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1 Error Correction Methods

Correction of hardware errors is performed using the
nulling method, which is based on the diagonalization of
a unitary matrix using Givens rotations. This is closely
related to the QR decomposition for the Reck triangle
[1], and a related decomposition for the more compact
Clements rectangle [2]. The original nulling proposal was
restricted to triangular (Reck) meshes and used internal
tap detectors to monitor the output power of each MZI
[3, 4]. Subsequently, the method was extended to generic
mesh types [5], and Ref. [6] showed that that external de-
tectors are sufficient for both Reck and Clements meshes.

Following Appendix A of Ref. [6], we describe here the
nulling procedure for configuring a Reck mesh. First, we
write the coupling matrix for the multiport interferometer
as a product of the 2×2 MZI blocks and an external phase
screen:

U = D
(
TN−1,1 . . . T13T12T11

)︸ ︷︷ ︸
W

(1)

Here, the Tmn represent tunable couplers (MZI, 3-MZI,
MZI+X, etc.) while D is a diagonal matrix encoding the
output phase shifts. The Tmn are ordered along rising
diagonals as shown in Fig. 1 (nulling also works on falling
diagonals [6]).

Fig. 2 traces out the nulling steps for a 4× 4 Reck mesh.
We start by initializing the mesh to approximately the
cross state, Fig. 2(a). We keep track of two matrices
(Fig. 2(b)): W = TN−1,1 . . . T11 is the partial product
of all configured MZIs, and X = UW †, where U is
the target unitary. At the beginning, none of the MZIs
are configured, so W = I and X = U . At each step,
with an example shown in Fig. 2(c), we configure target
MZI Tmn, which updates W and X by Givens rotations

T11

T12

T13

T21

T22
T31

W = T31...T13T12T11 DU = DW

Figure 1: Reck decomposition of a 4×4 programmable unitary.

W → TmnW , X → XT †mn. The target Tmn is chosen
to zero a particular off-diagonal element Xij . Subsequent
MZIs are configured in a sequence that successively ze-
roes off-diagonal elements of X (Fig. 2(d)). If all MZIs
are configured properly, at the end of the procedure, X
is diagonalized so U = DW , and the output phases (ele-
ments of D) can be read off by inspection.

Nulling specifies constraints on the target Givens rotation
Tmn, which zeroes an element ofX by right-multiplication
(Fig. 3). Assuming unitarity of all matrices, the zeroing
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Figure 2: Configuration of a 4×4 Reck mesh by measurement-
assisted nulling, following the procedure of Ref. [6].

1



X  X Tmn
†

Tmn
u*

v* 0
*

-v
u

0
*

* 0 0 0 0 0
000

0
0
0
0

vu
* 0 0 0 0 0

000
0
0
0
0

0*

Xij 

Figure 3: Right-multiplication by T †m mixes the elements (u, v)
of X and zeroes out the rightmost one. This is equivalent to
the condition Eq. (2).

of Xij implies that:

Tmn

[
−v
u

]
=

[
0
∗

]
(2)

i.e. the power at the top output is zero when the
fields (−v, u) are input to the crossing. This is equiv-
alent to the splitting-ratio condition s = ŝ, where s ≡
(Tmn)11/(Tmn)12 is the splitting ratio of the crossing
(Eq. (2), main text), and ŝ ≡ u/v is the target value. The
difficulty in this procedure lies in the difficulty of accu-
rately realizing T̂mn in practice, since the actual transfer
matrix is a function of both the control parameters (θ, φ)
and the unknown fabrication imperfections. Therefore,
for the realized Givens rotation, in general s 6= ŝ, which
will lead to errors in the realized matrix U .

There are three distinct variants of the nulling method
that accommodate hardware errors to different degrees:
(1) an in-silico approach that does not correct errors [1, 2],
(2) measurement-assisted nulling, which corrects errors
provided that s does not fall within a forbidden region
[3, 6], and (3) an improved measurement-assisted method
that partially compensates for the “uncorrectable” errors
arising from unrealizable splitting ratios.

1.1 In-Silico

Assuming ideal hardware, there is a simple relation be-
tween (θ, φ) and T . For example, for the standard MZI,

T = ieiθ/2
[
eiφ sin(θ/2) cos(θ/2)
eiφ cos(θ/2) − sin(θ/2)

]
(3)

in the absence of hardware errors. Using this formula, we
can easily obtain (θ, φ) from the target splitting ratio:

θ = 2 tan−1 |ŝ|, φ = arg(ŝ) (4)

Following this procedure, the phase shifts of the mesh are
found entirely in a computer. As a result, hardware errors
are not accounted for when programming the mesh, and
the realized matrix will be off by an amount called the
uncorrected error:

E0 ≡
〈‖U − Û‖〉rms√

N
≈ 1√

N

√∑
mn

〈‖∆Tmn‖2〉 (5)

where ‖·‖ is the Frobenius (L2) norm, U and Û are the
realized and target matrices and ∆Tmn = Tmn − T̂mn
is the difference (due to hardware errors) between the
realized Tmn and the ideal T̂mn given by Eq. (3).

In-silico methods were presented in Refs. [1, 2] for the
Reck and Clements meshes. The effect of hardware errors
was studied in Refs. [6, 7]. Fig. 4(a) shows the flowchart
for programming a mesh via in-silico nulling.

1.2 Measurement-Assisted

In measurement assisted nulling, the first two steps are
the same: find the target splitting ratio and update X
and W using the corresponding Givens rotation. The
principal difference is that (θ, φ) are found using an in-
device measurement. For the Reck mesh, the procedure
is traced out in Fig. 2, where each step attempts to zero a
matrix element Xij by injecting w∗j as input and adjust-
ing the phase shifters to zero the output power at port i
(see also Fig. 4(b)). This method was first proposed [3]
and demonstrated [4] on the Reck mesh, but can be gen-
eralized to other mesh types provided that tap detectors
are present after every MZI [5]. It was later shown that
self-configuration is possible without the tap detectors [6].
Errors occur whenever a crossing cannot be programmed
to reach the target splitting ratio, i.e. when ŝ lies within
the forbidden region due to hardware imperfections.

1.3 Improved Measurement-Assisted

In this paper, we have developed a refinement to the
measurement-assisted nulling algorithm that allows for
some of the “uncorrectable” errors to be partially cor-
rected in subsequent nulling steps. The impetus for
this refinement is the observation that, whenever uncor-
rectable errors occur, the s 6= ŝ, and the conventional al-
gorithm as implemented in Fig. 4(b) incorrectly updates
X and W . Error correction can be improved if we can
accurately estimate the realized splitting ratio s; this al-
lows the algorithm to use this information in order to
partially compensate for such errors during the program-
ming of subsequent MZIs.

The refined error correction algorithm is shown in
Fig. 4(c). Here, we defer updates to X and W until the
end, and after (θ, φ) have been set, we measure s through
the following procedure:

• If the output power is successfully nulled (Pi = 0),
then the coupler is configured correctly and s = ŝ.

• If Pi 6= 0, nulling is imperfect and s 6= ŝ. To find
s, we now perform an optimization: injecting w̄j(s)
(the jth column of W̄ (s) = T (s)W , which is a func-
tion of s), we vary s in the vicinity of s = ŝ (with the
fixed (θ, φ) obtained in the previous step) until the
output power is exactly zero. This procedure obtains
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Figure 4: Nulling procedure for (a) in-silico (uncorrected) programming [1, 2], (b) measurement-assisted self-configuration
[3, 6], and (c) an improvement to the measurement-assisted algorithm.

the actual splitting ratio implemented in the tunable
coupler.

Once s is found, we update X and W using T (s). Since
the W and X updates are exact even in the presence
of uncorrectable errors, the final matrix error is directly
related to the residuals left by imperfect nulling of X.
These residuals were calculated in the main text using
the formula:

(E2c )sc

=
2

N

∑
mn

〈r2mn〉 =
1

2N

∑
mn

〈
|umn|2+|vmn|2

〉︸ ︷︷ ︸
qmn

d(smn, ŝmn)2

=
π

12N

∑
mn

qmn
[
Pmn(s+)〈R4

+〉+ Pmn(s−)〈R4
−〉
]

(6)

1.4 Local Correction Method

For comparison, we also describe the local method for
hardware error correction, first presented in Ref. [8]. This
method is based on the principle that 2 × 2 unitary ma-
trices are equivalent up to output phases if they share a
common splitting ratio s ≡ T11/T12:

s = ŝ ⇔ T =

[
eiψ1

eiψ2

]
T̂ (7)

This equivalence principle allows perfect MZIs to be sub-
stituted for imperfect MZIs columnwise, performing cor-
rection locally at each coupler (although the procedure
is not strictly local: each step depends on the phases ψi

accrued from Eq. (7) in the previous step). Errors occur
only when MZI splitting ratios are unrealizable. These
“uncorrectable errors” are independent of each other and
add up in quadrature. Refs. [6, 7] calculate the resulting
matrix error, which follows from the relation

‖∆T‖ ≡ minψ

∥∥∥T − [eiψ1

eiψ2

]
T̂
∥∥∥ =

d(s, ŝ)√
2

(8)

where d(s, ŝ) = 2|s − ŝ|/
√

(|s|2 + 1)(|ŝ|2 + 1) is the Eu-
clidean metric on the Riemann sphere (under the stereo-
graphic projection s = (x+ iy)/(1 + z), which inverts to
x+ iy = 2s/(1 + |s|2) and z = (1− |s|2)/(1 + |s|2)).

In the notation of this paper, Ec takes the form:

(E2c )loc ≡
∑
mn

‖∆Tmn‖2 =
1

2N

∑
mn

d(smn, ŝmn)2

=
π

12N

∑
mn

[
Pmn(s+)〈R4

+〉+ Pmn(s−)〈R4
−〉
]

(9)

Eqs. (6) and (9) are almost identical, differing only by the
factor of qmn = 〈|umn|2 + |vmn|2〉 in the former. Since
qmn ≤ 1 due to the unitarity of X, Eq. (6) will always
give a lower matrix error.

Table 1 lists the formulas for coverage (Eq. (13), main
text) and matrix error (Eqs. (5-6)) for the three mesh
architectures and error models. We see that, for uncor-
related errors, only the 3-MZI is asymptotically perfect,
while both the 3-MZI and MZI+X are asymptotically per-
fect for correlated errors. In addition, the uncorrected
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Model Arch Coverage Matrix Error
C E20 (E2c )loc (E2c )sc

MZI e−N
3〈R2

+〉/24−N〈R
2
−〉/4 N2

288 〈R
4
+〉+ 1

48 〈R
4
−〉 N2

432 〈R
4
+〉+

logN−0.422
24N 〈R4

−〉
(any) 3-MZI e−N(〈R2

+〉+〈R
2
−〉) Eq. (5) 1

12 (〈R4
+〉+〈R4

−〉)
logN−1.366

3N (〈R4
+〉+〈R4

−〉)
MZI+X e−N〈R

2
+〉/4−N

3〈R2
−〉/24 1

48 〈R
4
+〉+ N2

288 〈R
4
−〉

logN−0.422
24N 〈R4

+〉+ N2

432 〈R
4
−〉

MZI e−N
3σ2/3 2Nσ2 2

3N
2σ4 4

9N
2σ4

σ 3-MZI e−16Nσ
2

3Nσ2 32σ4 128 log(N)−1.366
N σ4

MZI+X e−N
3σ2/3 N(2σ2 + σ2

γ) 4σ4 4
9N

2σ4

MZI e−(2/3)N
3µ2

4Nµ2 8
9N

2µ4 16
27N

2µ4

µ 3-MZI e−16Nµ
2

3Nµ2 32
3 µ

4 256
3

logN−1.366
N µ4

MZI+X e−4Nµ
2

8(log(N)− 1.422)µ2 16
3 µ

4 32
3

logN−0.422
N µ4

µ� σ (any) C = Cµ × Cσ E2 = E2µ + E2σ

Table 1: Coverage and matrix error for the MZI, 3-MZI, and MZI+X designs. Matrix error is given for the three nulling
methods: in silico (uncorrected, Sec. 1.1), local correction (Sec. 1.4) and self-configuration (Sec. 1.3). While the error formulas
are general, specific results are given for the uncorrelated model (σ) and the perfectly correlated model (µ).
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Figure 5: Comparison of the accuracy of self-configuration (SC, Sec. 1.2-1.3) and the local error correction method, Sec. 1.4.
For the MZI and 3-MZI, Gaussian error models are used with σ = 0.05 and σ = 0.10, respectively. For the MZI+X, a
correlated error model with µ = 0.1 is used. Dashed lines correspond to the analytic models in Table 1.

error can only be reduced in the correlated case, and
only for the MZI+X. Finally, the examples of the 3-MZI
and MZI+X highlight the superior performance of the
improved self-configuration method. Under the original
method, Ec is independent of N , making the mesh types
infinitely scalable (with respect to these errors) but not
asymptotically perfect. But under the improved method,
Ec ∝

√
log(N)/N , which vanishes in the limit N →∞.

Fig. 5 plots the numerically computed accuracy on the
three mesh types. For the 3-MZI and MZI+X, the differ-
ence in scaling with N is very clear. For the regular MZI,
all methods give the same scaling, but self-configuration
leads to an error lower by a factor of

√
2/3 (

√
2/3Nσ2

vs. (2/3)Nσ2). The overall error amplitude in the figure
is distorted by saturation when E ∼ 1, but the factor of√

2/3 is still clearly apparent.

1.5 Comparison to Global Optimization

Before the self-configuration and local algorithms were de-
veloped, the only way to train imperfect meshes involved
global optimization [9–11]. Since meshes are linear and
reciprocal devices, backpropagation of gradients is equiv-
alent to traversing the mesh in the opposite direction [12].
This is implemented in most simulation packages, includ-
ing Neurophox [13] (based on PyTorch backend) and
Meshes [14] (based on NumPy with Numba/CUDA ex-
tensions), and leads to optimization times orders of mag-
nitude shorter than gradient-free methods.

Previous studies have shown that gradient-based opti-
mization can give a slight improvement in the matrix
fidelity compared to the local or self-configuration ap-
proaches [6, 7], but take significantly longer to run, in
practice requiring thousands of iterations to converge to a
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Figure 6: Comparison of self-configuration and global opti-
mization for N = 256 meshes of the Reck (top) and Clements
(bottom) topology, with uncorrelated errors.

solution that is non-negligibly better than the algorithms
of Sec. 1.3. However, given sufficient computation time,
refinement by global optimization may be an appropriate
error correction technique. Using the GPU backend of
Meshes, we performed gradient-based optimization on
faulty meshes, using the L-BFGS-B algorithm and the
self-configured solution as an initial condition. Figs. 6-7
compare the accuracy of the self-configured solution to
this global refinement. Interestingly, the improvement is
fairly significant (3–4×) for Clements, but negligible for
Reck. We speculate that this discrepancy may be at-
tributed to the triangular structure of Reck, where the
MZIs near the apex of the triangle are most likely to lead
to uncorrectable errors. Since the upper-left corner of the
matrix depends only on these MZIs, errors in this region
cannot be corrected by adjustments to MZIs up- or down-
stream. This is in contrast to the Clements mesh, where
all paths pass through an equal number of MZIs, and
errors in the center of the mesh (where the probability
density clusters close to the cross state) can potentially
be corrected by adjustments near the edges.

In both meshes, up to a constant factor, the self-
configured and globally-optimized solutions have the
same error scaling Ec ∝ Nσ2 in the MZI mesh. For
large mesh sizes, the 3-MZI mesh still offers a significant
improvement over the globally optimized solutions, and
its Ec ∝

√
log(N)/N scaling means that this gap grows
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Figure 7: Dependence of corrected matrix error Ec on mesh
size. Model: uncorrelated splitter errors with σ = 0.05.

larger with increasing mesh size.

2 Imperfectly Correlated Errors

The splitter errors (α, β) of an MZI are best characterized
by measuring the device’s extinction ratio. To do so, one
tunes the internal phase shifter θ and measures the con-
trast of the interference fringes on the bar- and cross-port
outputs. As an MZI has the following transfer matrix

T (θ, φ) =

[
cos(π4 + β) i sin(π4 + β)
i sin(π4 + β) cos(π4 + β)

] [
eiθ 0
0 1

]
×
[

cos(π4 + α) i sin(π4 + α)
i sin(π4 + α) cos(π4 + α)

] [
eiφ 0
0 1

]
(10)

the bar- and cross-port outputs are have extrema θ ∈
{0, π}. The and the extinction ratios are given by:

ERbar[dB] = 20 log10

∣∣∣T11(θ = π)

T11(θ=0)

∣∣∣ = 20 log10

∣∣∣cos(α−β)

sin(α+β)

∣∣∣
≈ −20 log10 |α+ β| (11)

ERcross[dB] = 20 log10

∣∣∣T21(θ = π)

T21(θ=0)

∣∣∣ = 20 log10

∣∣∣cos(α+β)

sin(α−β)

∣∣∣
≈ −20 log10 |α− β| (12)

These relations can be inverted to give us:

|α+ β| = 10−ERbar/20, |α− β| = 10−ERcross/20 (13)
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Ref Type Platform ERcross ERbar

[18] MZI SiO2 PLC 29 –
[19] MZI SiO2 PLC 25.9 –
[20] MZI SiO2 PLC 32.5 –
[21] MZI SiO2 PLC 31 22
[22] MZI SOI 35 25
[23] MZI SOI 34 –
[24] MZI SOI 34 35
[25] MZI SOI 41.2 –
[26] MZI SOI – 30.9
[27] MZI SiN:AlN 30 –
[28] Suzuki SOI 50.4
[26] Miller SOI 60.5

Table 2: Reported bar- and cross-port MZI extinction ratios.
Extinction ratios are reported in dB.

In most photonic platforms, splitter errors are strongly
correlated so that ERcross � ERbar. For example, in
Fig. 8, we plot a histogram of measured MZI extinction
ratios characterized for a 3-layer silicon-photonic neural
network chip reported in Ref. [8]. The median bar- and
cross-port extinction ratios are 23 dB and 32 dB, respec-
tively. This correlation between splitter errors originates
from the lengthscales of fabrication process variations
that affect the critical dimensions (width, height spac-
ing) of the directional couplers. These variations typi-
cally have correlation lengths on the order of millimeters
[15–17], significantly longer than the spacing between cou-
plers in an MZI. This trend is also observed elsewhere in
the literature, as shown in Table 2. This suggests an
imperfectly-correlated error model of the form

MZI 3-MZI MZI+X
s+ 0 i ∞
s− ∞ −i 0

Table 3: Locations of the forbidden regions for each mesh
crossing geometry.

α ∼ N(µ, σ), β ∼ N(µ, σ) (14)

with µ � σ, is most accurate. We can use Eq. (13) to
relate µ and σ to the median MZI extinction ratios, as
follows:

µ =
10−ERbar/20

2
, σ =

10−ERcross/20

2.10
(15)

Recall that the Riemann sphere has two forbidden regions
centered at s± (see Table 3) with radii R± = 2|α ± β|.
Under this model, R± has the following moments:

〈R2
+〉 = 16µ2

(
1 + 1

2 (σ/µ)2
)

〈R2
−〉 = 8σ2

〈R4
+〉 = 256µ4

(
1 + 3(σ/µ)2 + 3

4 (σ/µ)4
)
〈R4
−〉 = 192σ4

(16)

The locations of the forbidden regions are given in Ta-
ble 3. Following the derivation in the Methods (specifi-
cally Eqs. (14, 19, 21, 26)), we find:

(Ec)2 =



N2

432
〈R4

+〉+
log(N)− 0.422

24N
〈R4
−〉 (MZI)

log(N)− 1.366

3N

(
〈R4

+〉+ 〈R4
−〉
)

(3-MZI)

log(N)− 0.422

24N
〈R4

+〉+
N2

432
〈R4
−〉 (MZI+X)

(17)
where we have substituted ( 5

4 + log(2)− γe)→ 1.366 and
(1− γe)→ 0.422 for clarity.

In the main text, we considered the special cases (1)
Uncorrelated errors, µ = 0, where Eqs. (17) reduces to
Eqs. (3, 14, 22) (main text), and (2) Perfectly correlated
errors, σ = 0, where Eqs. (17) reduces to Eqs. (4, 27)
(main text). Here we consider the imperfectly correlated
case, where σ � µ. Substituting Eqs. (16) into Eqs. (17)
and only keeping terms leading order in (σ/µ), we find:

Ec =

4

33/2
Nµ2 (MZI)

16µ2

√
3

[ log(N)− 1.366

N

]1/2
(3-MZI)[32µ4

3

log(N)− 0.422

N
+
(
(2/3)Nσ2

)2]1/2
(MZI+X)

(18)

For the MZI and 3-MZI, the error is determined entirely
by the mean value µ. On the other hand, for the MZI+X
design, the scaling with N in Eq. (18) means that the ac-
curacy of large meshes is limited by the differential term
σ even though σ � µ. This is shown in Fig. 9, which
shows the effect of nonzero σ (characterized in terms of
the cross-port ER through Eq. (15)) on the MZI+X mesh.
We see that these small differential errors ultimately limit
the scaling of this mesh, which is only asymptotically
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a

b

Figure 9: Effect of finite cross-port extinction ratio on cor-
rected error for MZI+X; compare Fig. 6 (main text). (a) De-
pendence of matrix error on µ for a Reck mesh of fixed size
N = 256. (b) Dependence on N for fixed µ = 0.1.

perfect in the ideal case of perfectly correlated errors.
However, for a reasonable value of ERcross = 35 dB (see
Table 2), Ec is at most a few percent for mesh sizes up
to N = 512. This suggests that error correction allows
the MZI+X to be asymptotically perfect on all practi-
cal mesh sizes, as scaling to meshes of size N > 512 is
likely prohibitively challenging due to chip area and loss
constraints.

In order to exactly cancel the differential term α − β as
required for very large meshes N > 1024, one can place
a heater above the directional coupler [29]. While this
scheme does come with the cost of an additional active
component (putting it in the same complexity category as
the “perfect optics” approaches [28, 30]), such an MZI+X
with coupler trimming is unique in that it enjoys natively
broad bandwidth, enhancing the WDM capacity of the
system, which may prove critical to achieving competitive
performance in photonic computing applications [31].

3 Length and Area Estimates

Table 2 of the main text provides a rough comparison
of the resource costs of various mesh architectures. In
all cases, the “perfect optics” designs [28, 30] require 1.5–
2× more active components, an important near-term con-
cern as the size of existing chips is often limited by elec-
tronic packaging [35] or power dissipation from heaters
[36]. Waveguide length (which limits loss and SNR [37]
and on-chip latency [8, 38]) and chip area are also critical
parameters, but depend on the implementation.

The approximate MZI dimensions of a range of photonic
mesh platforms are reported in Table 4. Most SOI de-
vices has similar sizes, although there is a wider range
of phase-shifter lengths owing to design tradeoffs (longer
thermo-optic phase shifters can be more energy-efficient
in certain cases [39] and the higher heater resistance re-
duces the required current, but such devices suffer from
increased loss and/or higher drive voltages). Non-SOI
platforms such as silicon nitride and lithium niobate can
support shorter optical wavelengths and offer mechanisms
for faster pure-phase modulation, but suffer from reduced
integration density due to the weaker phase-shift mech-
anisms (e.g. Pockels [34] or piezo-optomechanical [27]),
which require much longer phase shifters. In such plat-
forms, the length and area reduction for the 3-MZI is
particularly pronounced, as these figures depend primar-
ily on the number of phase shifters and not the number
of passive components.
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