cause. The multiple novel 
methods served the same goal for the characterization and explanation of the trends in 
vegetation sensitivity to precipitation, and should not be separated papers. 
 
We acknowledge, however, that the material presented is dense at times, particularly given the 
multiple methods, datasets, model outputs and statistical methods we employed. We used such 
a broad array of approaches and data to ensure that the reported phenomenon is robust, and 
the revealed mechanism advances our understanding of the climate change impact on terrestrial 



ecosystem. We believe such rigor is required by the high standard of Nature Portfolio journals. 
These additional robustness tests also add to the number of figures in the supplementary 
information, but we feel these are necessary and will be interesting for those readers who want 
to test other datasets or methods. Ignoring these additional supplementary tests does not 
directly affect the interpretation of the main message in the main text. 
 
We have endeavored to improve the accessibility of the writing and reduce the density of the 
text throughout the review process, and each round of reviews has led to significant 
improvements in this regard (as noted in this most recent round by the new reviewer #4, who 
found the manuscript quite readable), including additions to the supplementary material. We 
feel however that there is a limit to the degree to which we can or should simplify our analysis. 
We prefer to retain the robustness analyses and the multiple data sources, rather than excluding 
them to simplify, as we feel that although it makes it a challenging paper to review, they will 
make for more compelling results for the reader once published. We hope that the reviewer and 
editor understand this choice and we can agree to disagree on the ideal degree of complexity 
such an analysis should entail. We also hope that the improved writing helps assuage the 
reviewer’s concerns. 
 
Reviewer #3 (Remarks to the Author): 
 
The authors have carefully reviewed my comments and provided appropriate responses to them. 
The new information and changes added to the manuscript has greatly improved it. I believe the 
manuscript is appropriate for publication now. 
 
Response: Thank you for your efforts for evaluating the manuscript. We are pleased to see that 
you are satisfied with our revisions. 
 
Reviewer #4 (Remarks to the Author): 
 
The authors investigated the precipitation sensitivity of vegetation greenness (as sensed 
remotely with NDVI). Aggregating Earth’s vegetated surface into two categories—dryland, and 
not-dryland, using an aridity index, the authors analysis revealed that while dryland greening is 
becoming more sensitive to precipitation, the opposite is true for not-drylands. This is a 
significant and important finding. This revised manuscript reads well, and was not as difficult to 
follow as prior iterations seem to have been. I was not an initial reviewer for the manuscript, but 
have read the prior reviews and the authors’ response.  
 
Response: Thank you for the positive comments on our manuscript. 
 
Regarding the response to prior reviewers’ comments, the authors have replied to each comment 
carefully, almost always including revision of the manuscript and/or additional analyses and 
supplementary material as a result. Thus, the revision does seem thorough and for the most part 
addresses the concerns of prior reviewers. I share the concern about interpreting the aridity 
index primarily through the lens of precipitation, and the authors should at the very least discuss 



the influence of precipitation, compared to potential evapotranspiration (PET), on the range of 
observed AI values. In their own response to prior review, the authors state regarding their 
observed increased dryland precip. sensitivity, decreased non-dryland precip. Sensitivity, …”this 
suggest water availability may not be driven by precipitation change, but other factors.” Given 
the delineation of the two major contrasts throughout this paper (drylands, non-drylands) was 
an aridity index with two terms—P and PET, the lack of exploration of the components of PET 
(most importantly, air temperature, but also insolation/wind) represents a missed opportunity 
for this study. 
 
Response: We appreciate the insights from the reviewer. We agree that both precipitation and 
PET changes are important to the changes of aridity. Considering 𝜃!"#$  is almost monotonically 
decreasing along aridity index (Fig. 1c), a contrasting trend of 𝜃!"#$  in drylands and non-drylands 
may indicate that the aridity index has different trends for drylands and non-drylands. This is 
more likely to be caused by changes in precipitation rather than PET, considering PET is likely to 
increase with global warming. Actually, in our response to the first-round reviews, we also tested 
the effect of PET trend on 𝜃!"#$  in the revised Figure S13. We did not find an obvious relationship 
between 𝜃!"#$  and PET trend.  
 
PET can be calculated from multiple different equations, e.g., Priest Tayler, Penman Monteith 
and its variations (Yang et al., 2019) and they can have large differences in the PET trend 
(Sheffield et al., 2012). Here we calculated the trend of two widely used PET datasets, i.e., the 
CRU TS 4.05 and the Princeton dataset. Although the time periods used to calculate the trends 
do not match exactly, their spatial patterns are different (Fig. R1). But most regions (72.8% and 
88.8% for Princeton and CRU, respectively) show a positive trend and there is no obvious 
difference between dry and wet.  
 
We further explored the relationship between 𝜃!"#$  and PET trend and its component, for the 
entire study area and for dryland and non-dryland only (Fig. R2). The strongest correlation is 
found between 𝜃!"#$  and precipitation, which is always negative for both dryland and non-
dryland. 𝜃!"#$  shows rather weak correlation with other factors, with correlation coefficient 
mostly below 0.1.  
 
These analyses suggest that the contrasting trend of 𝜃!"#$  between dryland and non-dryland is 
not caused by PET and its components. We added Figure R2 into the supplementary information 
and added discussions on this. 
 

“Changes in potential evapotranspiration and its components (e.g., radiation, temperature) 
can also affect the water availability, but these factors show very weak relationships with 
𝜃!"#$  in terms of their trends (Supplementary Fig. S14).” 



 
Fig. R1. A comparison between PET trend from Princeton and CRU. a PET trend estimated from 
Princeton Terrestrial Hydrological Research Group. The trend is estimated from 1980-2008. b PET 
trend estimated from CRU TS 4.05. The trend is estimated during 1980-2015. Note the large 
difference in terms of the magnitude. 
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Fig. R2. Relationship between trend of precipitation sensitivity and trend in climate variables 
(precipitation, temperature, cloud cover, potential evapotranspiration, and vapor pressure 
deficit). The first column shows the correlation for all pixels (a-f), second column for the dryland 
pixels (g-l), third column for the non-dryland pixels (m-r). PET from both Princeton (Sheffield et 
al., 2012) and CRU TS 4.05 (Harris et al., 2020) are used. 



 
The authors have not yet fully caveated the oversimplification of placing Earth’s diverse 
vegetated systems into two bins—dryland or not. Response to prior reviewers resulted in 
acknowledging that precipitation change alone cannot explain the contrasting precip. sensitivity 
trends, but the authors have not yet added in (as suggested by prior reviewer, and I concur it still 
needs to be done) to the discussion some text to caveat the findings. I suggest this can be done 
at the end of the second paragraph of the discussion, which already calls attention to further 
factors which may be influencing the results. There, the authors could also mention the 
components of PET, especially air temperature, which likely influenced the aggregation of Earth’s 
various systems into dryland or not, according to the AI method. For example, in Figure R3, the 
authors show other climate variables (including temperature trend, and cloud cover trend 
besides precipitation trend), but here it would be most appropriate to include PET trend. 
 
Response: We thank the reviewer for the suggestion. We agree that precipitation and potential 
evapotranspiration changes can be important for the vegetation sensitivity at local scale. 
However, at regional and larger spatial scales, these variations show limited effects since the 
local signals are smoothed out after aggregation. Specifically, we do not find strong relationship 
between 𝜃!"#$  and PET and its components (Fig. R2). And as a result, these factors are not likely 
to explain the contrasting trend of 𝜃!"#$  between dryland and non-dryland. We updated this 
Figure R3 (in the first-round review) and added it into the supplementary information as Figure 
S14. We also followed the reviewer’s suggestions and discussed the potential effect of 
precipitation and potential evapotranspiration at local scale. 
 

“It should also be noted that although trends in precipitation and potential 
evapotranspiration do not likely explain this contrasting trend of 𝜃!"#$  at a global scale, 
they may play an important role in regulating the local water availability and thus 
contribute to the variation of 𝜃!"#$  at local scale.” 

 
To further agree with prior reviewers’ concerns regarding the simplicity of the Aridity Index 
method, while I agree that the balance of ‘supply and demand’ is a good starting place, the 
distribution of rainfall annually may leave many periods where plants are under severe drought 
stress (e.g., Mediterranean climates), sometimes going more than half the year without rain, 
while the ‘mean annual precipitation’ is concentrated in a narrow portion of the year. In this way, 
for a single location the AI would classify it at the monthly timescale as a dryland for some months, 
and not for others. I think this is at the heart of the concern with only including Aridity Index. 
Prior reviewers suggested also including a version of the analysis that partitioned the finding by 
biomes—even if a course framework (e.g., Whittaker biomes) was used, this could be a helpful 
form of analysis and reveal where the divergent precipitation sensitivity holds based on biome-
binned AI categories of dryland/not-dryland, and where it does not. While this may result in some 
biomes not having significant data for one or the other AI-based bins, many of them would, and 
any difference in sensitivity of greenness to precipitation would be interesting, and likely provide 
a needed roadmap for future work. 
 



Response: We appreciate the reviewer’s suggestions. The seasonal distribution of precipitation 
indeed can greatly affect the vegetation growth, especially in dryland when the precipitation is 
strongly skewed and mostly concentrated in the wet season (Nicholson, 2011). In our framework, 
the vegetation sensitivity to precipitation is evaluated at a monthly timescale, which yielded a 
robust sensitivity estimate. However, precipitation intermittency can still act as an independent 
axis on top of the aridity index.  
 
Biome type distribution reflects the long-term adaption of the ecosystem to regional climate and 
may provide additional information. To this end, we evaluated the distribution of biome types 
along aridity index and how they would affect the trend of vegetation sensitivity to precipitation 
(Fig. R3). We found that biome distributions are strongly dependent of the ecosystem aridity (Fig. 
R3b), with forests in the wet regions and grasslands and shrublands in the dry regions. 
Importantly, 7 out of 8 biome types exhibit a decreasing trend of 𝜃!"#$  along the aridity index. 
The only biome showing an increasing trend is tropical and subtropical dry broadleaf forest, 
which only occupies 3% of the study area. Collectively, they show a contrasting trend between 
drylands and non-drylands. However, it should be noted that considerable differences exist 
between biomes, which may be attributed to abiotic factors (e.g., precipitation trend, PET trend) 
and ecosystem characteristics. We feel this is important and we added this figure to the 
supplementary information and discussed it in the main text. 
 

“The 𝜃!"#$  trend within each biome shows a similar pattern along the aridity index as that 
from the entire study regions (Supplementary Fig. S15), suggesting that biome-specific 
characteristics are not the major cause for the contrasting trend.” 
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Fig. R3. Vegetation sensitivity to precipitation along aridity index for each biome type. a the 
Olson’s biome map for our study region. b the distribution of biome along the aridity index. c 
relationship between 𝜃!"#$  and aridity index within each biome type. 
 
Line-specific comments: (line #’s from the version with tracked changes expanded) 
Line 79: Add a parenthetical with some examples after ‘environmental factors’ (e.g., example 1, 
example 2). A few specific examples will help guide the reader to what you mean. 
 
Response: Thank you for the suggestion, this sentence has been revised: 
 

“……, which can estimate the time-varying relationship between environmental factors (e.g., 
precipitation, temperature, radiation) and NDVI from remotely sensed GIMMS 
(Methods), ….” 

 
Line 80: add “remotely sensed” before “from GIMMS” 
 
Response: revised as suggested. 
 
Lines 94-95: Here you introduce AI, but do so briefly. The CGIAR dataset from which it was taken, 
shown in figure S1—was this calculated over some long-term period (30 years)? Is AI considered 
fixed for the entire study? Are areas once a dryland always a dryland, and once a non-dryland 
always a non-dryland? These were things that had me confused from early on while reading the 
present version of the manuscript, so some additional text here to explain will be helpful. I do 
think that in removing many technical details previously the manuscript now seems quite 
readable, but some detail on this very central decision—to aggregate Earth’s vegetated systems 
into one of two categories—deserve some careful detail when introduced. Understanding how 
this was done and why, will prevent later confusion. 
 
Response: The reviewer is correct, the CGIAR aridity index (AI) is calculated using the long-term 
mean annual precipitation and potential evapotranspiration during 1970-2000. AI is a general 
description of the long-term climatic water deficit so we did not consider a varying AI during the 
study period. We agree with the reviewer that this is an important issue so we highlighted that 
the aridity index is calculated from long-term mean precipitation over potential 
evapotranspiration in the revised main text and discussed the potential caveat in the discussion 
and methods section. 

 
“Aridity index is an indicator of the degree of dryness calculated as the ratio between long-
term precipitation and potential evapotranspiration25. Here we use a static map of aridity 
index provided by CGAIR (Supplementary Fig. S1).” 
 
“It should be noted that aridity index is a measure of long-term climatic dryness conditions 
and different potential evapotranspiration definitions and calculations can yield different 
potential evapotranspiration trends, we ignored aridity changes during the study period for 
simplicity.” 



 
We would also like to mention that our manuscript does not treat aridity as a dichotomy but a 
continuum from dry to wet. For example, in Figure 1, 4 and many others in supplementary 
information, the patterns along aridity index are presented. The contrasting trend from dry to 
wet shows a continuous change, but to attract the interest of the broad audiences, we 
highlighted the difference between dryland and non-dryland. 
 
Line 109: add “greening” in two places: after drylands, and after non-drylands. We cannot say if 
overall the drylands are becoming more sensitive to precipitation—but their greening (as sensed 
via NDVI) is. 
 
Response: Thank you for the suggestion. We revised this sentence as suggested, it now reads: 
 

“…., suggesting that vegetation greenness in drylands becomes overall more sensitive to 
precipitation variations, while the greenness in non-drylands becomes less sensitive.” 

 
Line 179: rooting moisture is definitely important, and this will also lead to longer periods of 
maximum stomatal closure—when the concentration of CO2 could be 200 or 1000, without much 
influence on plant water use. Some acknowledgement that stomata are not always open, 
especially in drylands, is important here. Stomatal operation may be limited for weeks to months 
in some dryland systems, especially with uneven seasonal distributions of precipitation and soil 
moisture. 
 
Response: We appreciate the reviewer’s insights. In most dryland ecosystems, precipitation has 
a strong seasonality and plants only grow during the wet season. During the dry season, perennial 
species reduce stomatal conductance to save water. There should be limited variations in both 
precipitation and vegetation greenness during the dry season, and thus little influence on the 
precipitation sensitivity trend. The DLM method is robust in handling these dormancy periods 
(Fig. S9). 
 
In this paragraph, we described some observational evidence that some factors may also affect 
the changes (or trend) of precipitation sensitivity. We agree that plants’ seasonal dormancy 
(stomatal closure) is a widely-observed phenomenon in drylands, however, this does not provide 
direct linkage to the interannual variation of the precipitation sensitivity as we discussed in this 
paragraph. Additional descriptions will be needed if we want to fully explain the possible 
mechanisms, but this would also dilute the main idea here in this paragraph and decrease the 
readability. 
 
Nevertheless, we agree with the reviewer that this point is noteworthy and we mentioned this 
in the discussion. 
 

“Other factors including soil texture, rooting depth, water table depth, precipitation 
seasonality, and stomatal sensitivity to drought also affect ecosystem water availability and 
precipitation sensitivity, and their interactions with CO2 needs to be further explored.” 



 
Line 194: Specifically, you’ve tested mean annual temperature and cloud cover—what about PET? 
As the other component of the AI used to bin ecosystems, it would be an important one to test 
and add to this new supplemental figure. 
 
Response: We have added two independent PET datasets into this comparison and updated the 
supplementary figure and associated discussions. Please see our response to your major 
comment #1. 
 
Line 201: “climate change” is too broad a statement as an example of a factor—can you be more 
specific here? Warming? Increased PET? Changing distributions of P? Are a few of a long list of 
potential examples that could be read into “climate change”. 
 
Response: In the MsTMIP model intercomparison protocol, climate refers to a number of climate 
forcings used to drive the terrestrial biosphere models, including incoming longwave/shortwave 
radiation, air temperature and humidity, pressure, wind speed, precipitation. These climate 
forcing are from the CRU-NCEP reanalysis data and can be regarded as actual change of the Earth 
climate in the past. We have added the climate forcing considered in the supplementary Table 
S1 where the MsTMIP simulation scenarios are described. 
 
Line 219: (Fig. 3) – this figure shows that CO2 effects are small in drylands relative to non-drylands, 
as one would expect in places that stomata are less often open. 
 
Response: Here the figure shows the combined effect of CO2 on vegetation sensitivity to 
precipitation. The relatively small effect of CO2 is because multiple individual effects counteract 
with each other. We are not focusing on the absolute values here, but the difference between 
dryland and non-dryland to explain the contrasting trends between dry and wet. We have 
highlighted this in Line 174-175. 
 
Line 233: add “in non-drylands” after CO2, see comment on Fig. 3 above. 
 
Response: We have revised this sentence to make it clear. 
 

“Given the large effect of CO2 in explaining the difference between drylands and non-
drylands, we further quantify its impact on disentangled components controlling 𝜃!"#$  by 
levering the model outputs.” 

 
Line 266-267: I’m unsure how ‘partial’ the stomatal closure is. Does this mean part of the year, 
or that stomata apertures are not fully open, or what? It’s a complex phenomena at the scale of 
a single leaf, let alone at the global scale. I could not follow if the model accounted for some 
continuum of potential stomatal operation, or what. If stomatal closure is to be invoked, please 
see my general comments (and line-specific ones above) that plants with closed stomata under 
drought conditions don’t realize a WUE benefit. 
 



Response: The ‘partial’ stomatal closure here refers to the reduced stomatal conductance in 
response to the increased ambient CO2 concentration. This is predicted by all state-of-the-art 
stomatal conductance models and has been observed at ecosystem scale at flux tower and FACE 
experiment sites worldwide (Ainsworth and Long, 2005; Keenan et al., 2013). We agree with the 
reviewer that current presentation can be misleading, we therefore revised this sentence. 
 

“The first effect is that eCO2 can reduce the aperture of the stomata (reduction in stomatal 
conductance), so that the amount of water needed by plants decreases, and thus so does 
the sensitivity of transpiration to precipitation (%&!

%'
)” 

 
This eCO2 induced stomatal conductance reduction is different from the drought-induced 
stomatal closure, the latter depends on the drought severity and ecosystem-specific traits. And 
as the reviewer suggests, drought-induced stomatal closure does not always increase WUE. 
However, the eCO2 effect on stomatal conductance is universal and will increase WUE (Keenan 
et al., 2013). 
 
Line 278-280: C3 vs C4 is an important distinction, I agree. Also, plants have a wide range of 
stomatal behaviors. Sometimes these are aggregated at two scales (as with the present paper’s 
ecosystem binning), but practice, plants have a wide continuum of stomatal responses—close 
early during water deficit, close late—and these are often tied to other important points raised 
by other reviewers (competition for water, in water-limited systems). This would be a good place 
to add 1-2 sentences acknowledging this complexity that is not (and cannot yet be) accounted 
for given the present state of models. 
 
Response: Thank you for the suggestion! We agree that the stomatal behavior, plant hydraulic 
traits, inter-specific competition are factors that directly affect the vegetation sensitivity to 
precipitation sensitivity. We followed the reviewer’s suggestion and added the following 
discussions to highlight these mechanisms are not considered in the current model and may lead 
to some uncertainty.   
 

“It is worth noting that this simple model does not account for the variations in plant 
hydraulic traits and inter-species competition for water, which may both affect the 
vegetation sensitivity to precipitation18,34, but their effects on the trend of sensitivity is still 
uncertain.” 

 
Line 272: The third effect is the same as the first? I do not see the distinction. 
 
Response: The first and third effect are the two sides of a coin. They are both caused by the CO2 
induced decline in stomatal conductance, but the first effect is on the sensitivity of transpiration 
to precipitation (%&!

%'
), the third effect is on the LAI sensitivity to transpiration (%()*

%&!
). We did not 

mention these two effects together because both the first and second effects are on the 
transpiration sensitivity to precipitation, while the third is on the LAI sensitivity to transpiration. 
We have revised this sentence as below: 



 
“The third effect is also due to the eCO2-induced stomatal conductance reduction, which on 
the other hand, reduced transpiration per leaf area. This is equivalent to a universal increase 
of water use efficiency and %()*

%&!
.” 

 
Line 311-313: When stomata close, leaves still lose water. A higher LAI in a dryland would still 
lead to amplified water loss, mechanistically, since there is more surface area across which the 
plant’s minimum conductance will shunt water to the atmosphere. 
 
Response: Thank you for your insights. Water loss from cuticle and incompletely closed stomata 
is indeed important aspect. We revised this sentence as: 
 

“The strong increases in leaf area, in turn, lead to an increase in water demand and water 
loss through cuticular conductance and stomatal leakiness45, offsetting the CO2 water 
saving effect due to reduced stomatal aperture31,42.” 

 
Line 333: Another good place to add “stomatal sensitivity to water deficit/drought” as another 
factor to consider in further/future study. 
 
Response: We appreciate for your suggestions. This sentence now reads: 
 

“Other factors including soil texture, rooting depth, water table depth, precipitation 
seasonality, and stomatal sensitivity to drought also affect ecosystem water availability and 
precipitation sensitivity, and their interactions with CO2 needs to be further explored.” 
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Reviewer #5 (Remarks to the Author): 
 
Summary: Zhang et al. use a combination of remotely sensed observations (NDVI and LAI 
estimates), global climate data, and semi-factorial model simulations of LAI (from MsTMIP) to 
examine the sensitivity of vegetation to precipitation, and more specifically how the sensitivity 
to precipitation has changed globally in both dryland and non-dryland systems. They find that 
the sensitivity of vegetation greenness/LAI to precipitation has increased in drylands and 
decreased elsewhere. They also find that these changes in vegetation sensitivity to precipitation 
are mostly driven by CO2 fertilization, with increased LAI in drylands driving their enhanced 
sensitivity and decreased stomatal conductance in non-drylands driving their reduced sensitivity. 
Overall, the study seems well designed and well executed, and the authors have performed a 
number of sensitivity tests to ensure that their results are robust to methodological choices and 
assumptions. While much previous research has shown that vegetation in dry regions is more 
sensitive to precipitation than in wet regions, this work makes a significant and novel contribution 
by showing that these sensitivities have changed across much of the world (and vary by aridity) 
and that this is largely driven by CO2 effects. I think the authors have mostly done a good job of 
responding to previous reviewer comments, and I do not have any major concerns about the 
work, mostly just some clarifying questions and suggestions on presentation. 
 
Response: We appreciate the reviewer’s positive comments on our manuscript. 
 
General comments: 
1) I think there’s way more detail about the ecohydrological model in section 4 of the methods 
than is actually needed in the main text, and I would suggest moving much of it to the supplement. 
(Note: I don’t have the relevant technical expertise to comment much on the 
quality/appropriateness of the ecohydrology model itself, so I’ll leave that to other reviewers.) 
Eqn 6 seems useful to have in the main Methods section, but to me, Eqns. 7-14 seem like a little 
more detail than necessary for the main text. It might be easier for readers to follow and 
understand to have descriptions of the main logic of the model (and the sensitivities being 
derived from it) and save the detailed description/equations for the supplementary text, similar 
to what the authors did in response to the first round of reviewer comments on the DLM and 
MLR methods. 
 
Response: Thank you for the suggestion. We realized that the minimalistic model used here is 
complex and the detailed description of the model may dilute the key message of what the model 
does and why it is used here. We followed the reviewer’s suggestion and rewrote the section, 
with a brief description of the model and our major improvements to the model. The detailed 
description of the model is moved to the supplementary information. Please refer to the revised 
manuscript Line 454-479. 
 



2) I agree with reviewer #1 (their comment on L167) that the aggregation into dryland and non-
dryland at a global scale is washing out a lot of important regional variability. I understand that 
it’s not possible in this kind of paper to delve too much into specifics of every region, but to me, 
it seems like a little more attention could be paid to whether and to what extent some regions 
deviate from the global aggregations. 
 
Response: We appreciate the reviewer’s suggestions. As we have discussed in the main text, 
there are other factors may affect the precipitation sensitivity, and their effects can be strong at 
local scale. These effects may mask out the relatively small CO2 effect at local scale. This is why 
we have to aggregate at large scale so that effects from other factors cancel with each other and 
the CO2 effect pops out. In the current manuscript, we tested this at smaller scales, e.g., Fig. S10 
shows the comparison between dryland and non-dryland at each continent. Drylands generally 
have a higher trend than the non-drylands within each continent. In this revision, we also tested 
the precipitation sensitivity trends within each biome (Fig. R4). 7 out of 8 biome types show a 
decreasing precipitation sensitivity trend along the aridity index, with the outlier being the 
tropical and subtropical dry broadleaf forests which only occupies less than 3% of the study area. 
When lumped together, the sensitivity trend – aridity index pattern is broadly consistent with 
the pattern we observed using all data in the study area. However, it should be noted that 
considerable differences still exist between biomes, which may be attributed to abiotic factors 
(e.g., precipitation trend, PET trend) and ecosystem characteristics. we added this figure to the 
supplementary information and discussed it in the main text. 
 

“The 𝜃!"#$  trend within each biome shows a similar pattern along the aridity index as that 
from the entire study regions (Supplementary Fig. S15), suggesting that biome-specific 
characteristics is not the major cause for the contrasting trend.” 

 



 
Fig. R4. Vegetation sensitivity to precipitation along aridity index for each biome type. a the 
Olson’s biome map for our study region. b the distribution of biome along the aridity index. c 
relationship between 𝜃!"#$  and aridity index within each biome type. 
 
Specific comments: 
Lines 122-127: this seems to conflict with both theory (O’Gorman & Schneider 2009, Pendergrass 
et al. 2017) and observations (Georgi et al. 2011) of how precipitation variability changes in a 
warming climate. Why might this be? 
 
Response: The precipitation variability is projected to increase as a result of increasing water 
holding capacity of the air as air temperature increase. This 7.5%/K scaling rate is thus the 
physical basis for the increase of extreme precipitation. However, this scaling rate mostly applies 
for each individual precipitation event, or extreme precipitation within a short period of time 
(e.g., hourly or daily). As the time interval increases, the scaling rate may change. In addition, 
many of these studies are based on model predictions, and the increasing variability is only 
evident over long time-scales when the signal stands out from the noises (e.g., Giorgi et al. 2011). 
In our study, the precipitation variability is calculated based on the de-seasonalized-detrended 
monthly precipitation, which may yield different results than the model predictions. It should 
also be noted that the trend in precipitation variability is also slightly different across datasets 
(Fig. R5). 
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Fig. R5. A comparison of trend in precipitation variability between two observational based 
datasets. (a) precipitation from CRU TS 4.05. (b) precipitation from GPCC. (c) a scatter plot 
between the two datasets, x-axis is the trend from CRU and the y-axis is the trend from GPCC. 
 
Lines 179-182: Just to clarify, are these confidence intervals accounting for both inter-model 
differences *and* spatial variability within the regions? 
 
Response: For the observations, since we only have one data source, the error bar represents the 
95% confidence interval of spatial variation. For modeling analysis, they represent the variations 
across models. These are not an apples-to-apples comparison, but considering the multiple 
models we have, we feel it is reasonable to present the figure this way. We have revised this 
sentence to clarify the meanings of error bars. 
 

“For observations, bars represent the median trends and error bars indicate the 95% 
confidence interval of spatial variation through bootstrapping. For models, the bars and 
error bars indicate the mean and standard error of the mean (SEM) of median trend across 
models, respectively.” 

 
Lines 186-194: Eqn. 1 is clearly mathematically valid, but the “well-defined ecohydrological 
meaning” of each term isn’t necessarily clear to me. Maybe a brief, clear explanation of those 
ecohydrological meanings would be helpful here? 
 
Response: The three terms are sensitivity of LAI to transpiration (%()*

%&!
), transpiration (𝐸+ ) 

sensitivity to evapotranspiration (%&!
%&

), and evapotranspiration (𝐸) sensitivity to precipitation (%&
%'

). 
These corresponds to the inverse of transpiration per leaf area, T:ET, and evapotranspiration 
ratio, respectively, but are in a partial derivative form. These terms are explained in the following 
paragraph (L199-L203). Here we follow the reviewer’s suggestion and briefly explain their 
meanings below: 



 
“Here, 𝜃!"#$, approximated by LAI sensitivity to precipitation, can be further decomposed 
to three components with well-defined ecohydrological meaning (the inverse of 
transpiration per leaf area, transpiration over evapotranspiration, and evapotranspiration 
ratio in their partial derivative form):” 

 
Lines 221-222: What’s the mechanism by which CO2 could change PET? 
 
Response: Two recent studies evaluated the change of evapotranspiration in the non-water-
limited regions (e.g., wet tropical forest), and suggested that actual evapotranspiration in these 
regions can be regarded as the potential evapotranspiration since ET will reach PET given enough 
water (Milly and Dunne, 2016; Yang et al., 2019). In these vegetated wet regions, the CO2-induced 
plants’ stomatal conductance decreases will increase the canopy resistance and, based on the 
Penman Monteith equation, lead to a reduced evapotranspiration (or PET) if other environmental 
factors remain unchanged. This PET considers the plants physiological response to CO2 and it 
matches well with the model simulation of global runoff based on the Budyko’s framework. 
 
Lines 234-235: The meaning of the lines in 4b is not necessarily clear from the legend in the figure. 
I’d suggest writing clearer descriptions of their meaning in the caption. 
 
Response: Thank you for the suggestions, we actually made an error here. Only three CO2 effects, 
instead of four, are presented here. The stepwise combinations are shown as the three lines 
indicated by the legend. We have revised the figure caption as below: 
 

“Three types of CO2 effect are considered, with each line represents a stepwise combination 
of them” 

 
Lines 274-275: By “low (dry) and high (wet)”, do you mean that the CO2 effect in low vegetation 
regions leads to drying of streamflow (enhanced LAI outweighs reduced conductance) and vice 
versa? If so, I would suggest just being a little clearer because it wasn’t immediately clear to me 
what “low (dry) and high (wet)” meant. 
 
Response: Here we mean that the global runoff also shows a contrasting trend between the 
drylands and non-drylands. In our study area where water is the major limiting factor for 
vegetation, drylands have relatively low vegetation cover and non-drylands have relatively higher 
vegetation cover. We revised this sentence to make it clear: 
 

“This contrasting response is also supported by the observed divergent trends in global 
runoff for drylands and non-drylands51,52” 

 
Lines 292-305: I like this last paragraph a lot. Great point about “greening but drying,” and a nice 
way to finish the paper! 
 
Response: Thank you! 



 
Lines 328-329: The performance of LAI3g would depend not just on NDVI3g, but also on the 
performance of the MODIS LAI product, correct? And in some regions the LAI estimates from 
MODIS can be a little suspect, I think? 
 
Response: We agree that the LAI3g is also dependent on the performance of the MODIS LAI 
dataset, since the machine learning algorithm used MODIS LAI as a target during the training. 
There may be some regions that have less optimum LAI performance, especially in the tropics 
and boreal regions; however, this dataset is still one of the most widely used dataset by climate 
change studies (Buermann et al., 2018; Forzieri et al., 2017; Zeng et al., 2017; Zhu et al., 2016). 
We have revised this sentence and acknowledged the performance issues. 
 

“Although the resulting GIMMS LAI 3g dataset strongly depends on the performance of 
GIMMS NDVI 3g and MODIS LAI, it compared well against field observations and partially 
alleviates the saturation effect of NDVI in densely vegetated regions62.” 

 
Lines 408-409: Is this supposed to say “Since *not* all models participate…”? This sentence could 
also generally be better worded I think. 
 
Response: We rewrote this sentence to make it clear: 
 

“Only models that have all four simulation scenarios and predictions of 𝐿𝐴𝐼, 𝐸+, and 𝐸 can 
be used for this analysis, five models meet these requirements and are used” 

 
Line 448: I’m not a hydrologist by any means, but it seems like interception should vary by both 
the amount of LAI (more LAI = more interception?) and by the intensity of precipitation (light 
precipitation events should have a greater percentage intercepted than heavy precipitation 
events, since once canopy has reached a maximum interception capacity, any additional 
precipitation would not be intercepted?) Is this 15% interception a common practice? 
 
Response: Interception is indeed affected by multiple factors, including LAI, rainfall intensity, and 
rainfall type, simulation timestep, etc. (Wang et al., 2007) However, our current understanding 
of interception is still limited, and the spatial variation of interception cannot be well reproduced 
by the state-of-the-art land surface models. Here we used 15% as suggested by a global modeling 
study (Wang et al., 2007), which yielded reasonable transpiration fractions to precipitation when 
compared with other independent observations (Good et al., 2017). We also showed in Figure 
S18 that different levels of interception actually led to minor difference to our results. We 
discussed the potential impact in the supplementary method. 
 

“We also tested other values and found this assumption does not directly affect our results 
afterwards (Supplementary Fig. S18).” 

 
Figure S14: Would it be worth analyzing the relationship of theta-prec to VPD and/or PET trends? 
 



Response: Thank you for your suggestion. We followed your suggestion and evaluated the 
relationship between 𝜃!"#$  and VPD and PET. Considering the large differences in PET trend due 
to different calculation equations, we used both PET from CRU TS 4.05 (Harris et al., 2020) and 
PET calculated by Sheffield et al., (2012). For the VPD, we used CRU TS 4.05, which is an 
observational-based dataset and showed good consistency with other datasets (Yuan et al., 2019). 
We find very weak relationship between 𝜃!"#$  and VPD, and 𝜃!"#$  and PET from both datasets. 
The correlations are also weak within drylands and non-drylands for all three datasets. But the 
sign of the correlation coefficient is similar to that of temperature. This can be anticipated 
because both factors are directly affected by the air temperature. We replaced the original Fig. 
S14 with this updated Fig. R6.  



 
Fig. R6. Relationship between trend of precipitation sensitivity and trend in climate variables 
(precipitation, temperature, cloud cover, potential evapotranspiration, and vapor pressure 
deficit). The first column shows the correlation for all pixels (a-f), second column for the dryland 
pixels (g-l), third column for the non-dryland pixels (m-r). PET from both Princeton and CRU TS 
4.05 are used. 



 
Figure S16: I really like this figure and would suggest possibly adding it as a panel in Fig. 4. Maybe 
instead of the soil texture analysis? To me, it seems like the soil texture analysis is more of a 
supplemental thing and not nearly as crucial to the main argument as Figure S16 is. 
 
Response: Thank you for your suggestion. We did not combine these two figures since Figure S16 
is based on the outputs from MsTMIP models. This Figure S16 is an extension of the Figure 3. 
However, Figure 4 is based on the minimalistic hydrological model. Although Figure S16 and 
Figure 4 are broadly consistent with each other, the minimalistic model provides a more 
mechanistic understanding and more details along the aridity index rather a difference just 
between drylands and non-drylands as shown in Figure S16. Adding Figure S16 as a subplot of 
Figure 4 may confuse the readers. 
 
We agree with the reviewer that soil type is not the critical information we would like to highlight 
in this figure. Figure 4a aims to provide a general pattern of vegetation sensitivity to precipitation 
( 𝜃!"#$ ), while Figure 4b shows the trend of 𝜃!"#$  due to direct and indirect CO2 effect. 
Considering we are using a simple hydrological model and the model parameters can affect the 
results, we need to test whether the observed patterns are sensitivity to parameters. Soil types 
are important parameters in the minimalistic hydrological models and is shown here, we also 
tested other parameters including rooting depth and rainfall depth shown as the thin lines. The 
results show the observed patterns are robust and not strongly affected by the parameters. 
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